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The structure of the fringe pattern that results from the interference between a plane monochromatic wave of any
state of polarization incident upon a phase-conjugate mirror and the wave reflected from the mirror is analyzed
theoretically. It is found that the locations of the fringe maxima and minima depend on the phase of the incident
wave, in contrast to the situation involving an ordinary metal mirror. Some of the results are applied to situations
that represent the "phase-conjugate analogs" of classic experiments of 0. Wiener on standing waves of light. A
comparison is made between his results and those that would be obtained in experiments involving a phase-
conjugate mirror in place of an ordinary metallic mirror.

1. INTRODUCTION
In classic experiments carried out toward the end of the last
century Wiener' demonstrated the existence of standing
waves of light and also showed that the photochemical ac-
tion responsible for the blackening of a photographic plate is
directly related to the electric rather than to the magnetic
field vector. These experiments involved measurements of
the positions of fringes formed by interference between a
plane electromagnetic wave incident upon a highly reflect-
ing plane mirror and the wave reflected from the mirror.

In the present paper we investigate theoretically the struc-
ture of the interference pattern that is formed when a plane
electromagnetic wave is incident upon a phase-conjugate
mirror rather than upon an ordinary mirror. We then spe-
cialize the results to situations that are analogous to those
pertaining to Wiener's experiments.

In Section 2 we derive general expressions for the distribu-
tion of the time-averaged electric energy density in the inter-
ference pattern formed when a plane electromagnetic wave
of any state of polarization and any direction of incidence
falls upon a phase-conjugate mirror. The phase-conjugate
mirror is of arbitrary reflectivity and is assumed to produce a
complete reversal of the state of polarization of the incident
wave.

In Section 3 we analyze the structure of the pattern. We
find, in particular, that unlike in the situation involving an
ordinary mirror, the locations of the intensity maxima and
minima depend on the phase of the incident wave.4 5

In Section 4 we specialize the results to the situation when

the absolute value of the reflectivity of the phase-conjugate
mirror is unity. This is the situation that, with certain
directions of incidence, is the "phase-conjugate analog" of
Wiener's experiments. With an ordinary highly reflecting
mirror a standing wave is formed only when a plane wave is
incident upon it along the normal to the mirror surface. In
contrast to this situation we find that with a phase-conjugate
mirror a standing wave is formed irrespective of the angle of
incidence.

Some of our results can be understood from qualitative
considerations based on the well-known action of a phase-
conjugate mirror in reflecting the incident wave back upon
itself. For this reason the form of the interference pattern
does not depend on the angle of incidence. Other results
are, however, intuitively less obvious, and their derivation
needs a more detailed mathlematical analysis such as is pre-
sented in this paper. Examples are the dependence of the
fringe visibility on the reflectivity of the phase-conjugate
mirror and on the state of polarization of the incident field.

Some of our predictions have been recently confirmed by
experiment.6 '7

2. DISTRIBUTION OF THE TIME-AVERAGED
ELECTRIC ENERGY DENSITY PRODUCED BY
REFLECTION OF A PLANE WAVE AT A
PHASE-CONJUGATE MIRROR

Let8

E(')(r, t) = eA() exp[i(k, r - wt)]
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(2.1)
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Fig. 1. Reflection of a monochromatic plane wave at a PCM.
Plane of incidence. k is the wave vector of the incident wave, and
k, = -ki is the wave vector of the wave that is reflected at the PCM.

be the electric field at a point r at time t of a plane mono-
chromatic wave with wave vector ki and frequency w inci-
dent upon a plane phase-conjugate mirror (PCM) located in
the plane z = 0. We take the positive z direction to point
into the half-space from which the wave is incident upon the
PCM (see Fig. 1). In Eq. (2.1) e denotes a unit polarization
vector:

e* X-e = 1. (2.2)

For a linearly polarized wave e may be taken to be real, but e
will be complex for more general states of polarization. For
example, for a circularly polarized wave we may take e = (1
+ ie 2 )/F2, where el and 2 are real, mutually orthogonal unit
vectors. The amplitude factor A(i) in Eq. (2.1) is a (generally
complex) constant.

We assume that the PCM is ideal in the sense that the
electric field of the reflected wave leaving the PCM is given
by

9
-12

E(r)(r, t) = ALe*A(l) exp[i(-ki r - t)]. (2.3)

where c.c. denotes the complex conjugate. It will be useful
to set

A(') = A()eia, e2= I e21eib. (2.7)

If we make use of Eqs. (2.7) and (2.3), the expression (2.6) for
the time-averaged electric energy density becomes, if we also
use an elementary trigonometric identity,

1We(r)) = IA6 I [I + Iw12 + 21I le2l

X cos(2ki r + 2a - ' + )]. (2.8)

3. STRUCTURE OF THE INTERFERENCE
PATTERN

We will now analyze the structure of the interference pattern
in front of the PCM. We see from Eq. (2.8) that (We(r)) has
a constant value when

2ki r + 2a - 0 + 3 = constant, (3.1)

i.e., along planes perpendicular to the direction of propaga-
tion ki of the incident wave. In directions perpendicular to
these planes (We) varies sinusoidally between the values

(We)max = IAI [1 + A12 + 21tl le21]

and

(We)min = IA'11 [1 + I/12 - 2i,1 le2],

with the period

A = rc = X
W 2

(3.2a)

(3.2b)

(3.3)

Here

y= It~eif (2.4)

denotes the amplitude reflectivity of the PCM. According
to this definition of an ideal PCM, the wave vector k is
reversed, and the complex amplitude A(M) is replaced by its
complex conjugate in the reflection process. We have also
assumed that the PCM produces a reversal of the state of
polarization of the incident wave, which implies that is
replaced by e*. PCM's having this property are sometimes
referred to as "vector phase-conjugate mirrors."

From Eqs. (2.1) and (2.3) it follows that the total electric
field E = E(W) + Er) in the half-space z > 0 in front of the
PCM is given by

E(r, t) = [A(t) exp(iki - r) + AE*A(l) exp(-iki r)]e-it.

(2.5)

Let us now consider the time-averaged electric energy
density of the total field at a typical point in the half-space z
> 0. It is given by the expression [cf. Ref. 2, Sec. 1.4, Eq.
(54)] (we) = (1/167r)E E*, which is independent of time.
On substituting into this expression from Eq. (2.5) and using
Eq. (2.2) we readily find that

(We(r)) = 1 {(1 + LJ2)IA(') 12
l6ir

+ [L
2

6,*A(i)
2 exp(2iki r) + c.c.2,

where X is the wavelength of the incident wave.
As is customary, we will characterize the sharpness of the

interference fringes by the visibility CV, defined as

IV= (We)max (We) min

(We)max + (We)min
(3.4)

On substituting from Eqs. (3.2) into Eq. (3.4), we find that in
the present case

= 2| 1| le2+ (3.5)

Some interesting consequences can readily be derived
from the formula (3.5). Since I21 < e* * e = 1, it is clear that
(with , fixed) the visibility will attain its maximum value
when 1E21 = 1. In view of Eq. (2.2) this condition can readily
be shown to be satisfied only when the incident field is
linearly polarized, and we then have from Eq. (3.5) that

V 21 I
1 + A12

(3.6)

In Fig. 2 the visibility CT given by this expression is plotted as
a function of the absolute value ll of the reflectivity of the
PCM. We see that in the range 0 < 1pi < 1 the visibility
increases monotonically from the value V = 0 when ,u = 0 to
its maximum value IV = 1 when 1,| = 1, i.e., when the reflect-
ed wave is generated by the PCM without any losses or gains.

We also see from Eq. (3.5) that irrespective of the value of
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PCM is produced by degenerate four-wave mixing in a non-
linear medium, with all the four waves being linearly polar-
ized perpendicular to the plane of incidence (TE waves).
Let eo be a real unit vector that characterizes the (linear)
polarization. Let E(')(r, t) and E(")(r, t) represent the two
counterpropagating pump waves with wave vectors ko and
-ko (see Fig. 3), for which we write

E(')(r, t) = e0A(1) exp[i(ko r -t)],

E(")(r, t) = eoA(") exp[i(-ko r - t)]. (3.9)
As is well known,13 in the weak-field limit 1Aul << 1 the com-
plex reflectivity AL of the PCM is given by

g = igLA(I)A(II),
I I I I I e I l I

0 I 2 3 4 5 6 7 8 9 10 Isli

Fig. 2. Visibility V of the interference fringes as a function of the
absolute 1jI of the reflectivity of the PCM [Eq. (3.6)].

ji the visibility will be zero when e2 = 0. It can be readily
verified [cf. the remarks under Eq. (2.2)] that this will be the
case when the incident wave is circularly polarized. Thus
we conclude that when a circularly polarized wave is incident
upon the PCM no interference fringes are formed in front of
it, irrespective of the value of the reflectivity of the PCM, as
is also seen at once by setting 1t21 = 0 in Eq. (2.8).

Let us return to the situation when the incident wave is
linearly polarized. As we have seen, one then has Ie21 = 1;
this implies, according to the second expression in Eqs. (2.7),
that = 2m7r, where m is an integer. Under these circum-
stances the expression (2.8) for the time-averaged electric
density may be expressed in the form

(We(r)) = IA 12 [(1 - 1,)2 + 4l cos2(k. r - + a + mr)].
16~r 2

(3.7)

It follows at once from this formula that the locations of the
maxima of the fringe pattern are given by

(3.10)
where L is the thickness of the optically pumped nonlinear
medium and g is a coupling constant proportional to the
nonlinear susceptibility. It then follows on substituting the
expression (3.10) for 1A into the expression (2.3) for E(r)(r, t)
that the electric field of the reflected wave is given by

E(r)(r, t) = -igLoA(I)A(II)A(i)* exp[i(-ki r - wt)]. (3.11)

Suppose now that we displace the origin of space by Ar
and the origin of time by At. As this is a purely formal
notational change, one would not expect this to change the
reflected wave in any way, despite the explicit appearance of
the phase of the incident wave in Eq. (3.11). Let us check
this point by making use of Eq. (3.11). Under the transla-
tion of origins, the physical fields E(I), E("), and E(i) do not
change, so the complex amplitudes A(I), AM), and A(U) must
change to A(')', A"Y, Ai)', such that

A(') exp[i(ko r - wt)] = A(') expli[ko (r - Ar) - (t - At)),

A(I) exp[i(-ko r - ,t)] = A(u") expti[-k 0 (r - Ar) - w(t - At)]),

A(') exp[i(ki r - t)] = A(i) expti[ki (r - Ar) - co(t - At)]),

or

A(I) = A(I)'exp[i(-ko - Ar + coAt)],

AD = A) exp[i(ko0- Ar + At)],ki r -(0/2) + = n (n = O. +1, +2 .. . (3.8a)

and the locations of the minima are given by

ki r - (/2) + au = [n + (1/2)]7r (n = O. +1, +2,. ...

(3.8b)

We see from these two formulas that the positions of the
maxima and the minima in the fringe pattern depend on the
phase a of the incident light and on the phase of the
complex reflectivity of the PCM and are independent of the
absolute value Jgl of the reflectivity of the PCM. Thus the
measurements of the locations of the maxima and minima
would provide information about the phase of the incident
light, which appears at first sight to be unphysical because
the phase depends on the choice of origin for space and time.
However, before concluding that the positions of the inter-
ference fringes depend on the origin, we need to recall that
the PCM is not a passive device but relies on the presence of
a pump electromagnetic field. As a result, both a and 0

depend on the origin of space and time.
In order to make these considerations a little more explic-

it, let us consider the simple but important case in which the

A(') = A()' exp[i(-ki Ar + wAt)]. (3.12)

If we now substitute for A(, A(M), and A(U) from Eqs. (3.12)
into Eq. (3.11), we obtain

(r)

(I)

acEA//NNIR MEIUM //

-kol

(O1
Fig. 3. Geometry of the PCM based on four-wave mixing. (I) and
(II) indicate the directions of propagation of the two counterpropa-
gating pump waves EI) and VD, respectively, and (i) and (r) denote
the directions of propagation of the incident wave E) and of the
conjugate reflected wave E(r), respectively.
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E~r (r, t) = -igL0A(I)'A(1)'A(')'*

X expli[-k.- (r - Ar) - w(t - At)]1. (3.13)

The right-hand side of Eq. (3.13) represents precisely the
electric field of the reflected wave, expressed in terms of the
transformed variables, and it is evidently the same wave as
in Eq. (3.11). From this it follows that the nature of the
interference patterns described by Eq. (2.8) is independent
of the origin of space and time and therefore independent of
the absolute phase in the strict sense. Nevertheless,
through the difference a - (0/2) the position of the interfer-
ence fringes depends on the difference between the phases of
the incident wave and of the complex response of the PCM.
The fringes will move if the phase of the incident wave is
retarded by use of a phase retarder, for example, and this
was recently demonstrated experimentally.6 7 These con-
clusions are unchanged if IAt1 is not necessarily small com-
pared with unity, although the expression for the reflectivity
,u of the PCM then becomes more complicated.

We shall now examine in more detail the case in which JIt
= 1, when the fringe visibility is greatest.

4. STRUCTURE OF THE INTERFERENCE
PATTERN WHEN Isi = 1. COMPARISON WITH
WIENER'S EXPERIMENTS

When JAI = 1, the reflected wave is generated at the PCM
without any losses or gains. This situation, which in a sense
is analogous to reflection at a perfect conductor, is of partic-
ular interest in applications of the technique of phase conju-
gation. It has been shown' 2"4 that under these circum-
stances the effect of distortion imparted on an incident wave
by scattering on a dielectric is completely eliminated by
phase conjugation.' This situation (Il = 1) is also of inter-

est, because for certain directions of incidence it represents
the "phase-conjugate analog" of classic experiments of Wie-
nerl by which he demonstrated the existence of standing
waves of light and by which he showed that the blackening of
a photographic plate (i.e., the photochemical action) is
caused by the electric and not by the magnetic field. In this
section we specialize some of our formulas to the situation
when I/I = 1, and we will discuss their consequences.

When pIb = 1, Eq. (2.5) for the components of the total
electric field in the half-space z > 0 in front of the PCM
become

E(r, t) = [eA() exp(iki - r) + ei E*A(i)* exp(-iki* r)]e-it,

(4.1)

where Eq. (2.3) was used. The expression (4.1) may be
rewritten in the form

E(r, t) = 21REA() exp[i(ki r - 0/2)]1expti[(0/2) -t]).

(4.2)

We see that the electric field is now given by a product of a
function of position and a function of time. Hence the wave
in the half-space z > 0 is a standing wave, irrespective of the
angle of incidence Oi. This is in contrast to the case of
reflection from an ordinary, perfectly reflecting plane mir-
ror, in which a standing wave is formed only when the wave is
incident upon it in the direction of the normal (Oi = 0). The

formation of the standing wave for any angle of incidence,
with a PCM that generates the conjugate wave without
losses and gains (i.e., when pIg = 1), plays a basic role in the
elimination of distortions by the technique of phase conjuga-
tion.12"5

The time-averaged electric energy density is in this case
given by Eq. (2.8) with JpI = 1, viz.,

( =We(r)) l 1 1E-21 + 21E21 cos2[ki * r + a - (4/2) + (6/2)]).

(4.3)

Let us now specialize some of our results to two cases that are
related to Wiener's classic experiments involving an ordi-
nary mirror.

A. Normal Incidence (Oi = 0, JII = 1)
When the incident wave falls normally upon the PCM, the
wave vector ki has Cartesian components (0, 0, -ki), where ki
= 27r/X, X being the wavelength. For the sake of simplicity
we assume that the electric field E(i) is linearly polarized, in
the x direction, say. The unit polarization vector e [cf. Eq.
(2.1)] may then be taken to be the real unit vector along that
direction. It follows at once from Eq. (3.8) that the locations
of the maxima of the time-averaged electric energy density
are now given by' 6

Z = + [R/2)-a] (n = 0,1, 2,...)
2 2tr

and the locations of the minima are given by

= (n + 1/2)X + X [(0/2)-a]
2 27r

(4.4a)

(n = 0,1, 2, ... ). (4.4b)

The planes specified by Eqs. (4.4a) and (4.4b) are, of course,
also the locations of the antinodes and of the nodes, respec-
tively, of the electric field.

In the classic experiments of Wiener, mentioned at the
beginning of this section, an ordinary, almost perfectly re-
flecting mirror M was illuminated by a normally incident,
linearly polarized electromagnetic wave. A standing wave
was formed by interference of the incident and the reflected
wave, with the antinodes of the electric field being at dis-
tances

z = [n + (1/2)] - (n = 0,1, 2,...)
2

and the nodes at distances

z=n - (n=0,1, 2 ,....)
2

(4.5a)

(4.5b)

in front of the mirror. The antinodes of the magnetic field
then coincided with the nodes of the electric field and vice
versa. Wiener placed a glass plate G in front of the mirror
M. The plate was coated with a film of transparent photo-
graphic emulsion of thickness less than X/20 and was in-
clined to the mirror at a small angle [exaggerated in Fig.
4(a)]. On development, the emulsion was found to be black-
ened along equidistant parallel bands, with transparent re-
gions between them. The maxima of blackening coincided
with the intersection of F with the antinodal planes of the
electric field. These and related experiments demonstrated
that photochemical action is directly caused by the electric
field, a result that came to be fully understood later, from
electron theory.

Wolf et al.
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Fig. 4. (a) Wiener's experiments on standing waves produced on reflection from a highly reflecting mirror M. The horizontal lines indicatethe position of the maxima of the time-averaged electric energy density. (b) Predicted locations of the maxima in similar experimentsperformed with a PCM rather than with an ordinary mirror. a denotes the phase of the complex amplitude AWi) of the incident wave, linearlypolarized along the x direction, and k denotes the phase of the complex reflectivity u of the PCM.

Suppose that we would carry out similar experiments to
Wiener's but with the ordinary mirror M replaced by a PCM
[Fig. 4(b)]. The photographic plate would then again be
blackened along equidistant parallel bands, but the maxima
of the blackening would now be given by Eq. (4.4a) rather
than by Eq. (4.5a). Their locations depend not only on the
wavelength X but also on the phase a of the complex ampli-
tude A(') of the electric vector of the incident field and on the
phase of the complex reflectivity of the PCM, as was to be
expected from the remarks made at the end of Section 3.

B. Incidence at 450 (O = 450, 1,4 = 1)
Next we consider the situation when the incident wave falls
upon the PCM at 450. We again assume that its electric
vector is linearly polarized.

Since the wave vector k now has the Cartesian compo-
nents (ki/,I2, 0, -kA,/), it readily follows from Eqs. (3.8) that
the locations of the maxima of the time-averaged electric
energy density are now given by

x - z=n+ [,2 - al (n =0, +1, +2....,

(4.6a)

and the locations of the minima are given by

x _ =(n + 1/2)X + X a]

(n = 0, O1, 2, .. .). (4.6b)

These two formulas show that the positions of the interfer-
ence fringes again depend on the phase a of the incident
wave. This result, too, is in contrast with the corresponding
situation when an ordinary, highly reflecting mirror is em-
ployed in place of the PCM, a situation that was also investi-
gated experimentally by Wiener. Moreover, with an ordi-
nary mirror, the nature of the interference pattern formed in
front of the mirror depends on the angle that the (linearly
polarized) electric vector of the incident field makes with the
plane of incidence. In particular, Wiener found in agree-
ment with theory [cf. Ref. 2, Sec. 7.4, Eqs. (12)-(14)] that,
when the incident wave is linearly polarized with its electric
vector perpendicular to the plane of incidence, the interfer-
ence fringes are parallel to the plane of the mirror; and that,
when it is polarized in the plane of incidence, no fringes are

formed, the time-averaged energy density then being con-
stant throughout the half-space z > 0. With a PCM, on the
other hand, as we see from Eqs. (4.6), interference fringes
will be formed irrespective of the angle that the electric
vector makes with the plane of incidence, and they are per-
pendicular to the direction of incidence.

5. DISCUSSION
We have investigated the structure of the fringe pattern
produced by interference between a plane electromagnetic
wave of any state of polarization falling upon a PCM at any
direction of incidence and the wave leaving the mirror. We
have found that the position of the fringes depends on the
phase of the incident wave. This result is in contrast to that
which occurs with an ordinary metal mirror. In that case
the positions of the fringes are independent of the phase of
the incident wave. We have shown that for the case of a
PCM based on degenerate four-wave mixing, the phases of
the waves used to pump the mirror provide a reference with
respect to which the phase of the incident wave is deter-
mined. Hence, while the positions of the fringes can be used
to determine the phase of the incident field, the phase is
determined only with respect to the phases of the pump
waves, and in this respect the situation is somewhat similar
to that encountered in traditional interferometers.

We have also shown that with a PCM the maximum fringe
visibility is obtained when the incident field is linearly polar-
ized and that no fringes are formed when it is circularly
polarized.

We also considered the special case when the absolute
value of the reflectivity of the PCM is unity, i.e., when the
conjugate wave is generated without any loss or gain of
energy. For certain directions of incidence and states of
polarization these situations are analogous to those pertain-
ing to Wiener's classic experiments involving an ordinary,
highly reflecting mirror. We have compared Wiener's re-
sults with those that would be obtained when a PCM rather
than an ordinary mirror is used.
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