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Recovering full coherence in a qubit by measuring half of its environment
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When a quantum system interacts with its environment it may incur in decoherence. Quantum erasure makes it
possible to restore coherence in a system by gaining information about its environment, but measuring the whole
of it may be prohibitive: Realistically, one might be forced to address only an accessible subspace and neglect
the rest. In such a case, under what conditions will quantum erasure still be effective? In this work we compute
analytically the largest recoverable coherence of a random qubit plus environment state and we show that it
approaches 100% with overwhelmingly high probability as long as the dimension of the accessible subspace of
the environment is larger than

√
D, where D is the dimension of the whole environment. Additionally, we find a

sharp transition between a linear behavior and a power-law behavior as soon as the dimension of the inaccessible
environment exceeds the dimension of the accessible one. Our results imply that the typical states of a qubit
plus environment system admit a measurement spanning only about

√
D degrees of freedom, any outcome of

which projects the qubit on a maximally coherent state. This suggests, for instance, that in the dynamics of open
quantum systems, if the interactions are known, it would in principle be possible to gain sufficient information
and restore coherence in a qubit by dealing with a fraction of the physical resources.
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I. INTRODUCTION

Decoherence is a physical process that interests the sci-
entific community from a fundamental point of view (how
does the quantum-to-classical transition occur?) and also from
a technical one (how can we preserve the coherence of a
system?) [1–5]. One of the techniques for restoring coherence
in a quantum system is known as quantum erasure, which
consists in measuring the environment of the system in the
most appropriate basis in order to erase the information
that it stores and thereby recover coherence [6]. The typical
pedagogic example consists in a Young double-slit experiment
where two orthogonal polarizers have been put in front
of the slits and the interference fringes have disappeared.
Quantum erasure would consist of orienting a polarizing beam
splitter diagonally before the screen to erase the which-slit
information stored in the polarization (which was acting as
the environment) and sort the ensemble of photons into two
subsets, each of which displaying full fringes. Coherence is
an important notion in quantum physics, which one can find
in seemingly disparate areas such as thermodynamics [7,8],
reference frames, and conservation laws [9,10], as well as
operational frameworks [11].

Despite the sophistication of current experimental tech-
niques, at a certain point in the complexity of the environment
and of its interactions with our systems, it becomes no
longer possible to handle all the relevant degrees of freedom
and coherence degrades irreversibly. This technical limitation
motivates our work, where we consider a single qubit Q,
immersed in an environment with Hilbert space A ⊗ K,
where the A-dimensional subspace A is accessible and the
K-dimensional subspace K is inaccessible (see Fig. 1).

Although notions of coherence that apply to larger systems
exist [12], there are several situations in which a single qubit
takes the leading role, e.g., each of the individual quantum

signals in most models of quantum key distribution [13],
an individual spin in a nitrogen-vacancy center in diamond
[14–16], an individual atom in an optical lattice [17,18], and
a single ion in a magnetic trap [19], as well as qubits made of
collective quantum systems such as flux and superconducting
qubits [20,21]. For this reason, in the present work we concen-
trate on the coherence of a single qubit; we postpone the study
of the coherence retrieval of larger systems to a future study.

The rest of this paper is organized as follows. In the next
section we define the coherence of a qubit and we show how it
is influenced by a general measurement on its environment.
Then we split the environment into an accessible and an
inaccessible part, i.e., we restrict our measurement operators
to be in the form πj = πA

j ⊗ 1K, and we prove the main result.
In the final section we supply some examples in terms of qubit
ensembles and we show that the average coherence becomes
a typical quantity as the environment grows in size.

Accessible 
qubits a

Inaccessible 
qubits k

Q

FIG. 1. (Color online) We imagine a qubit Q within an ensemble
of n environment qubits, where a of them are accessible. The rest
k = n − a are inaccessible. We find that if a � k (i.e., if we can
access at least half of them) there exists an optimal measurement
on the accessible qubits whose outcomes project Q onto states with
coherence 〈C〉 ∼ 1 − 1

4 2k−a , which approaches 1 exponentially fast
as a → n.
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II. QUANTIFYING AND RESTORING COHERENCE

If one deals with systems with a Hilbert space of dimension
greater than 2, it is possible to choose from different definitions
of coherence (for a thorough review see Ref. [12]). However,
for a qubit they are all equivalent, so we will avoid mentioning
them all and concentrate on a single one. The coherence of a
qubit Q in the Bloch sphere picture is the distance of the Bloch
vector from the imaginary line connecting the north pole to
the south pole, i.e., given a Bloch vector with coordinates v =
(x,y,z), the coherence is

√
x2 + y2, also known as visibility

in view of the analogy of a qubit with the state of a photon in a
Mach-Zehnder interferometer [22]. It is clear that coherence is
basis dependent: If we picked a different pair of opposite points
on the surface as the new north and south poles, the coherence
would generally change. In terms of the density matrix of the
qubit, the coherence is given by twice the absolute value of
either of the off-diagonal elements.

In general, quantum erasure relies on an optimal mea-
surement of the environment E of a system Q to restore its
coherence. Such a measurement consists of a certain number
of measurement operators {πE

j }, where the j th measurement
operator πE

j applied to the environment leaves Q in a state
ρj with some probability pj . Each state ρj displays a certain
coherence Cj (defined below) [23]. It is important to note that
quantum erasure does not rely on postselection [24–26], as the
coherence that we will maximize is the average over all the
outcomes:

∑
j pjCj . Moreover, notice that the incoherent sum∑

j pjρk is the same as tracing over the environment: This
prevents us from measuring coherence directly and violating
the no-signaling principle. It is clear that the more information
one is able to erase from the environment, the more of the
original coherence one is able to restore.

When a qubit Q is entangled with another system (which
we call E and which is not necessarily another qubit) we have
a state in the following form:

|ψ〉 = α|0,e0〉 + β|1,e1〉, (1)

where |e0〉 and |e1〉 are the states of E corresponding to the
states of Q. The density matrix of Q alone is obtained by
tracing over E :

ρQ =
( |α|2 α∗β〈e1|e0〉

αβ∗〈e0|e1〉 |β|2
)

. (2)

The coherence is therefore given by C = 2|αβ∗〈e0|e1〉|, which
is proportional to the overlap between the states of E .
This happens because the more the states |e0〉 and |e1〉 are
orthogonal, the better one can distinguish them and learn about
the qubit, i.e., the more information about the alternatives of
Q is stored in E , which is acting as an environment. This is the
essence of the duality principle.

A way of erasing such information would be to measure E
in a basis that is unbiased with respect to |e0〉 and |e1〉, by way
of an optimal measurement with elements πE

j [23] defined
by maximizing the mean coherence over all the probability
operator measures on E :

〈C〉 = sup
{πj }∈POM(E)

∑
j

|2αβ∗〈e0|πj |e1〉| (3)

= 2 Tr|αβ∗|e1〉〈e0|| = 2|αβ∗|, (4)

where Tr|x| is the trace norm of x. In this way, regardless of
the outcome, we would learn as little as possible about which
of the states |e0〉 or |e1〉 the environment is in and after such
measurement the qubit is in a state with coherence C = 2|αβ∗|.
However, in realistic situations such flexibility may not be
possible, i.e., we may not be able to access all the necessary
degrees of freedom of E and we will have to split it into an
accessible part and an inaccessible one. How much coherence
can we expect to recover in that case?

To begin our study, we consider a random pure state of a
qubit in an AK-dimensional environment with Hilbert space
A ⊗ K that is split into an accessible subspace of dimension
A and an inaccessible one of dimension K . Such a pure state
is therefore sampled uniformly in a Hilbert space Q ⊗ A ⊗
K of dimension 2AK . After tracing away the inaccessible
environment K, we are left with a 2A-dimensional state in
Q ⊗ A that can always be written as a 2A × 2A density matrix

ρ =
(

R0 X

X† R1

)
, (5)

where Tr(R0) and Tr(R1) are the probabilities of measuring the
qubit in the alternatives |0〉 and |1〉 and X is the cross term. The
largest coherence of the qubit that we can obtain by optimally
measuring the accessible space A is given by twice the trace
norm of the cross term C = 2 Tr|X| [see Eq. (4) in Ref. [23]].
We recall that the trace norm of X can be computed as the sum
of the square roots of the A eigenvalues of the matrix X†X, i.e.,

Tr|X| =
A∑

i=1

√
λi(X†X). (6)

The random 2A-dimensional states ρ are statistically
distributed according to the induced trace measure P2A,K (ρ)
and constitute a Ginibre ensemble [27]. A way of sampling
uniformly from such an ensemble is to generate a 2A × K

complex Gaussian random matrix μ (with entries sampled
from the complex normal distribution centered on the origin
and with unit variance) and then build the 2A × 2A density
matrix

ρ = μ†μ

Tr(μ†μ)
. (7)

However, when we calculateC we do not need the whole matrix
ρ, but only the A × A off-diagonal block, which is proportional
to the product M = μ

†
1μ2 of two independent A × K complex

Gaussian random matrices μ1 and μ2 (see Fig. 2). We find the
proportionality factor by recalling that we are averaging over

µ†
1

µ†
2

µ2µ1

X

X†
R0

R1A
K

A ∝

FIG. 2. (Color online) The A × A cross term X in the random
matrix ρ of Eqs. (5) and (7) is proportional to the product between
two independent random matrices μ1 and μ2 that make up μ.
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FIG. 3. (Color online) Average coherence 〈C〉 for A = 100 (solid
orange line), together with the high-K and low-K approximations
(dashed lines). Up to K = A, the behavior of 〈C〉 is purely linear 1 −
K

4A
(see the inset). For K > A the behavior changes dramatically and

is asymptotic to O(1/
√

K). The shaded indicates the linear region.

the whole ensemble and that the mean is linear, so we can
take the average value of the denominator in (7): 〈Tr(μ†μ)〉 =
4AK . To find the average of Tr|M|, we use the moments
m� of the marginal distribution of eigenvalues of M†M . In
particular, the average square root of the eigenvalues of M†M
is proportional to the moment of order � = 1/2, i.e., 〈Tr|M|〉 =
Am1/2. We can compute such a moment by applying Eq. (57)

of Ref. [28] to our matrices and we find

m 1
2

=
4π5/2(−1)K 4F̃3

( 1
2 ,1−A,1−A,1−K
1
2 −A, 1

2 −A, 1
2 −K

∣∣∣1)
A! 	(A)	(K)

, (8)

where the function 4F̃3 is a regularized hypergeometric
function. It is now straightforward to obtain the final result

〈C〉 = 2〈Tr|X|〉 = 2
〈Tr|M|〉

4AK
= m1/2

2K
. (9)

III. EXAMPLES

An expression with regularized hypergeometric functions
such as Eq. (8) can be rather obscure. For this reason, we
evaluate it explicitly for some values of A and we show the
two radically distinct behaviors that it exhibits, for K → ∞
and for 1 � K � A.

As the first example let us assume we have no control
whatsoever over the environment. This is equivalent to setting
A = 1 in Eqs. (8) and (9) and we find

〈C1〉 = π3/2(−1)K

2K!	
(

1
2 − K

) ∼
√

π

2
√

K
as K → ∞. (10)

In other words, decoherence in the absence of any intervention
scales like O(1/

√
K) at a rate of

√
π/2. As the second example

we control a two- and three-dimensional space (i.e., A = 2 and

FIG. 4. (Color online) Average recoverable coherence 〈C〉 of a qubit as a function of the number a of qubits of the environment that we
can access, where the total n is displayed on top. In blue we show the 50th, 90th, and 99th percentiles around the mean (red line) and all plots
are from 0 to 1. We see that 〈C〉 transitions from a value close to 0 to a value close to 1 as we gain access to more than half of the environment
qubits. Notice that as the total number of environment qubits grows, the mean becomes a better representative of the whole ensemble.
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A = 3) and we find

〈C2〉 = π3/2(−1)K (13 − 22K)

32K!	
(

3
2 − K

) ∼ 11
√

π

16
√

K
as K → ∞,

(11)

〈C3〉 ∼ 107
√

π

128
√

K
as K → ∞, (12)

and so on for larger accessible spaces. It turns out that the
high-K scaling is always O(1/

√
K). If instead we look at the

scaling for low values of K we find a linear behavior

〈CA〉 = 1 − K

4A
, 0 � K � A, (13)

the transition happening rather sharply at A = K (we give an
explicit example for A = 100 in Fig. 3).

We now give a final example in terms of ensembles of
qubits. Let us consider our qubit Q immersed in an ensemble
of n other qubits and let us pick a random state of all n + 1
of them. We wish to compute how much coherence we can
expect to recover on Q on average as we gain control of more
and more qubits in the ensemble. In this case A = 2a and
K = 2n−a = 2k . We see that 〈C〉 is close to zero for a � k and
it approaches 1 as a � k (see Figs. 4 and 5). Note that such
variation always happens across the same number of qubits.
In fact, for a � �n/2�, the linear scaling makes it possible to
compute the asymptotic behavior 〈C〉 ∼ 1 − 2k

2a+2 as n → ∞.
This law allows us to plot graphs for large numbers of qubits
(see Fig. 5).

How typical is the value of 〈C〉? To answer this question
qualitatively we produced tens of thousands of random states
of a qubit in an environment from n = 3 to n = 11 qubits. The
results are shown in Fig. 4: The larger the environment, the
more the average coherence becomes a typical property of the
ensemble, as all the random states have a value of C that falls

FIG. 5. (Color online) The recoverable coherence 〈C〉 of a qubit
Q for an environment of n = 200 qubits displays a very sharp increase
from 0 to 1 as soon as one can control more than 100 of them, meaning
that there exists an environment observable with elements {πA

j ⊗ 1K},
each of which projects Q onto maximally coherent states.

extremely close to 〈C〉. Furthermore, we do not need extremely
large environments: Already for a handful of qubits, the 99th
percentile bands are very tightly squeezed around the mean.

IV. CONCLUSION

In this work we showed that quantum erasure can restore
full coherence in a qubit even by addressing only about half of
its environment. We also observed that the average recoverable
coherence is a typical property of an ensemble of random
states, i.e.,C ∼ 〈C〉 as n → ∞. This means that the existence of
such optimal measurement is guaranteed with overwhelming
probability. Our result is even more surprising if restated in
terms of degrees of freedom, as the optimal measurement need
only address about

√
D of the total number D of degrees of

freedom of the environment. Moreover, typicality ensures that
this result holds for any such partition of the environment; this
phenomenon suggests a relation to quantum Darwinism [4].
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