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Weak value amplification (WVA) is a technique by which one can magnify the apparent strength of a
measurement signal. Some have claimed that WVA can outperform more conventional measurement
schemes in parameter estimation. Nonetheless, a significant body of theoretical work has challenged this
perspective, suggesting WVA to be fundamentally suboptimal. Optimal measurements may not be
practical, however. Two practical considerations that have been conjectured to afford a benefit to WVA over
conventional measurement are certain types of noise and detector saturation. Here, we report a theoretical
study of the role of saturation and pixel noise in WVA-based measurement, in which we carry out a
Bayesian analysis of the Fisher information available using a saturable, pixelated, digitized, and/or noisy
detector. We draw two conclusions: first, that saturation alone does not confer an advantage to the WVA
approach over conventional measurement, and second, that WVA can outperform conventional meas-
urement when saturation is combined with intrinsic pixel noise and/or digitization.
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Weak value amplification (WVA) is an interference-
based phenomenon originally proposed by Aharonov,
Albert, and Vaidman [1]. It has been argued that WVA
can amplify minute signals, thereby enabling the determi-
nation of small physical quantities that would, otherwise,
be impractical to measure [2–18]. The quantum metrologi-
cal community is presently engaged in a contentious debate
over the effectiveness of WVA as a parameter estimation
technique [19–32]. A considerable and controversial body
of literature now demonstrates that WVA can provide an
advantage over conventional measurement (CM) when
various forms of noise are present. By contrast, the effect
of detector saturation has never been analyzed despite a
conjecture that it can cause WVA to outperform CM [33].
The case against WVA is rigorously cast in terms of

Fisher information (FI), a quantity that provides a lower
bound on the uncertainty associated with the measurement
of a physical parameter [34]. The FI can be determined
from the probabilities of the various possible measurement
outcomes of a particular experiment. In this sense, the
Fisher information provides a measure of the quality of an
experimental design; a well-designed experiment will elicit
more FI about a parameter of interest than will a poorly
designed experiment. Related to FI is the concept of the
quantum Fisher information (QFI), defined as the standard
FI, maximized over the set of all possible measurement
schemes [35]. The QFI provides a theoretical upper bound
on the standard FI, and can be achieved only in the limit of
an optimal measurement. Thus far, many of the arguments
criticizing WVA have appealed to the QFI [28,30,31],
which fails to account for the myriad practical constraints
faced in real experiments. That the WVA approach fails to

yield the full QFI theoretically available to an experimenter
should not, in and of itself, be understood to suggest WVA
to be unhelpful in practice. Rather than asking how WVA
fares relative to the QFI, experimenters are concerned with
the more practical question, “Are there any experimental
constraints in my setup that lead to an advantage for WVA
schemes—and if so, what are they?”
For example, one might imagine using a camera to

measure a shift g in the position of a laser beam’s transverse
spatial distribution, i.e., its “profile.” We shall assume g to
be small compared to the beam width w, and that w has
been fixed by practical considerations. Via WVA, it is
possible to amplify this shift considerably in exchange for
postselecting away a fraction of the photons in the beam,
reducing its average photon number. A number of factors
might conceivably make this trade-off worthwhile; some
forms of noise, or the saturation of the camera’s pixels
might make the magnitude of the shift more important than
the number of photons in the beam, for example. While
study of beam jitter, detector jitter, turbulence, and time-
correlated noise has found WVA to be potentially advanta-
geous [5,32], a rigorous treatment of saturation effects is
absent from the literature. Detector saturation results in a
flattening of the beam’s spatial distribution, limiting one’s
ability to measure beam shifts. Intuitively, one might expect
the WVA strategy to be more robust against such flattening
of the beam’s spatial distribution, since it simultaneously
amplifies the shift and reduces the average photon number
of the beam, in turn limiting detector saturation [33].
Surprisingly, however, this argument does not hold as
stated.
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Here, we present a rigorous treatment of the case of
detector saturation. By “detector saturation,” we mean a
detector response that follows a curve which, as a function
of input photon number, saturates asymptotically to a
constant. We analyze saturation, digitization, intrinsic pixel
noise and/or pixelation in a camera, which is used to
measure the profile of a laser beam. That is, a beam whose
quantum optical state is a coherent state with average
photon number n. From this example, we draw two
surprising and general conclusions: first, that saturation
alone does not confer an advantage to WVA, but second,
that saturation, in concert with intrinsic pixel noise and/or
digitization, can make WVA advantageous relative to a
conventional measurement. Our findings reveal that the
constraints imposed on real detectors are sufficient to afford
an advantage to WVA, even for ideal, noiseless beams.
Detector saturation therefore merits discussion in its own
right, in the context of the WVA debate. This Letter also
clarifies any perceived disagreement between numerous
theoretical studies that purport to show WVA to be
suboptimal and the perspective of many theorists and
experimentalists, to whom the WVA technique has proven
itself in principle and in practice to be a superior alternative
to conventional measurement schemes in many situations.
We begin by considering a conventional measurement of

g. For concreteness, we take g to represent the transverse
displacement of a beam’s spatial distribution, brought
about by its having propagated through a birefringent
material. The material’s birefringence causes the beam’s
polarization to become correlated with its position, so that
the beam undergoes a transformation given by jiijψi →
e−igÂP̂x jiijψi, where we denote by jii and jψi the initial
polarization and transverse distribution of the beam, and Â
and P̂x, respectively, represent the operators associated
with the beam’s polarization and transverse momentum in
the x dimension. The states jii and jψi describe the optical
modes occupied by the coherent state. For CM, one might
choose jii ¼ jHi, meaning that the beam is prepared in a
horizontal polarization state, which is taken to be an
eigenstate of Â with eigenvalue þ1. After propagating
through the birefringent material, the beam’s state then
becomes e−igÂP̂x jHijψi¼ e−igP̂x jHijψi¼ jHijψCMi. Given
that e−igP̂x is the spatial translation operator, the photon’s
spatial profile is shifted by g. More explicitly, the photon’s
“spatial amplitude” in the CM case will be hxjψCMi ¼
ψðx − gÞ. Therefore, g can be measured by observing the
beam’s spatial profile with a camera, i.e., njψðx − gÞj2.
TheWVA scheme differs from CM in two respects. First,

it requires that the laser beam’s polarization be prepared in
a superposition of orthogonal polarization states. We
consider the case jii ¼ ð1= ffiffiffi

2
p ÞðjHi þ jViÞ, where jVi

denotes vertical polarization. Second, it involves postse-
lecting on the beam’s polarization once it emerges from the
birefringent material, so that only outcomes for which the

polarization matches some particular state jfi are retained.
The (unnormalized) position state becomes jψWVAi≈
hfje−igÂP̂x jiijψi. For small g, jψWVAi ≈ hfjð1 − igÂP̂xÞ
jiijψi ≈ hfjiie−igAwP̂x jψi. Again, the beam is spatially
shifted, but now by Awg, where Aw ¼ hfjÂjii=hfjii is
the weak value of Â, taken to be purely real by choosing
an appropriate jii and jfi. Aw can, in principle, take on
values well outside of the eigenspectrum of Â. In WVA, one
chooses jii and jfi to be nearly orthogonal, so that the
denominator in the weak value expression becomes small,
leading to a large Aw and a magnified shift Awg. Physically,
this arises from the interference between pointer states
correlated with the two polarizations jHi and jVi. The
resulting beam spatial profile is then njhxjψWVAij2 ¼
nppsjψðx − gAwÞj2, where pps ¼ jhfjiij2 is the postselec-
tion probability, and ψðxÞ is spatially normalized. This
Aw-fold increase in the shift of the beam’s transverse
distribution is precisely the signal magnification conjec-
tured to offer WVA an advantage over CM. Despite this
amplification effect, however, the average photon number
reaching the camera is reduced by a factor pps. This photon
loss competes with the signal amplification effect to
determine the accuracy afforded by the WVA technique
overall [see Figure 1(a)].
Now, we consider an experiment in which a camera is

used to measure the small beam shift g, though our
treatment can be generalized to cases in which any 2 degrees
of freedom possessed by a beam are coupled. In order to
isolate the physics of detector saturation, we consider a
noiseless beam. Our experiment will admit a set fkg of
possible outcomes, which occur with probability pðkjg; XÞ.
Here, X represents all available prior information, including
the saturation model under consideration (if any), as well as
camera pixelation, digitization and intrinsic pixel noise
effects. The FI associated with this experiment is [34]

Fðg; XÞ ¼
X

k

pðkjg; XÞ
� ∂
∂g lnpðkjg; XÞ

�
2

: ð1Þ

A photon incident on the camera can produce a range of
photoelectron counts at the pixel at which it “arrives.”
Hence, a particular experimental outcome k ¼ fk1; k2;…;
kMg refers to a number of photoelectrons excited at each of
the camera’s M pixels, where we define kj as the propo-
sition, “kj photoelectrons were excited at pixel j.”
For a beam in a coherent state, the distribution of photon

numbers reaching each pixel is independent and Poissonian
[36]. The distribution of photon numbers reaching pixel
j, Nj, is, therefore,

pðNjjg; XÞ ¼
n
Nj

j e−nj

Nj!
; ð2Þ
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where we define the average photon number reaching pixel
j as nj ¼ n

R
j jhxjψCMij2dx for CM, or n

R
j jhxjψWVAij2dx

for WVA. This approach naturally accounts for photon
losses that result from the finite camera size. The mutual
independence of each pixel allows the Fisher information at
each pixel, Fjðg; XÞ, to be determined independently, such
that the total FI available to the camera becomes Fðg; XÞ ¼
P

M
j¼1 Fjðg; XÞ [34]. Thus, to find the FI available from the

camera, we need concern ourselves only with pðkjjg; XÞ.
The probability of exciting kj photoelectrons at camera

pixel j can be determined from the probabilities that Nj

photons from the beam will reach that pixel, as follows:

pðkjjg; XÞ ¼
X

Nj

pðkjjNj; g; XÞpðNjjg; XÞ: ð3Þ

We assume our prior information X to include the average
photon number n of the initial optical beam.
The quantity pðkjjNj; g; XÞ is the probability of exciting

kj photoelectrons given that Nj photons impinge on pixel j,
and accounts for saturation effects, pixel digitization, and
intrinsic pixel noise in our treatment. In our model, the
pixel noise is the noise in the photoelectron response at
each pixel. We introduce this noise at each pixel by
modeling the photoelectron response kj ∼N ðμj; σ2Þ, as
a normal distribution with mean μj and variance σ2.
Therefore, a nonzero σ introduces constant spread in the
range of photoelectrons (or any analogous detector
response) at each pixel independent of the number of
incoming photons. Photon noise (e.g., shot noise) will
increase this spread. We note that this pixel noise should be

distinguished from detector transverse jitter, angular beam
jitter and turbulence, which are treated in [32], and which
affect the beam itself, rather than the detector. Hence,

pðkjjNj; g; XÞ ¼
e−ðkj−μjÞ2=2σ2

P
k0j
e−ðk

0
j−μjÞ2=2σ2

: ð4Þ

We include saturation effects by choosing μj ¼
kmaxð1 − e−Nj=NsatÞ, so that the photoelectron response
scales linearly with Nj for beams with low n, saturating
once Nj ≳ Nsat. The probabilities pðkjjg; XÞ are evaluated
by combining the results (2) and (4) via (3), from which the
FI is obtained. We illustrate combined effects of detector
noise and saturation in Fig. 1(a), where σ results in
uncertainty regarding the magnitude of the beam’s spatial
profile at each point along the beam cross section.
A range of Nj values is mapped probabilistically to a

particular kj. Thus, kmax indicates the number of resolvable
ranges of Nj accommodated by a particular camera,
providing a measure of the digitization of each pixel; a
larger kmax describes a camera with more bits. The intrinsic
pixel noise is modeled by σ, and the effects of pixelation are
controlled by changing M. Finally, each pixel’s sensitivity
to saturation can be tuned via Nsat. Thus, it becomes
possible to investigate the effects of camera pixelation,
intrinsic pixel noise, digitization, and saturation on the
Fisher information available using CM and WVA.
Now, we consider a realistic saturable camera,

further limited by digitization and intrinsic pixel noise.
We choose kmax ¼ 256 (an 8-bit camera), a saturation
number Nsat ¼ 500, a noise parameter σ ¼ kmax=20, and

(a) (b) (c)

FIG. 1. Saturation is necessary to afford an advantage to weak value amplification over conventional measurement. (a) Beam
distortion produced by saturation for both CM and WVAwith gjAwj ¼ 0.364, for a beam with waist w ¼ 0.8. Orange and green lines
show the beam profiles impinging on the camera, while the corresponding beam measured beam profiles obtained from a noisy and
saturable camera are indicated by the shaded orange and green profiles. Measured beam profiles obtained via WVA (shaded magenta
and blue areas) are dimmer, though more robust against saturation effects. (b) FI obtained from a camera with kmax ¼ 256, σ ¼ kmax=20,
and Nsat ¼ 500, for an incident beam with w ¼ 1 and g ¼ 0.01, carrying a range of average photon numbers. FI obtained for CM (solid
blue line) are plotted alongside FI for indicated WVA schemes (dotted-dashed purple lines). The plot shows that more FI can be
recovered using WVA than using CM when saturation effects become important, meaning that WVA can outperform CM in this regime.
(c) FI obtained for a beam and camera identical to that simulated in (b), except that Nsat ¼ 105, in order to render saturation negligible.
Without saturation, but with intrinsic pixel noise, pixelation, and digitization, WVA is outperformed by CM for all n̄ plotted. We note
that the FI values obtained in (c) are lower than those in part (b) of the figure, due to the effective decrease in the photoelectron response’s
sensitivity (and therefore, increase in digitization effects) that accompanies the large value of Nsat.
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a Gaussian beam jψðxÞj2 ¼ e−x
2=2w2

=2πw, with w ¼ 1. In
Fig. 1(b), we plot the total FI available to this camera, for
incident beams with various n values, using CM and WVA
with jAwj ¼ 1.8, 2.4, and 3.2. For low n, saturation plays
only a minor role in determining the per-pixel FI, and CM
outperforms each of the WVA strategies under consider-
ation. As n increases, however, saturation effects begin to
compromise the performance of CM, while WVA, which is
more robust against saturation, becomes increasingly
viable. Once pðjjgÞn begins to considerably exceed Nsat,
increases in n hinder one’s ability to measure the transverse
shift of the beam’s spatial distribution, as the beam’s image
is prohibitively deformed. In this regime, increases in n
actually reduce the FI available to the camera. The low FI
associated with the high-n regime arises from a “washing
out” of the beam profile observed using the camera. As
n → ∞, the camera records a perfectly flat beam profile
that carries no information about g whatsoever. We
note that even the WVA schemes considered in the figure
are eventually subject to saturation, as ppspðjjgÞn over-
takes Nsat, but the maximum FI retrievable from WVA,
FWVAðnmax

WVAÞ, always exceeds that from CM, FCMðnmax
CM Þ.

Therefore, when photons are not in short supply, one
invariably benefits from WVA. This is no longer true when
the effects of saturation are removed, as in Fig. 1(c). Hence,
saturation is necessary for WVA to outperform CM; one
may also be tempted to assume that saturation is sufficient.
However, we will now analytically show that this is not
the case.
In the absence of digitization or intrinsic pixel noise, a

pixel’s photoelectron count kj is associated with a unique
number of incident photons Nj. Hence, pðkjjg; XÞ ¼
pðNjjg; XÞ. Since the probabilities of experimental out-
comes are unaffected by saturation, saturation alone cannot
affect the FI of a pixelated camera. As discussed in
Ref. [37], pixelation alone cannot lead to an advantage
for WVA over schemes that make no use of postselection.
Therefore, saturation and/or pixelation are insufficient to
allow WVA to outperform CM. Rather, the superior
performance of WVA in the high n regime of Fig. 1(b)
arises from the combination of saturation, intrinsic pixel
noise and digitization.
Figure 2(a) confirms that a noiseless camera in the near

absence of digitization (kmax ¼ 4096) will not confer an
advantage to WVA over CM, even in the presence of
saturation, for various n. However, when digitization is
introduced by setting kmax ¼ 256, the combined presence
of saturation and digitization can make WVA advantageous
[Fig. 2(b)]. We note that digitization and intrinsic pixel
noise play similar roles in our model, as both reduce the
information available about the parameter g, by eliminating
the one-to-one mapping between incident photon number at
a pixel, Nj, and the number of photoelectrons excited at the
pixel, kj, that, otherwise, guarantees the superior perfor-
mance of CM. Indeed, as the pixel noise is increased, the FI

accessible from CM and WVA decreases monotonically,
although CM and WVA maintain their performance stand-
ings relative to one another. Therefore, our results indicate
that saturation alone fails to confer an advantage to WVA
over CM, but that, when this effect is paired with
digitization or intrinsic pixel noise, as is the case in virtually
any experiment, WVA can outperform CM considerably.
These conclusions are summarized in Table I.
Finally, in Fig. 3, we show that an optimal WVA

amplification factor jAwj exists for a particular beam
brightness, provided that the camera saturates. When
jAwj is small, increases in the amplification factor lead
to increases in FI, as postselection amplifies the shift of the
beam’s spatial distribution, and reduces beam distortion
from saturation. However, beyond a certain optimal jAwj
value, the measured beam is prohibitively dimmed, result-
ing in a net loss of information.
One might suggest that the poor performance of CM in

the high-saturation regime can be addressed by dimming

(b)(a)

CM

CM

FIG. 2. Saturation is not sufficient to afford an advantage to
weak value amplification. (a) FI for a saturable (Nsat ¼ 500),
noiseless, 100-pixel camera subject to negligible digitization
(kmax ¼ 4096), for a beam identical to that simulated in Fig. 1(c),
for a range of n̄ values. Despite the presence of saturation, CM
measurement (blue solid line) outperforms WVAwith jAwj ¼ 1.8
(dotted purple line), 2.4 (dotted-dashed purple line), and 3.2
(dashed purple line) for all n̄. (b) Simulation identical to (a), with
the exception that digitization has been introduced by setting
kmax ¼ 256. Although saturation alone fails to confer an advan-
tage to WVA over CM [part (a)], WVA can outperform CM when
digitization is introduced [part (b)].

TABLE I. Conditions under which weak value amplification
can outperform conventional measurement. Experimental cir-
cumstances under which WVA can potentially outperform CM
are indicated by a ✓, whereas situations in which WVA cannot
outperform CM are indicated by an ✗. Pixelation includes results
from Ref. [37].

Saturation Digitization Pixel noise Pixelation

Saturation ✗ ✓ ✓ ✗
Digitization ✓ ✗ ✗ ✗
Pixel noise ✓ ✗ ✗ ✗
Pixelation ✗ ✗ ✗ ✗
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the laser source or introducing an attenuator between the
source and camera. Even then, however, WVAwill always
outperform CM since it makes use of a postselection
procedure that retains the maximally informative photons
from the beam. If one must discard photons, the WVA
method will always produce a result superior to that
obtained from indiscriminate postselection.
We have shown that weak value amplification can

outperform conventional measurement when intrinsic pixel
noise and digitization are introduced with our saturation
model, although each of these effects independently fails to
provide an advantage for the weak value technique. We
note that, while the Fisher information does provide an
upper bound on the precision of parameter estimation in a
particular experiment, this bound can be reached only using
the maximum likelihood estimator (MLE). The MLE may
be impractical to implement, requiring detailed knowledge
of the dimensions, noise, saturation, and digitization
characteristics of one’s camera. Nonetheless, we speculate
that a straightforward center-of-mass estimator [38] will
approach the sensitivity of the MLE. This would require
sufficiently large weak value amplification to ensure that
the signal is attenuated enough so that the camera’s
response is linear. In addition, biasing factors such as noise
and clipping of the beam by the camera edges will need to
be avoided or accounted for.
We have also found that, for sufficient beam bright-

nesses, a unique amplification factor jAwj maximizes the
Fisher information retrievable from a realistic camera.
Apart from their practical significance, our results are of
fundamental interest, as they provide conclusive and
surprising answers to questions surrounding the possible
benefits of weak value amplification in the presence of
saturation. They also offer a lens through which many

apparently contradictory claims made in the literature about
the potential benefits of weak value amplification can
finally be reconciled.
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