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Symmetric informationally complete positive operator-valued measures provide efficient quantum state
tomography in any finite dimension. In this work, we implement state tomography using symmetric
informationally complete positive operator-valued measures for both pure and mixed photonic qudit states
in Hilbert spaces of orbital angular momentum, including spaces whose dimension is not power of a prime.
Fidelities of reconstruction within the range of 0.81–0.96 are obtained for both pure and mixed states.
These results are relevant to high-dimensional quantum information and computation experiments,
especially to those where a complete set of mutually unbiased bases is unknown.
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I. INTRODUCTION

Quantum state tomography (QST) is an experimental
procedure that allows the reconstruction of a quantum state
via direct measurements on identical copies of the state. An
important issue in QST is optimality, a term that has been
defined in a variety of ways [1–5]. In general, optimality
refers tomaximizing the amount of information extracted per
single measurement, or equivalently to maximizing the
accuracy of the estimation of the quantum state while
simultaneously minimizing the sample size. It has been
shown that QST using mutually unbiased bases (MUBs)
achieves optimality in the class of projective measurements
[1], in which a state is projected onto elements of sets of
orthogonal bases. They have also been shown tominimize the
amount ofmeasurements required.However, the complete set
ofMUBs cannot in general be constructed for a Hilbert space
of arbitrary dimension, even for a dimension as low as six
[6,7]. This can make QST more complicated for higher
dimensions, although recently a QST method using MUBs
has been examined for dimensions ranging from two to
five [8].
The widely believed impossibility of finding complete set

ofMUBs forHilbert spaceswhose dimension is not power of
a prime [9] calls for the use of positive operator-valued
measures (POVMs), a mathematical construction that

generalizes the concept of a quantum measurement
[10,11]. In the class of POVMs, symmetric informationally
complete (SIC) POVMs are optimal [12]. These POVMs
have the significant advantage that they have been conjec-
tured to exist in arbitrary dimensions [4,12,13]. Furthermore,
they have been calculated numerically for dimensions up to
67 [14], which facilitates their use in configurations that
utilize higher-dimensional spaces, such as the orbital angular
momentum (OAM) degree of freedom of light. In addition,
their optimality means that minimum information is sacri-
ficed in the QST process, which is of paramount importance
in applications such as quantum key distribution (QKD),
where the twoparties need tominimize the informational loss
that comeswith verifying the security of the source, aswell as
that which comes from the actual key generation [15]. For
instance, the Singapore protocol for performing QKD relies
on QST using SIC POVMs [4,15]. Although, this SIC-
POVM-based QST has been experimentally realized for
qubits [16,17] and qutrits [18], themost interesting cases, i.e.,
higher-dimensional spaces, are yet to be demonstrated.
OAM of optical beams provides an unbounded Hilbert

space in the single-photon regime [19], as they carry a well-
defined quantized OAM per photon along the direction of
propagation. There has been great interest in innovating and
verifying quantum protocols using this variable [20–23]. In
this work, we experimentally demonstrate SIC POVMs for
photonic qudit spaces with dimensions up to ten. We then
implement this concept to perform optimalQSTof both pure
and mixed states in dimensions of 6 and 10, where complete
sets of MUBs are unknown. The results show that this
technique can yield QST with high fidelities of estimation,
and can therefore be utilized in quantum cryptography and
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quantum communication in all dimensions, including those
for which the complete set of MUBs are unknown.

II. THEORETICAL BACKGROUND

A d-dimensional quantum system is represented by a
positive semidefinite d × d density matrix that requires
d2 − 1 independent real numbers for its specification. A
von Neumann measurement fixes at most d − 1 real
parameters, so dþ 1 tests have to be performed to recon-
struct the state. This means that dðdþ 1Þ histograms have to
be recorded: the approach is, thus, suboptimal because this
number is higher than the number of parameters in the
density matrix. The von Neumann strategy can be further
optimized regarding this redundancy when the bases in
which the measurements are performed are MUBs: two
orthonormal bases are MUBs if whenever we choose one
state in the first basis, and a second state in the second basis,
the modulus squared of their overlap is equal to 1=d [24].
When the dimension of the Hilbert space is a prime power, it
is known that there exists a maximal set of dþ 1
MUBs [25].
Put in a more formal way, let us denote by jΨαki the kth

element (0 ≤ k ≤ d − 1) of the αth orthonormal basis of a
maximal set of MUBs (0 ≤ α ≤ d). Then we have

Êαk ¼
1

dþ 1
jΨαkihΨαkj;

jhΨαkjΨαlij2 ¼
1

d
; α ≠ β; ð1Þ

where the orthogonal projectors Êαk are normalized soP
αkÊαk ¼ 1. The probability pαk of obtaining an outcome

jΨαki is given by Born’s rule pαk ¼ TrðÊαkρ̂Þ, where ρ̂
stands for density operator of the system.
Of course, more general classes of measurements exist

that generalize the von Neumann measurements. This class
is represented by the POVM measurements. To gain
physical insights, we recall [10] that the most general
POVM can always be obtained by coupling a system A to
an ancilla B and performing a von Neumann measurement
on the complete system. When both the system and its
ancilla are qudits, the full system lives in a d2-dimensional
Hilbert space, which makes it possible to measure d2

probabilities during a von Neumann measurement, and so,
this fixes d2 − 1 parameters. When the coupling to the
ancilla and the von Neumann measurement are judiciously
chosen, we are able in principle to infer the value of the
density matrix of the initial qudit system from the knowl-
edge of those d2 − 1 parameters, in which case the POVM
is said to be informationally complete (IC).
Moreover, IC POVMs can be further optimized as for the

independence of the data in different detectors. The so-
called covariant SIC POVMs [26] constitute an elegant
solution to this optimization constraint. Actually, in this
case the Heisenberg-Weyl displacement operators allow

one to construct a set of d2 minimally overlapping pro-
jectors onto pure qudit states [compare with the dðdþ1Þ
projectors for the case of MUBs].
In more general terms, a POVM can be defined as a set of

positive operators fÊig that achieve a decomposition of the
identity:

P
iÊi ¼ 1. In order for those operators to reveal

full information about the state, they must be IC.
Furthermore, in analogy to MUBs, the set of rank-1
projectors that minimizes the informational overlap is
called symmetric [9] and is defined as

Êi ¼
1

d
jΦiihΦij; jhΦijΦjij2 ¼

1

dþ 1
; i ≠ j: ð2Þ

The structure of a general SIC POVM is quite complex [12].
However, the particular case of group-covariant SIC POVMs
has been investigated thoroughly and it has been conjectured
that they exist in arbitrary dimensions [12,14]. In particular,
Weyl-Heisenberg covariant SIC POVM elements can be
generated by applying the d2 displacement operators

D̂jk ¼ ωjk=2
d

Xd−1
m¼0

ωjm
d jk⊕mihmj ð3Þ

on some reference (or fiducial) vector jfi. Here, fjiig is an
orthonormal basis of the space in question, ωd ¼
expð2πi=dÞ is the dth root of the identity, and ⊕ represents
addition modulo d [12]. The SIC POVM elements are then
obtained as the subnormalized rank-1 projectors onto the
resulting states. In this manner, an entire set of SIC POVM
elements can be generated if a single fiducial vector is
determined. Numerical solutions for fiducial vectors for
dimensions up to 67 can be found in Ref. [12]. Once a set
of SIC POVM elements is identified, the probability pi of
obtaining an outcome jΦii is also given by Born’s rule,
pi ¼ TrðÊiρ̂Þ.
To gain more insights into these matters, let us look at the

simple yet relevant example of a single qubit (e.g., a spin
1=2). Now, MUBs measurements correspond to three suc-
cessive Stern-Gerlach measurements performed along
orthogonal directions. This allows one to directly infer the
three Bloch parameters, sx ¼ hσ̂xi, sy ¼ hσ̂yi, and sz ¼ hσ̂zi
(where σ’s denote Pauli matrices), and hence to determine
unambiguously the density matrix of the system via

ρ̂ ¼ 1

2
ð1þ sxσ̂x þ syσ̂y þ szσ̂zÞ: ð4Þ

The three MUBs determine six points, which are the vertices
of an octahedron, as sketched in Fig. 1(a).
On the other hand, in the standard measurement of a SIC

POVM for a single qubit, four probabilities of firing
P00; P01; P10; P11 are measured: they are in one-to-one
correspondence with the Bloch parameters ðsx; sy; sz),
namely,
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P00 ¼
1

4

�
1þ 1ffiffiffi

3
p ðsx þ sy þ szÞ

�
;

P01 ¼
1

4

�
1þ 1ffiffiffi

3
p ð−sx − sy þ szÞ

�
;

P10 ¼
1

4

�
1þ 1ffiffiffi

3
p ðsx − sy − szÞ

�
;

P11 ¼
1

4

�
1þ 1ffiffiffi

3
p ð−sx þ sy − szÞ

�
: ð5Þ

One can check that 2P00 can be understood as the average
of the projector jϕihϕj, where jϕi is the pure state
jϕi ¼ αj0i þ β�j1i, with j0i and j1i being the basis

of the qubit and α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1= ffiffiffi

3
p Þ

q
and β� ¼

eiπ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1= ffiffiffi

3
p Þ

q
. Then, the four parameters Pij are

the average values of projectors onto four pure states
that are “Pauli displaced” of each other; explicitly, they
read [16]

D̂ijjϕihϕjD̂ij

¼ 1

2

��
1 − 1ffiffiffi

3
p

�
D̂00 þ

1ffiffiffi
3

p
X1
k;l¼0

ð−1Þil−jkD̂kl

�
; ð6Þ

where, according to the general definition [Eq. (3)], the
displacements are now D̂00 ¼ 1, D̂01 ¼ σ̂z, D̂10 ¼ σ̂x, and
D̂11 ¼ σ̂y. The overlapping between them is equal, in

modulus, to 1=
ffiffiffi
3

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
.

It is easy to realize that these states correspond to vertices
of a tetrahedron whose corners lie on the Bloch sphere,
which is illustrated in Fig. 1(b). Interestingly, these states
provide a maximal violation of the so-called crypto-local
hidden-variables theories for a bipartite quantum system
[27,28]. They minimize the informational redundancy
between the four collected histograms due to the fact that
their angular opening is maximal. This SIC POVM

approach is at the realm of the Singapore protocol [15],
which we discuss in Sec. V.
With these measured statistics, a linear reconstruction

can in theory be performed to obtain the density matrix
[29]. Since all experiments suffer from some sort of errors,
linear reconstruction often constructs nonpositive or mock
matrices. There are several different algorithms to obtain a
bona fide matrix from the given counts [30–32], but we use
the “forced purity” method since it is much less computa-
tionally exhausting than methods like maximum likelihood
and gives similar fidelities [32].

III. EXPERIMENT

To encode and decode information in the photonic
transverse degrees of freedom, we use a spatial light
modulator (SLM), which permits pixel-by-pixel control
of the phase of the reflected (transmitted) light. Recently,
Bolduc et al. have shown [33] an exact solution to the
problem of finding the hologram pattern that gives any
transverse field profile in the first order of diffraction,
limited only by the resolution and quality of controlling the
phase delay of the SLM’s pixels.
A suitable choice for a basis is the photonic OAM

eigenstates, which correspond to a beam that possesses a
helical phase front hrjli ¼ exp ðilϕÞ, where l is an integer
and ϕ is the azimuthal angle of cylindrical coordinates [19].
Such a beam carries a well-defined, quantized OAM value

FIG. 1. Bloch sphere representation of two different informa-
tionally complete measurements of a qubit. (a) MUB measure-
ment has six measurement outcomes that correspond to vertices
of an octahedron. (b) SIC POVM measurement has four meas-
urement outcomes that correspond to vertices of a tetrahedron.

FIG. 2. Experimental setup for generating and detecting OAM
photonic qudit states. The signal photon generated via sponta-
neous parametric down-conversion (not shown) is spatially
cleaned and sent into the main setup via a single-mode optical
fiber (SMOF). Photonic qudit states (SIC POVMs) are generated
by a holographic approach in which the desired kinoform is
displayed on the spatial light modulator A (SLMA). A half-wave
plate (HWP) optimizes the first order of diffraction on SLMA,
since SLMs are polarization dependent. The mode jΨi produced
by SLMA is then projected onto a SIC POVM element Êi on
SLMB. The resulting far field is coupled into a SMOF, which
selects the TEM00-like component. We implement two 4f
systems with unit magnification to image SLMA onto SLMB
and SLMB onto the microscope objective. Irises are used to select
the first order of diffraction at the far-field plane of SLMs, where
higher diffraction orders are well separated.

EXPERIMENTAL REALIZATION OF QUANTUM … PHYS. REV. X 5, 041006 (2015)

041006-3



of lℏ per photon along its direction of propagation, where ℏ
is the reduced Planck’s constant. The Hilbert space asso-
ciated with OAM eigenstates is unbounded, thus allowing
quantum protocols based on qudits to be implemented
practically. Moreover, OAM state discrimination can be
easily achieved by using the so-called phase flattening
technique [34], wherein the azimuthal phase dependence
of a Laguerre-Gauss mode is removed by projecting the
mode onto a SLM that displays the complex conjugate field,
and the diffracted beam is then coupled into a single-mode
optical fiber (SMOF). For instance, the intensity and phase
distribution of light beams associated to SIC POVM ele-
ments of OAM photonic qusixt are shown in Appendix B.
Mutual projection between these SIC POVM elements
results in an unbiased value of jhΦijΦjij2 ¼ 1=7 for i ≠ j.
Next, we give a brief description of the experimental

setup depicted in Fig. 2. A frequency-tripled quasi-cw
mode-locked Nd-YAG laser (repetition rate of 100 MHz
and average output power of 150 mWat 355 nm) is used to
pump a nonlinear β-barium borate (BBO) crystal cut for
type-I degenerate phase matching. The photon pairs (signal
and idler) generated via spontaneous parametric down-
conversion are split out by means of a knife-edge prism and
coupled into SMOFs, where only TEM00-like spatial
modes are supported (see Ref. [35] for details of the
single-photon source). Idler photons are detected by a
silicon avalanche photodiode after being spectrally filtered
by an interference filter with a bandwidth of Δλ ¼ 10 nm

and then used as trigger. To optimize the diffraction
efficiency, polarization of signal photons is rotated to
horizontal after compensating for polarization rotation
induced by SMOF and is sent to the main apparatus: an
OAM generation stage followed by a detection stage.
The generation stage is composed of a SLM, which

converts the photons to either a pure (localized or super-
position) or a mixed state of Laguerre-Gauss modes. The
detection stage includes a SLM followed by a microscope
objective coupling to a SMOF. The coupled photons are
detected by a silicon avalanche photodiode, and finally a
National Instruments data acquisition card records photon
counts and coincidences between the signal and idler
detectors. The planes of the generation SLM, the detection
SLM, and the microscope objective are imaged onto each
other via 4f-lens systems with unit magnification.
Holograms displayed on both the generating and

detecting SLMs are calculated using the aforementioned
technique [33]. Numerical solutions for fiducial vectors in
dimensions 2–10, as reported in Ref. [14], are utilized to
obtain the coefficients of expansion of SIC POVMs in the
OAM basis. In order to remove the bias that comes from
any spatial mismatch between the transverse modes of the
two SLMs, as well as the bias that originates from different
coupling efficiencies for different OAM eigenmodes [36],
the entire set of SIC POVMs elements for each dimension
are generated and then detected. Hence, a matrix of
projections of SIC POVM elements, Pij ¼ jhΦijΦjij2, is

FIG. 3. Experimentally measured characterization of the generation and detection of SIC POVMs elements for different photonic qudit
subspaces. Each block corresponds to Pij ¼ jhΦijΦjij2, where jΦii correspond to the ith SIC POVM element, i.e., Êi ¼ ð1=dÞjΦiihΦij.
Lower figures are the density plots of the upper histograms. Projecting SIC POVMs for each dimension d acquires d2 set of
measurements.
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created, as shown in Fig. 3, which is then used to normalize
the data. For a comparative parameter we use the similarity

parameter S ¼ ðPi;j

ffiffiffiffiffiffiffiffiffiffiffiffi
PijP0

ij

q
Þ2=ðPi;jPij

P
P0
ijÞ, where

Pij and P0
ij stand for experimental and theoretical projec-

tions of SIC POVM elements, respectively. We observe an
average similarity of 97% for projection of SIC POVMs in
dimensions d ¼ f2; 3; 4; 5; 6; 7; 8; 9; 10g.
To carry out QST, the state of photons is converted to a

state characterized by a density matrix ρ̂. Mixed states are
generated by cycling through the display of random kino-
forms from a suitable set with predetermined weight, which
is achieved by a random-number algorithm. The state of the
photon is then projected onto each of the SIC POVM
elements and coupled to a SMOF leading to the coinci-
dence counter. Histograms are recorded for each SIC
POVM element and reconstructed density matrices are
then postprocessed.

IV. RESULTS AND DISCUSSION

We perform QST in the first two “problematic”
dimensions of 6 and 10 for pure eigenstates, super-
positions, and mixed states. These two Hilbert spaces
are chosen because complete sets of MUBs are unknown
for them. Thus, one should implement an overcomplete
QST by projecting the state onto sub-Hilbert spaces.
Figure 4 shows the real and imaginary parts of exper-
imentally reconstructed density matrices of a pure eigen-
state, a superposition, and a mixed state in dimensions 6
and 10. Fidelity of the reconstructed density matrices with
respect to the generated ones is shown in Table I for pure
and mixed states in dimensions 6 and 10 [37]. The fidelity
is lower on mixed states than on pure states because the
position of the vector in the Bloch sphere is not on the
surface, and as such it takes more counts to be able to
distinguish its coordinates. As the dimension grows, the

more coordinates a point has in the Bloch ball, the
larger the number of counts needed to resolve its
position [38].
It is important to compare our results with other forms of

QST. Probably, the comparison that is most easily made
would be one using MUBs. SIC POVMs provide d fewer
states on which one has to project in comparison with
MUBs, when the complete set of MUBs is known. For
dimensions where a complete set of MUBs is unknown, we
have to factor d into all of its prime-power factors. From
there we can build a POVM that is the tensor product of the
MUBs of the Hilbert spaces of factors of d. For instance,
Hilbert space of dimension 6 can be factored into Hilbert
spaces of 2 and 3, which have 3 and 4 MUBs, respectively.
This means that the total number of states for performing
overcomplete QST is ð4 × 3Þð3 × 2Þ ¼ 72, which is twice
that of the SIC POVM for dimension 6; i.e., 62 ¼ 36. For
dimension 10, using the same method we would have
ð6 × 5Þð3 × 2Þ ¼ 180 states, in comparison to the 102 ¼
100 needed for SIC POVM.
In addition, we calculate the fidelity for a given noisy

matrix in dimensions from 4 to 10 using SIC POVMs and
MUBs. We use the method in Ref. [32] to generate
pseudoexperimental data. We keep the total amount of
counts constant for the whole experiment and then
distribute the counts equally per measurement. The total

FIG. 4. Examples of the reconstructed density matrices of pure and mixed states. Left and right columns of each measurement show
real and imaginary parts of the density matrix. Different rows correspond to different photonic qudit dimensions of 6 and 10. The state
jni ranges from fj − 3i;…; j þ 3ig and jmi ranges from fj − 5i;…; j þ 5ig − TEM00, i.e., j0i is excluded. Pure eigenstates,
superpositions, and mixed states are defined as j þ 3i, 1=6Pþ3

n¼−3 jni, and ρ̂ ¼ 1=6
Pþ3

n¼−3 jnihnj, for dimension 6, and j þ 5i,
1=10

Pþ5
m¼−5 jmi and ρ̂ ¼ 1=10

Pþ5
m¼−5 jmihmj, for dimension 10, where fn;mg ≠ 0.

TABLE I. Experimental fidelities of pure and mixed recon-
structed states in dimensions 6 and 10. The coincidence counts
are 5 and 3 kHz for dimension 6 and dimension 10, respectively.

Dimension

Pure Mixed

Eigenstate Superposition Maximally mixed

6 0.960� 0.003 0.931� 0.003 0.905� 0.05
10 0.887� 0.003 0.859� 0.003 0.818� 0.07
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amount of counts are scaled exponentially. These
results are displayed in Table II. For dimensions
where the complete set of MUBs is known, MUBs are
known to minimize the number of measurements
required, thus outperforming SIC POVMs [39]. In dimen-
sions 6 and 10, SIC POVMs surpass the overcomplete
measurement.

V. APPLICATION TO QKD: SINGAPORE
PROTOCOL WITH OAM

An important application of SIC POVMs can be found in
QKD, wherein two parties, Alice and Bob, exchange a key,
using a quantum channel, which they can use to encode and
decode information transmitted over a public classical
channel. There have been various different protocols that
have been proposed and implemented [40,41].
Interestingly, SIC-POVM-based QKD turns out to be better
than the MUB-based one [42]. The Singapore protocol
relies on SIC POVMs in two distinct ways: (i) as a method
of measuring the qubits and (ii) as a method of testing the
source by performing optimal QST on a number of qubits,
which are sacrificed in order to check the integrity of the
source. In this protocol, Alice and Bob share anticorrelated
qubits, and each sends their qubit into a four-detector
apparatus, with each detector corresponding to a SIC
POVM element. Following Ref. [15], we label the four
detectors A, B, C, and D. Two different methods are then
combined to generate the key: Renes pairing [43] and
iterative Singapore pairing. The starting point for each
method is a sequence of measurement outcomes for both
Alice and Bob, say,

Alice A; B;D;C; B; A;…

Bob C;A;C; B; A; B;…;

where, because of anticorrelations, the same detector never
fires off for both Alice and Bob, but the remaining three
detectors have equal probabilities of firing off due to the
symmetric nature of SIC POVMs. In Renes pairing, for
each pair of outcomes, Alice chooses the outcome of her
measurement, say, A for the first qubit and another random
letter, say, B. She assigns 0 and 1 to each letter, say, A → 0
and B → 1, and then instructs Bob publicly to assign the
opposite numbers to each of the letters A and B, i.e., for
Bob A → 1 and B → 0. Bob, of course, will never obtain
Alice’s letter, but will report success if Alice has succeeded
in guessing his letter, i.e., if his letter is B in this example.
In case of a failure, that pair of qubits is discarded. This
method of key generation clearly has an efficiency of 1=3,
since Alice will succeed in guessing Bob’s letter one-third
of the time.
The main ingredient of the Singapore protocol, however,

is iterative Singapore pairing, in which Alice chooses a
random letter, for instance, the letter A, and reports publicly
to Bob two positions where that letter occurs in her
sequence, i.e., positions 1 and 6, but not the actual letter
itself. If Bob has distinct letters in those positions of his
sequence, he forms two sets: one of those two letters, i.e.,
fC;Bg, and another of the remaining two letters, fA;Dg.
Thanks to anticorrelations, he knows that Alice’s letter is in
the second set. He then flips a coin to randomly assign the
numbers 0 and 1 to the two sets and informs Alice
accordingly in a public message, e.g., fC;Bg → 0, and
fA;Dg → 1. They both then record that key bit associated
with the set to which Alice’s letter belongs, which, in our
example, is the key bit 1. If, on the other hand, Bob had
identical letters in the positions that Alice sent him, he
reports to her that he does so, and both discard their
respective qubits but write down the outcomes in a
secondary sequence. For example, if Alice had chosen
the letter B, which occurs at positions 2 and 5 of her
sequence, Bob would have had the letter A in both of these
locations, and thus they would have discarded those qubits
and written their letters in the secondary sequences:

Alice B

Bob A

A secondary sequence generated in this manner preserves
the anticorrelation statistics of Alice’s and Bob’s measure-
ments. This process then continues until all identical pairs
of Alice’s main sequence are exhausted, at which point they
switch to the secondary sequence, and generate more key
bits from it, together with yet a third sequence. The process
is iterated until Alice exhausts all identical letter pairs in her
last sequence. It can be shown that each round of Singapore
pairing has an efficiency of 2=5, which is higher than that of
Renes pairing. To maximize the bit generation efficiency of
the protocol even further, Alice and Bob perform a Renes
pairing at the end of each Singapore pairing round.

TABLE II. Counts per QST method necessary to obtain a 90%
fidelity. This is obtained based on Monte Carlo simulations; see
the main text for details.

Dimension % average fidelity Total counts

4 MUB 95 2500
SIC POVM 93 2500

5 MUB 94 13 000
SIC POVM 93 13 000

6 MUB 90 35 000
SIC POVM 92 35 000

7 MUB 94 89 000
SIC POVM 92 89 000

8 MUB 94 216 000
SIC POVM 91 216 000

9 MUB 93 511 000
SIC POVM 91 511 000

10 MUB 88 1 120 000
SIC POVM 91 1 120 000
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The anticorrelated source can be replaced by a single-
qubit source prepared by Alice in one of the states
associated with SIC POVM, given that Bob arranges to
have his respective SIC POVM rotated by an angle π on
the Bloch sphere with respect to Alice’s (see Fig. 5). In
this case, both letter sequences will still be anticorrelated
in the exact same way as in the entanglement-based
version, and will produce the same statistics.
Finally, an essential step in the Singapore protocol is

verifying the integrity of the source of anticorrelated
qubits. To this end, Alice and Bob perform full state
tomography on a number of the anticorrelated qubits in
their possession prior to the actual key generation. Any
attack by Eve is detected as a deterioration in the quality
of entanglement, and upon exceeding a certain threshold,
Alice and Bob will deem the qubits unfit and abort the
protocol. It is therefore preferable that they perform highly
accurate QST while sacrificing the minimum number of
qubits, and SIC POVM QST is indeed the optimal way to
do so. It is worth mentioning that the induced exper-
imental noises for d ¼ 2, shown in Fig. 3, is about
0.006� 0.005, which is well below the Singapore proto-
col threshold noise 0.3893 [44].

VI. CONCLUSION

In summary, we experimentally demonstrate optimal
QST with SIC POVMs in Hilbert spaces associated with
photon OAM. In order to achieve this, we generate and
project photonic SIC POVMs in the OAM degree of
freedom of dimensions 2–10 by means of spatial light
modulators. Fidelities of reconstruction in the range of
0.859–0.960 are achieved for pure states and 0.818–0.905
for mixed states in dimensions 6 and 10. We hope that this
work will pave the way for more robust and accurate

implementations of analyzing photonic OAM states,
especially OAM-based quantum computing and
cryptography.
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APPENDIX A: LINEAR ESTIMATION

A d-dimensional quantum system can be described most
generally by a density matrix:

ρ̂ ¼
Xd
i;j¼1

pijjψ iihψ jj; Trðρ̂Þ ¼ 1; ðA1Þ

where TrðÂÞ is the trace of the operator Â and fjψ iig is
an orthonormal basis. Since ρ̂ must be Hermitian with
positive diagonal elements that sum to one, it is completely
determined by d2 − 1 independent real parameters. The
problem of tomography is thus the determination of these
parameters via a suitable set of measurements. There are
two different ways one can go about determining those
parameters experimentally: (i) employing projective (von
Neumann) measurements or (ii) seeking generalized quan-
tum measurements, i.e., POVMs, of which the former are a
subcategory.
A projective measurement [10] is represented by a set of

orthogonal projectors: P̂i≔ jψ iihψ ij, with P̂iP̂j ¼ δijP̂i and

FIG. 5. State representation of SIC POVMs for OAM qubit on Alice’s and Bob’s Bloch (Poincaré) spheres. The two sets of vectors
fA; B; C;Dg and fA0; B0; C0; D0g represent Alice’s and Bob’s SIC POVM elements, respectively. Any pair of conjugate vectors, e.g., A
and A0, are orthogonal, and hence a qubit generated by Alice in one of these states has zero probability of being detected as the conjugate
state, and equal probabilities of the remaining three. We intently draw the vectors to be outside of the Bloch spheres. Indeed, the
implemented states are on the surface of the Bloch spheres, since they are pure states.
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P
iP̂i ¼ 1, where 1 is the identity operator. Such a

measurement can yield only d − 1 independent real param-
eters of the total density matrix ρ̂, and as such one needs
dþ 1 measurements to determine the state. Since each
measurement has d outcomes, one in total obtains d2 þ d
different measurement outcomes [9]. Moreover, it has been
shown [1] that the optimal choice of such measurements is
that corresponding to MUBs, since their mutual unbiased-
ness means that the informational overlap between those
measurements is minimized. The drawback is that a
complete set of dþ 1 MUBs is not easy to deduce. In
fact, the complete sets of MUBs (i.e., dþ 1) have only been
found analytically for Hilbert spaces of composite dimen-
sion, i.e., power of a prime [9].
To simplify the analysis, it is useful to express the

density matrix and SIC POVM elements using the standard
parametrizations:

ρ̂ ¼ 1

d
ð1þ b · σÞ; ðA2Þ

Êi ¼ αið1þ βi · σÞ; ðA3Þ

where σ is a traceless Hermitian operator basis, which
coincide with the generators of the group SUðdÞ and
constitutes the generalization of the Pauli matrices. The
vector b is a generalized Bloch vector in Rd2−1, whereas αi
are real numbers that satisfy αi ≥ 0, and βi ∈ Rd2−1 are
vectors satisfying 1þ βi · σ ≥ 0.
The last two conditions follow from the fact that the

operators Êi are positive. Since the POVM elements must

satisfy
P

i Êi ¼ 1, we see that they are not independent;
i.e., after determining d2 − 1 elements, the last one gets
fixed by the normalization. Hence, it is sufficient to work
with d2 − 1 elements. Combining Eq. (A2) and Born’s rule,
we can express the probabilities for these elements as

0
BB@

p1

..

.

pd2−1

1
CCA ¼

0
BB@

α1

..

.

αd2−1

1
CCAþ T

0
BB@

b1

..

.

bd2−1

1
CCA; ðA4Þ

where T ¼ ðα1; α2;…; αd2−1ÞTðβ1; β2;…; βd2−1Þ, and T
denotes the transpose. In the above equation, components
of the Bloch vector are related to the probabilities of
outcomes of the SIC POVM elements via the parameters αi
and βi, which are determined from the parametrization of
Êi, i.e., Eq. (A2). The problem of tomography is reduced to
inverting the matrix T to obtain the Bloch vector, whose
d2 − 1 components completely determine the density
matrix. Experimentally, we estimate the probabilities pi

by projecting onto each element Êi, obtaining relative
frequencies of occurrence ν1;…; νd2−1, upon which the
estimator of the Bloch vector is derived from Eq. (A4) as

0
BB@

b1

..

.

bd2−1

1
CCA ¼ T −1

0
BB@

ν1 − α1

..

.

νd2−1 − αd2−1

1
CCA: ðA5Þ

FIG. 6. Intensity and phase of SIC POVM elements for photonic qudit state of dimension six. The states are calculated by acting
36 Weyl-Heisenberg operators represented in Eq. (3) on the fiducial state of jf6i. The implemented OAM Hilbert space spans on
fj þ 3i; j þ 2i; j þ 1i; j − 1i; j − 2i; j − 3ig OAM eigenstates.
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APPENDIX B: WEYL-HEISENBERG MATRICES FOR DIMENSION 6

For completeness, we give here the 62 ¼ 36 elements of the Weyl-Heisenberg matrices for SIC POVMs in dimension
d ¼ 6, calculated according to Eq. (3):

D1 ¼

0
BBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCA
; D2 ¼

0
BBBBBB@

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1
CCCCCCA
; D3 ¼

0
BBBBBB@

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1
CCCCCCA
;

D4¼

0
BBBBBB@

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1
CCCCCCA
; D5 ¼

0
BBBBBB@

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCA
; D6 ¼

0
BBBBBB@

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

1
CCCCCCA
;

D7 ¼

0
BBBBBB@

1 0 0 0 0 0

0 ω6 0 0 0 0

0 0 ω2
6 0 0 0

0 0 0 −1 0 0

0 0 0 0 −ω6 0

0 0 0 0 0 ω2
6

1
CCCCCCA
; D8 ¼

0
BBBBBB@

0 0 0 0 0 −ω5=2
6

ω1=2
6 0 0 0 0 0

0 i 0 0 0 0

0 0 ω5
6 0 0 0

0 0 0 −ω1=2
6 0 0

0 0 0 0 −i 0

1
CCCCCCA
;

D9 ¼

0
BBBBBB@

0 0 0 0 −ω2
6 0

0 0 0 0 0 1

ω6 0 0 0 0 0

0 ω2
6 0 0 0 0

0 0 −1 0 0 0

0 0 0 −ω6 0 0

1
CCCCCCA
; D10 ¼

0
BBBBBB@

0 0 0 −i 0 0

0 0 0 0 −ω5=2
6 0

0 0 0 0 0 ω1=2
6

i 0 0 0 0 0

0 ω5=2
6 0 0 0 0

0 0 −ω1=2
6 0 0 0

1
CCCCCCA
;

D11 ¼

0
BBBBBB@

0 0 −ω6 0 0 0

0 0 0 −ω2
6 0 0

0 0 0 0 1 0

0 0 0 0 0 ω6

ω2
6 0 0 0 0 0

0 −1 0 0 0 0

1
CCCCCCA
; D12 ¼

0
BBBBBB@

0 −ω1=2
6 0 0 0 0

0 0 −i 0 0 0

0 0 0 −ω5=2
6 0 0

0 0 0 0 ω1=2
6 0

0 0 0 0 0 i
ω5=2
6 0 0 0 0 0

1
CCCCCCA
;

D13 ¼

0
BBBBBB@

1 0 0 0 0 0

0 ω2
6 0 0 0 0

0 0 −ω6 0 0 0

0 0 0 1 0 0

0 0 0 0 ω2
6 0

0 0 0 0 0 −ω6

1
CCCCCCA
; D14 ¼

0
BBBBBB@

0 0 0 0 0 −ω2
6

ω6 0 0 0 0 0

0 −1 0 0 0 0

0 0 −ω2
6 0 0 0

0 0 0 ω6 0 0

0 0 0 0 −1 0

1
CCCCCCA
;

D15 ¼

0
BBBBBB@

0 0 0 0 −ω6 0

0 0 0 0 0 1

ω2
6 0 0 0 0 0

0 −ω6 0 0 0 0

0 0 1 0 0 0

0 0 0 ω2
6 0 0

1
CCCCCCA
; D16 ¼

0
BBBBBB@

0 0 0 −1 0 0

0 0 0 0 −ω2
6 0

0 0 0 0 0 ω6

−1 0 0 0 0 0

0 −ω2
6 0 0 0 0

0 0 ω6 0 0 0

1
CCCCCCA
;
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D17 ¼

0
BBBBBBBB@

0 0 ω2
6 0 0 0

0 0 0 −ω6 0 0

0 0 0 0 1 0

0 0 0 0 0 ω2
6

−ω6 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCCCA
; D18 ¼

0
BBBBBBBB@

0 ω6 0 0 0 0

0 0 −1 0 0 0

0 0 0 −ω2
6 0 0

0 0 0 0 ω6 0

0 0 0 0 0 −1
−ω2

6 0 0 0 0 0

1
CCCCCCCCA
; D19 ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

1
CCCCCCCCA
;

D20 ¼

0
BBBBBBBB@

0 0 0 0 0 −i
i 0 0 0 0 0

0 −i 0 0 0 0

0 0 i 0 0 0

0 0 0 −i 0 0

0 0 0 0 i 0

1
CCCCCCCCA
; D21 ¼

0
BBBBBBBB@

0 0 0 0 −1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

1
CCCCCCCCA
; D22 ¼

0
BBBBBBBB@

0 0 0 i 0 0

0 0 0 0 −i 0

0 0 0 0 0 i

−i 0 0 0 0 0

0 i 0 0 0 0

0 0 −i 0 0 0

1
CCCCCCCCA
;

D23 ¼

0
BBBBBBBB@

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1
1 0 0 0 0 0

0 −1 0 0 0 0

1
CCCCCCCCA
; D24 ¼

0
BBBBBBBB@

0 −i 0 0 0 0

0 0 i 0 0 0

0 0 0 −i 0 0

0 0 0 0 i 0

0 0 0 0 0 −i
i 0 0 0 0 0

1
CCCCCCCCA
; D25 ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 −ω6 0 0 0 0

0 0 ω2
6 0 0 0

0 0 0 1 0 0

0 0 0 0 −ω6 0

0 0 0 0 0 ω2
6

1
CCCCCCCCA
;

D26 ¼

0
BBBBBBBB@

0 0 0 0 0 −ω6

ω2
6 0 0 0 0 0

0 1 0 0 0 0

0 0 −ω6 0 0 0

0 0 0 ω2
6 0 0

0 0 0 0 1 0

1
CCCCCCCCA
; D27 ¼

0
BBBBBBBB@

0 0 0 0 ω2
6 0

0 0 0 0 0 1

−ω6 0 0 0 0 0

0 ω2
6 0 0 0 0

0 0 1 0 0 0

0 0 0 −ω6 0 0

1
CCCCCCCCA
; D28 ¼

0
BBBBBBBB@

0 0 0 1 0 0

0 0 0 0 −ω6 0

0 0 0 0 0 ω2
6

1 0 0 0 0 0

0 −ω6 0 0 0 0

0 0 ω2
6 0 0 0

1
CCCCCCCCA
;

D29 ¼

0
BBBBBBBB@

0 0 −ω6 0 0 0

0 0 0 ω2
6 0 0

0 0 0 0 1 0

0 0 0 0 0 −ω6

ω2
6 0 0 0 0 0

0 1 0 0 0 0

1
CCCCCCCCA
; D30 ¼

0
BBBBBBBB@

0 ω2
6 0 0 0 0

0 0 1 0 0 0

0 0 0 −ω6 0 0

0 0 0 0 ω2
6 0

0 0 0 0 0 1

−ω6 0 0 0 0 0

1
CCCCCCCCA
; D31 ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 −ω2
6 0 0 0 0

0 0 −ω1=3
6 0 0 0

0 0 0 −1 0 0

0 0 0 0 ω2
6 0

0 0 0 0 0 ω6

1
CCCCCCCCA
;

D32 ¼

0
BBBBBBBB@

0 0 0 0 0 −ω1=2
6

ω5=2
6 0 0 0 0 0

0 i 0 0 0 0

0 0 ω1=2
6 0 0 0

0 0 0 −ω5=2
6 0 0

0 0 0 0 −i 0

1
CCCCCCCCA
; D33 ¼

0
BBBBBBBB@

0 0 0 0 ω6 0

0 0 0 0 0 1

−ω2
6 0 0 0 0 0

0 −ω6 0 0 0 0

0 0 −1 0 0 0

0 0 0 ω2
6 0 0

1
CCCCCCCCA
;
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D34 ¼

0
BBBBBBBB@

0 0 0 −i 0 0

0 0 0 0 −ω1=2
6 0

0 0 0 0 0 ω5=2
6

i 0 0 0 0 0

0 ω1=2
6 0 0 0 0

0 0 −ω5=2
6 0 0 0

1
CCCCCCCCA
; D35 ¼

0
BBBBBBBB@

0 0 ω2
6 0 0 0

0 0 0 ω6 0 0

0 0 0 0 1 0

0 0 0 0 0 −ω2
6

−ω6 0 0 0 0 0

0 −1 0 0 0 0

1
CCCCCCCCA
;

D36 ¼

0
BBBBBBBB@

0 −ω5=2
6 0 0 0 0

0 0 −i 0 0 0

0 0 0 −ω1=2
6 0 0

0 0 0 0 ω5=2
6 0

0 0 0 0 0 i

ω1=2
6 0 0 0 0 0

1
CCCCCCCCA
:

A set of SIC POVM elements can be calculated by acting
with the above matrices on the fiducial vector: jf6i ¼
ð0.524;0.025− 0.618i;−0.128− 0.107i;−0.360− 0.335i;
0.089− 0.002i;0.180− 0.177iÞ.
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