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We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear
interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster
dispersive spreading of higher order Schmidt modes, the spectral width of the radiation at the output is reduced as the
length of the dispersive medium is increased. Preliminary results show 30% spectral narrowing.
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1. Introduction

Bright squeezed vacuum (BSV) is a state of light emerg-
ing from the output of a high-gain unseeded parametric
amplifier (OPA). Due to its nonclassical properties such
as photon-number entanglement and quadrature squeezing,
this state is useful for various quantum-information applica-
tions, among them quantum metrology [1], quantum imag-
ing [2], and quantum lithography [3]. Besides containing a
high number of photons in each mode, the state is essentially
multimode, both in the frequency and in the angle. These
features provide its large information capacity, as quantum
information can be encoded in the number of photons in
different modes. At the same time, the presence of a large
number of modes can be a disadvantage in certain experi-
ments, for instance achieving phase super-sensitivity [4] or
(related) gravitational-wave detection [5]. A possible way
to reduce the number of modes without losing nonclassical
correlations is to use a nonlinear interferometer, in which
only part of the spectrum is amplified. This has been already
demonstrated for the angular spectrum in Ref. [6]. The goal
of this work is to show similar behavior in the frequency
domain.

The paper is organized as follows. In the next two sub-
sections, we briefly describe the mode structure of BSV
(Subsection 1.1) and the idea and operation of a nonlinear
interferometer (Subsection 1.2). Section 2 explains the idea
of reducing the number of modes in BSV in space/angle
and time/frequency and demonstrates the narrowing of the
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BSV angular spectrum in a nonlinear interferometer with
spatially separated crystals. The experiment on the narrow-
ing of the BSV frequency spectrum is described in Section 3.
Section 4 contains the conclusions.

1.1. BSV and its eigenmodes

The most convenient way of generating BSV is high-gain
parametric down-conversion in a nonlinear crystal, which
can be considered as an unseeded traveling-wave OPA. The
frequency-angular spectrum and photon-number correla-
tions are well described by the Bloch-Messiah formalism
[7–9], in which the Hamiltonian is diagonalized by passing
to the eigenmodes of the OPA. For instance, in the case of
spatially multimode PDC, the Hamiltonian can be written
as [9]

H = i��

∫∫
dqsdqi F(qs, qi )a

†
qs a†

qi + h.c., (1)

where � characterizes the coupling strength, qs,i are the
transverse wavevectors of the signal and idler radiation, and
a†

qs,i are the photon creation operators in the corresponding
plane-wave modes. The central part of the Hamiltonian is
the two-photon amplitude (TPA), F(qs, qi ), whose mean-
ing is the probability amplitude of a photon pair created with
the wavevectors qs, qi . The Hamiltonian (1) is diagonalized
by representing the TPA as a Schmidt decomposition,

F(qs, qi ) =
∑

k

√
λkuk(qs)vk(qi ), (2)
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where λk are the Schmidt eigenvalues, uk(qs), vk(qi ) the
Schmidt modes, and k is a two-dimensional index. By def-
inition, the modes are ordered so that λk+1 ≤ λk . The
Hamiltonian (1) can be now written as a sum of two-mode
Hamiltonians,

H =
∑

k

√
λk Hk, Hk = i��A†

k B†
k + h.c., (3)

with the photon creation operators A†
k, B†

k relating to the
Schmidt modes. Moreover, if the signal and idler beams are
indistinguishable, their Schmidt modes are the same, and

Hk = i��(A†
k)

2 + h.c. (4)

It is worth mentioning that the Schmidt decomposition can
be alternatively performed in the space coordinates, which
is equivalent to the wavevector decomposition (2).Asimilar
decomposition is valid for the frequency/temporal domain.
In different works, the Schmidt modes are also called non-
monochromatic modes [10], squeezing (eigen)modes [11],
broadband modes [8], or supermodes [12].

Clearly, in terms of these new modes, photon-number
correlations are only pairwise. The total mean photon num-
ber can be represented as a sum of incoherent contributions
from all Schmidt modes,

〈N 〉 =
∑

k

〈Nk〉, 〈Nk〉 = sinh2[√λk G], (5)

where G = ∫
�dt is the parametric gain. This means that

while at low gain (G << 1), the Schmidt modes are pop-
ulated with the weights given by the Schmidt eigenvalues
λk , at high gain these weights are changed to become [9]

λ̃k = sinh2[√λk G]∑
k sinh2[√λk G] . (6)

According to this, at high gain the lower order Schmidt
modes, initially having higher eigenvalues, become more
pronounced.

1.2. SU(1,1) interferometers

At the very start of nonlinear optics, an idea emerged to
realize two nonlinear effects at spatially separated points
and to see interference between them. Such nonlinear inter-
ference would enable the observation of the relative phase
between two effects. It was first realized by Chang et al. [13]
who measured in this way the complex values of surface
quadratic susceptibility for several semiconductors. Later,
it became a common way to measure the phases of nonlinear
susceptibilities.

After the discovery of parametric amplification via PDC
and four-wave mixing (FWM), it was soon suggested to
realize nonlinear interference based on these effects. Yurke
et al. [14] proposed an interferometer in which the signal and
idler beams emitted in the first parametric amplifier were
directed into the second one and got amplified or deam-
plified depending on the phases introduced in the pump,

pump

signal

idler

nonlinear
crystal 1

nonlinear
crystal 2i

p

s

Figure 1. An SU(1,1) nonlinear interferometer based on two high-
gain parametric amplifiers. (The colour version of this figure is
included in the online version of the journal.)

signal, or idler beams, φp,s,i (Figure 1). Because the trans-
formations performed by the interferometer on the fields at
its two output modes relate to the SU(1,1) group, this type
of interferometer is usually referred to as SU(1,1). Initially
the SU(1,1) interferometer was proposed as a method to
perform phase measurement below the shot-noise level,
which is possible due to the strong dependence of its out-
put intensity on the phases φs,i at high parametric gain
[15]. Nevertheless, the first implementations of SU(1,1)
interferometers were based on low-gain (spontaneous) PDC
[16,17]. In particular, in a clever modification of such inter-
ferometer, the effect of ‘induced coherence without induced
emission’ was observed [18], which later was successfully
implemented for the measurement of absorption [19] and
dispersion [20], as well as imaging [21] in the infrared
or terahertz [22] spectral ranges without the detection of
infrared or terahertz radiation.

Only recently, the SU(1,1) interferometer using FWM in
rubidium vapor has been implemented for overcoming the
shot-noise level of phase measurement [23]. More than 4
dB improvement has been obtained compared to a conven-
tional (SU(2)) interferometer populated with the same mean
number of photons. The operation was at high gain, which
provided 7.4 dB amplification of the radiation from the first
FWM source in the second one.

The same mechanism can be used for shaping the spec-
trum of high-gain PDC or FWM, both in the angle and in
the frequency. Because of the nonlinear amplification of the
incident radiation, the modes that are not amplified in the
second nonlinear crystal will be much weaker at the output
than those amplified. Moreover, one can take advantage of
the de-amplification of certain modes, which, however, is
not accompanied by a noise increase. Such selective ampli-
fication of different modes can enable tailoring the structure
of the spectrum.

2. Diffractive and dispersive spreading, and reduction
of the mode number

2.1. Angular spectrum tailoring

In a nonlinear interferometer formed by two spatially sepa-
rated traveling-wave high-gain parametric amplifiers
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Figure 2. A nonlinear interferometer formed by two spatially
separated crystals. (The colour version of this figure is included
in the online version of the journal.)

(Figure 2) [6], broadband radiation emitted by the first crys-
tal is amplified in the second one. If the distance between
the crystals is considerable, only part of the radiation is
amplified in the second one – namely, the part that passes
through the pump beam in the second crystal. In accordance
with this, it was shown [6] that at a certain distance between
the crystals, the angular spectrum becomes nearly single-
mode. At a sufficiently large distance between the crystals,
the angular width of the spectrum amplified in the second
crystal should be roughly given by the ratio between the
pump diameter a and the distance L between the crystals,

�θ ≈ a

L
. (7)

This effect of spatial spectrum narrowing has a simple
explanation in terms of the Schmidt modes of high-gain
PDC. Indeed, each of the spatial Schmidt modes of BSV
emitted by the first crystal is diffracting (spreading) in the
course of propagation to the second crystal. To a good
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Figure 3. The angular width of the spectrum measured at the
output of the second crystal, versus the distance between the
crystals. The solid line is calculated with Equation (11), without
fitting parameters. The dashed line is a guide to an eye. The arrow
shows the position at which m = 1.1 spatial modes were reported
in Ref. [6]. (The colour version of this figure is included in the
online version of the journal.)

approximation, the spatial Schmidt modes are given by
the Hermite–Gauss or Laguerre–Gauss set, the lowest-order
mode being simply a Gaussian beam. Lower-order modes
spread slowly and in the second crystal they overlap with the
pump beam. Therefore, they get amplified provided that the
phase acquired in the course of propagation is appropriate.
However, higher-order modes (no matter if they are given by
Laguerre–Gauss or Hermite–Gauss beams) spread faster in
the space between the crystals and do not get amplified.As a
result, the spatial spectrum at the output of the second crystal
gets narrower. This continues until only the first Schmidt
mode gets amplified, after which the angular width remains
constant; increasing the distance L only reduces the total
intensity.

The dependence of the angular width �θ on the distance
L between the crystals can be derived from this picture
as follows. The zeroth-order Schmidt mode is a Gaussian
beam of waist radius w0. As it propagates from the crystal,
the waist radius at a distance z is [24]

w0(z) =
√

w2
0 +

(
λz

πw0

)2

, w0(0) = w0, (8)

with λ being the wavelength. The parameter θ0 ≡ λ/(πw0)

is the half-angle divergence of the Gaussian beam.
Higher-order modes have larger spatial sizes, wm = Mw0;
for instance, for Hermite–Gauss beams, M = √

2m + 1. At
the same time, they have larger divergences θm = Mθ0, so
that as the distance z increases, they spread as

wm(z) =
√

w2
m +

(
M2 λz

πwm

)2

. (9)

Assuming that for z = L , only modes of orders from 0 to
m are amplified in the second crystal, we find the corre-
sponding M from the condition wm(L) = a/2. We obtain

M = a

2

[
w2

0 +
(

λL

πw0

)2
]−1/2

. (10)

Then, the divergence of the beam will be equal to twice the
half-angle divergence of mode m, �θ = 2θm = M λ

πw0
:

�θ =
[

1

�θ2
0

+
(

L

a

)2
]−1/2

, (11)

where �θ0 = aλ

πw2
0

is the angular width of the spectrum at

L = 0, which is the same as the spectrum of a single crystal
of double length.

We have measured the dependence of the angular width
on the distance between the crystals under the same exp-
erimental conditions as in Ref. [6]: two 3 mm crystals were
placed into a single pump beam of full width at half max-
imum (FWHM) waist 200 µm, and the distance between
them was changed from 10 to 130 mm. The results are
shown in Figure 3.
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Figure 4. Temporal Schmidt modes of orders 0 (red dotted line), 10 (blue dashed line) and 50 (green solid line) for a 3 mm crystal pumped
by 6 ps pulses before (a) and after propagating through 10 cm (b), 20 cm (c), and 60 cm (d) of SF6 glass. For comparison, the amplitude
of the pump pulse is shown by magenta dash-dotted line.(The colour version of this figure is included in the online version of the journal.)

Figure 5. Schematic of the experimental setup. (The colour version of this figure is included in the online version of the journal.)

Equation (11) was used for fitting the dependence at L ≤
60 mm. At larger distances, the angular spectrum shows no
dependence on L; the dashed line is just a guide to the eye.
The position at which nearly single-mode was observed (the
number of modes was measured to be m = 1.1) [6] is shown
by an arrow.

2.2. Frequency spectrum tailoring

This effect has an analog in the frequency/time domain. In
this case, the role of the diffractive spreading of beams is
played by the dispersive spreading of pulses. Indeed, let
a dispersive material of length d be placed between the
two crystals. Each frequency Schmidt mode of the BSV
from the first crystal will spread in time in the course of

propagation through the material, and the spreading will be
determined by the group-velocity dispersion (GVD) k′′ =
d2k/dω2. Lower-order modes are narrower in time than
higher-order ones, but they will still spread in the GVD
material slower than higher-order ones. This is illustrated by
Figure 4 where several temporal Schmidt modes are plotted
for BSV emitted from a 3 mm crystal pumped by 6 ps pulses
at wavelength 355 nm (a). The emission is at the degenerate
wavelength 710 nm. The modes are assumed to be the same
as for spontaneous parametric down-conversion [25]. To
a good approximation, they are given by Hermite
functions [7].

After propagation through a dispersive material with the
GVD k′′ and length d , the temporal modes will spread in
time but maintain their shapes. The latter follows from the
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(a) (b)

Figure 6. (a) Measured PDC spectra with different GVD media inserted. (b) FWHM of the PDC spectra experimentally measured with
and without GVD media placed between the crystals (blue triangles) and the theoretically calculated dependence according to Equation
(13) (red line) plotted versus k′′d . (The colour version of this figure is included in the online version of the journal.)

fact that, similar to diffractive spreading of beams, disper-
sive spreading of pulses acts as the Fourier transformation,
so that after a sufficiently long GVD material the shape of a
pulse becomes similar to its spectral amplitude. At the same
time, Hermite functions are eigenfunctions of the Fourier
transformation. Therefore, the whole set of Schmidt modes
will be simply rescaled after the propagation through the
dispersive material. For instance, the zeroth-order Schmidt
mode (dotted line in Figure 4(a), initially a Gaussian pulse
of duration τ0 will remain a Gaussian pulse with the duration
depending on d [26],

τ0(d) =
√

τ 2
0 +

(
k′′d
τ0

)2

. (12)

Higher-order modes will also maintain their shapes but,
similar to the case of the angular modes, will spread faster.

In the right panel of Figure 4, the Schmidt modes are
plotted after the propagation through various lengths d of
SF6 glass, whose GVD at the wavelength 710 nm is k′′ =
238 fs2/mm [27]. In the calculation, Equation (12) was used
for the Gaussian mode, and the higher order modes were
simply rescaled accordingly. For the length d = 10 cm
(b), only higher-order modes (mode 50 in the figure) get
sufficiently spread so that they do not fully overlap with
the pump pulse in the second crystal. Therefore, high-order
modes will not be amplified.

However, at d = 20 cm (c), even the tenth-order mode be-
comes considerably spread and will not get fully amplified
in the second crystal. This should lead to the narrowing of
the spectrum.As the length of the dispersive glass increases,
the spectral width should reduce. After d = 60 cm of
glass (d), the zeroth-order Schmidt mode will overlap with
the pump pulse. At high gain, this situation should lead to
single-mode output emission.

By analogy with Equation (11), one can estimate the
frequency spectrum of BSV generated in the system of two
crystals separated by a GVD material as

�ω =
[

1

�ω2
0

+
(

k′′d
Tp

)2
]−1/2

, (13)

where Tp is the pump pulse duration and �ω0 the initial
spectral width. In the next section, we describe the experi-
mental results confirming this behavior.

3. Experiment

The scheme of the experimental setup is shown in Figure 5.
Collinear high-gain PDC with the central wavelength 709.3
nm was created in a type-I 3-mm-long BBO crystal by
pumping it with the third harmonic of a pulsed Nd:YAG
laser at 354.7 nm, with a pulse duration of 18 ps (the co-
herence time being 6 ps) and a repetition rate of 1 kHz. The
laser power was varied by a half wave plate λp/2 followed
by a polarization beamsplitter P BSp. A telescope, made of
plano convex lenses L p1 and L p2 with the focal distances
of 50 and 5 cm, respectively, compressed the beam size
down to half-power beam width of 225 µm. A dichroic
mirror DM1 separated the pump beam and the PDC. The
PDC pulses were passing through the GVD medium. We
had three options of GVD media: SF-6 glass rods of length
9 and 18.3 cm, and SF-57 glass rod of length 19.4 cm. The
pump pulses were timed, by means of a delay line, to overlap
with the time-stretched PDC pulses on the dichroic mirror
DM2 and amplify them in the second type-I 3-mm-long
BBO crystal. After the crystal the pump was blocked by a
pair of dichroic mirrors DM3 and a long-pass filter OG580.
The iris A1 placed in the focal plane of the lens L with the
focal distance of 10 cm was used to align the crystals for
collinear geometry. The lens Li focused the PDC radiation
onto the input slit of the spectrometer with a resolution of
0.15 nm.

Figure 6(a) shows the measured PDC spectra with and
without the GVD medium placed between the crystals. The
PDC spectrum for the crystals separated by an air gap of 24.2
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cm is shown by a blue line.The measurement was performed
at an average pump power of 73.4 mW in the setup, pub-
lished before in [6]. The corresponding parametric gain was
9, which resulted in about 107 photons in the most populated
mode. The interference fringes due to different refractive
indexes of the pump and the signal and idler beams in the air
were avoided by averaging the spectra taken over different
positions of the first crystal in the range from 22.7 to 25.7
cm with the step of 2 mm. The FWHM of the spectrum was
found to be 45.6 nm.

Green and red lines in Figure 6(a) show how the spectrum
of the PDC evolves as the value of k′′d for the inserted GVD
medium is increased. All the spectra are affected by the
interference arising from the frequency-dependent phase
of the broadband PDC generated in the first crystal after
passing through the GVD media. As a result, constructive
or destructive interference is observed for the different fre-
quencies at the output of the second crystal. Despite the
interference, one can clearly see that the spectra measured
with the GVD media are narrower than the one obtained
with the air gap between the crystals. The FWHM of the
envelope for each measurement was considered as the width
of the spectrum. In Figure 6(b) we compare the measure-
ment results for the PDC spectral width (blue triangles) and
the calculation according to Equation (13) (red line) using
the GVD values for the Schott glass SF6 and SF57 [27].
Instead of the pulse duration Tp, the coherence time of the
laser Tc = 6 ps was used since it is the coherence of the
pump that matters for parametric amplification. One can
see that the experimental FWHM values agree well with
the calculations.

4. Conclusion

In conclusion, we have considered a nonlinear interferom-
eter formed by two unseeded traveling-wave parametric
amplifiers (based on parametric down-conversion in non-
linear crystals) and showed that its angular and frequency
spectrum of emission can be modified by spatially separat-
ing the two crystals and/or placing a dispersive material
between them. The effect has a simple interpretation in
terms of Schmidt modes: higher order modes spread in
space and time faster than low-order ones and hence do
not get amplified in the second crystal. Our experimental
results show the narrowing of the spatial spectrum, leading
ultimately to a single spatial mode. For frequency spectrum
narrowing, preliminary results show 30% narrowing for a
glass rod with large GVD inserted into the interferometer.

Noteworthy, the method allows one to simultaneously
achieve single-mode spectrum both in the angle and in the
frequency. Indeed, the condition for spatially single-mode
generation depends on the parameters a, L [6] and does
not depend on d or k′′. On the contrary, the condition for
a single-mode frequency spectrum depends only on d, k′′.
Therefore, by a proper choice of these four parameters one

can achieve single-mode generation both in the frequency
and in the angle.
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