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State transfer based on classical nonseparability
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We present a state-transfer protocol that is mathematically equivalent to quantum teleportation but uses classical
nonseparability instead of quantum entanglement. In our implementation we take advantage of nonseparability
among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a
beam of light. We demonstrate the transfer of arbitrary OAM states, in the subspace spanned by any two OAM
states, to the polarization of the same beam.
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I. INTRODUCTION

Entanglement in quantum systems leads to many of the sur-
prising consequences of the quantum-mechanical description
of nature. For many decades the aim of physicists has been to
realize and confirm such phenomena in experimental settings.
Such efforts came to fruition in a series of seminal observations
that validated quantum mechanics and contradicted some clas-
sical alternatives such as local hidden variable theories [1–4].

Although entanglement is often thought as an exclusively
quantum phenomenon, the mathematical structure behind it
that quantifies the degree of nonseparability can be applied
to any two vector spaces. In fact, in his seminal 1935
paper, Schrödinger [5] pointed out that the mathematics
that he utilized was already known by mathematicians [6].
This mathematical structure, when applied to describe the
nonseparability of different degrees of freedom, has come
to be known as classical entanglement [7–9]. Although the
analogy between quantum entanglement and the classical
entanglement stops when nonlocality comes into the picture,
the identification of their similarity has proven to be helpful
in developing a new perspective in determining the degree
of polarization of a beam of light [7,8,10,11]. Furthermore,
the violation of Bell inequalities between different degrees
of freedom (DoF) of a beam of light has been the subject of
several notes recently [8,12–16].

The above analogy between quantum entanglement and
its classical analog can be extended to multipartite sys-
tems [17,18]. In the original proposal by Spreeuw [17], a beam
is divided into several beams and by controlling the amplitude
and phase of each portion of the beam, one can mimic a GHZ
state, some quantum gates, and teleportation. One of the most
well-known consequence of entanglement that involves more
than two parties is the phenomenon of teleportation, which
was first proposed by Bennett et al. [19] and was realized
with quantum entanglement by Bouwmeester et al. [20]. Since
then teleportation has been proposed and realized in different
systems [21].

Teleportation allows us to transfer the state of one party
to a nonlocal party via a projection on a Bell state. If the
nonlocal parties are replaced by different DoFs of a beam
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we end up with a procedure to transfer the state of one
degree of freedom to another through a Bell-like projection.
Although this may not be quite as intriguing a phenomenon
as teleportation, the capability to transfer an arbitrary, and a
priori unknown state from one degree of freedom to another
is a nontrivial and desirable task [22–24]. In the following we
report on the realization of this phenomenon, i.e., state transfer
between two DoFs in an approach that mimics teleportation.
In our implementation we transfer an arbitrary state of any
two orbital angular momentum (OAM) modes of a laser beam
onto the polarization of the same laser beam. Although the
nonseparability between different degrees of freedom of a laser
beam has come to be referred to as classical entanglement, one
can argue that the term entanglement should be reserved for
the cases that involve inherently quantum-mechanical systems
that cannot be described classically. Thus we reserve the
term entanglement for quantum entanglement and refer to its
classical analog as classical nonseparability. The term classical
nonseparability simultaneously captures two different aspects:
first, that the experiment that we are hereupon taking can be
described without invoking quantum mechanics, and is hence
classical, and second, that such nonseparability in optical
beams bares merely a mathematical similarity to its quantum
counterpart.

The manuscript is organized as follows. In the next section
we explain the procedure of the state-transfer protocol as an
analog of teleportation when the nonlocal parties are replaced
by DoFs. In Sec. III we explain the details of our experiment
and present a discussion of our results and their implication.
Concluding considerations are presented in Sec. IV.

II. STATE TRANSFER AS AN ANALOG OF
TELEPORTATION

The original proposal by Bennett et al. [19] takes advantage
of three parties. One we call Alice, the other Bob, and a third
party that we name Charlie. Initially Alice’s state is separable
from the other two parties, and Charlie and Bob share a joint
maximally entangled state. One then performs a projective
measurement on a joint Bell state of Alice and Charlie. When
we postselect on those measurements that have led to a specific
Bell state, Bob’s state will be the same as the initial Alice’s
state.
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FIG. 1. (Color online) Three examples of classical nonseparabil-
ity. The left panel represents a beam for which the radial and orbital
angular momentum (l = 3) degrees of freedom are nonseparable. The
middle panel shows a beam for which the orbital angular momentum
(l = 1) and polarization are nonseparable. The panel on the right
represents a beam for which radial and polarization degrees of
freedom are nonseparable.

To realize our protocol for coherence transfer we replace the
three parties with three degrees of freedom of a single optical
beam. In our implementation, the three degrees of freedom
are the the radial degree of freedom, polarization, and orbital
angular momentum that play the roles of Charlie, Bob, and
Alice, respectively. In Fig. 1 we have presented three examples
of nonseparability between different degrees of freedom of a
spatial profile of a beam of light. These can be considered
analogs of Bell states between different DoFs that we deal
with in this paper. In principle any three DoFs can be used to
realize such a state transformation protocol, as long as one can
perform arbitrary joint measurements on these observables or
quantities.

In our realization we first produce a beam whose polariza-
tion and radial DoFs are nonseparable and both are separable
from the OAM:

[γ |l〉 + γ̄ | − l〉] ⊗ [|r1,H 〉 + |r2,V 〉], (1)

where |H 〉,|V 〉 denote the horizontal and vertical polariza-
tions. We emphasize that although we adopt the ket-bra nota-
tion that is associated with quantum mechanics, the description
of our experiment requires no invoking of quantum mechanics
and we adopt this notation to emphasize the linear algebraic
nature of different degrees of freedom. The polarization
of an optical field arises from the vectorial nature of the
electromagnetic field and techniques for its manipulation are
easy to implement. |l〉 denotes an OAM mode, which is defined
via the helical phase structure ei�φ . OAM modes naturally arise
as paraxial solutions to the Maxwell equations in cylindrical
coordinates and hence can be completely understood using
wave optics [25,26]. Nevertheless, the OAM modes can
be useful in quantum optics too [22,27]. Finally, |r1〉,|r2〉
denote two radial modes, defined as two concentric, mutually
exclusive, annular regions with a uniform intensity pattern.
Note that |r1〉,|r2〉 are orthogonal since there is no overlap
between their corresponding spatial extents. Radial modes
have also been the subject of a few recent investigations for
their potential applicability in quantum communication [28].
The transverse profile of a beam represented by Eq. (1) is
depicted in Fig. 2 (top). The dependence of the phase on the
azimuthal angle is identical for both radial components since
their OAM contents are the same.

FIG. 2. (Color online) Transfer of an arbitrary OAM state to a
polarization. The intensity is encoded in the brightness, the phase in
the color. The OAM information can be read from the phase profile.
For simplicity we have depicted a pure OAM superposition of | ± 3〉.
(Top) The initial beam: OAM is separable from the other two DoFs
and the polarization and radial DoFs are maximally nonseparable.
(Bottom, right) After projection on a maximally nonseparable state
of OAM and radial, we end up with a polarization state that carries the
same information as the initial OAM state. The intensity of each of
polarization gives information about the amplitude of each of the two
OAM components, and the phase between the two polarizations, H

and V , is the same as the phase between the two OAM components.
(Bottom, left) The two angles ξ and η are half of the spherical angles
on the Poincarè sphere, respectively.

Now that we have prepared the state in Eq. (1), the next
step in the protocol is to implement a projective measurement
onto one of the Bell states of Charlie (radial)-Alice (OAM):

〈�±| = 〈r1,l| ± 〈r2, − l|,
〈�±| = 〈r1, − l| ± 〈r2,l|. (2)

Depending on our choice, the state of Bob (polarization) will be
either γ |H 〉 ± γ̄ |V 〉 for projection onto |�±〉 or γ |V 〉 ± γ̄ |H 〉
for projection onto |�±〉, respectively. We choose to project
onto |�+〉. In our projection we use a pinhole in the far field
(setup below); thus after the projection the light emerging
from the pinhole represents a single spatial mode that carries
no orbital angular momentum. The transverse profile of such
a beam is depicted in Fig. 2 (bottom, right). The polarization
of this beam is completely separable from the radial and OAM
DoFs and the emerging beam’s polarization state reads

γ |H 〉 + γ̄ |V 〉. (3)

We note that the final Bob (polarization) state carries the same
information as the initial Alice (OAM) state in Eq. (1). This
result is independent of the the choice of the initial state.
Although our derivation has assumed Alice’s initial state to
be a pure state, the derivation can be easily generalized to
accommodate mixed states [19].

III. EXPERIMENTAL IMPLEMENTATION

A schematic representation of the setup is given in Fig. 3.
Our source of light is a cw He-Ne laser that emits at a
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FIG. 3. (Color online) The setup to implement the state transfer from OAM to the polarization DoF; the beam emerging from a single-mode
fiber is collimated and shined onto a spatial light modulator (SLM1). The beam emerging from the SLM1 has two rings with identical azimuthal
phase profiles (OAM states). Using a polarizer and a small half-wave plate (Bell-state synthesizer), orthogonal polarizations are introduced
onto the two rings. To implement projection onto a radial-OAM maximally nonseparable state, we divide the surface of SLM2 into two parts.
The beam is first shined onto one half of SLM2, where we have impressed a phase screen that has two rings with opposite OAM values. Then
we use a half-wave plate to rotate the polarization of the beam 90 deg and then shine the light on the second half of SLM2. This combination
allows us to perform polarization-insensitive projections onto the radial-OAM maximally nonseparable state. To complete the projection we
use a pinhole to separate the projected light and then use different combinations of a quarter-wave plate and a polarizer to measure the Stokes
parameters.

wavelength of 633 nm. In order to produce the state prepared
in Eq. (1), we first use a hologram to produce a coherent beam
of two rings. The phase profiles of both rings are identical
and match the OAM state that is to be teleported. In principle,
one can choose to use any two orthogonal OAM states. In our
realization we used the two OAM states {|10〉,| − 10〉}. This
choice minimizes the crosstalk between the two states that
often results from imperfect experimental realization of OAM
projections. We use a telescope after the SLM1 to increase the
diameter of the initial beam to about 2 cm.

The laser beam is then passed through a polarizer and then
a half-wave plate (HWP) whose aperture only covers the inner
portion of the beam. The HWP is set to 45◦ in order to rotate the
polarization of the inner disk to the orthogonal polarization. We
name this combination a Bell-state synthesizer. After rotating
the polarization of the inner beam using a small half-wave
plate, we measure the power contained in each of the two
rings. We then match their power by adjusting the radii of
the two rings using SLM1. The last HWP induces a phase
difference between the two rings that can be canceled by
the spatial light modulator used for shaping the laser beam
(Fig. 3, SLM1). The beam emerging from the last HWP can
be set to possess an arbitrary state of OAM, along with a
polarization structure that is maximally nonseparable from the
radial DoF. As a result, the field can be formally described by
Eq. (1). At this stage we need to project onto a joint maximally
nonseparable state of OAM and radial degrees of freedom in
order to realize the state conversion. The SLM allows for
performing a projection onto the OAM state of l = −10 in the
inner disk and a simultaneous projection over l = 10 for the
outer annular ring. We use a phase-only liquid-crystal SLM to
shape the wavefront of the horizontal polarization component
of the beam. To achieve a polarization-insensitive projection,

we use the SLM in a double-pass geometry, with a HWP in
between the two reflections for rotating the polarization of the
beam by 90◦. In both reflections SLM1 is imaged on SLM2
(the imaging optics is not shown in the figure). We use a lens
with a focal length of 30 cm after the SLM to focus the beam
onto a pinhole with a diameter of 5 μm. The beam emerging
from the pinhole is approximately a single spatial mode with
a polarization state that is related to the initial OAM state
of Alice. A combination of a polarizer, quarter-wave plate,
and detector are used to measure the Stokes parameters and
subsequently characterize the polarization state.

We test our protocol by first transferring pure states of
OAM. This has been done by converting the polarization
Stokes parameters into a two-dimensional Jones vector and
then finding the degree of similarity between the initial (OAM)
state owned by Alice and the final (polarization) state detected
by Bob. In Fig. 4 we report the fidelities between different
initial OAM states and the polarization state that was measured
at the end.

The initial OAM states are chosen to be along the
three primary axes of the Bloch sphere for a two-
dimensional subspace of {|10〉,| − 10〉}. Namely, we have
transferred the states {|10〉,| − 10〉,|10〉 + | − 10〉,|10〉 − | −
10〉,|10〉 + i| − 10〉,|10〉 − i| − 10〉}. The ideal converted
states are then supposed to be the following polarization
state, respectively: {|H 〉,|V 〉,|H 〉 + |V 〉,|H 〉 − |V 〉,|H 〉 +
i|V 〉,|H 〉 − i|V 〉}. The following equation provides the cor-
responding mapping between OAM and polarization states:

|hl〉 = |10〉 �−→ |H 〉,
|vl〉 = | − 10〉 �−→ |V 〉,
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Fidelity of
Alice’s state Ideal Bob’s state transfer

|hl |H 98.8 ± 0.4
|vl |V 98.8 ± 0.2
|dl |D 98.9 ± 0.5
|al |A 99.3 ± 0.3
|rl |R 99.1 ± 0.4
|ll |L 99.2 ± 0.3

3|hl hl| + |vl vl| 3|H H| + |V V | 99.5 ± 0.4
3|dl dl| + |al al| 3|D D| + |A A| 99.3 ± 0.3
3|rl rl| + |ll ll| 3|R R| + |L L| 99.2 ± 0.2

FIG. 4. (Color online) Fidelity of state transfer for different
states. All OAM states are in the subspace spanned by l = ±10.
The three last states are mixed states. For brevity of notation, we have
shown the un-normalized states.

|dl〉 = (|10〉 + | − 10〉)/
√

2 �−→ |D〉,
|al〉 = (|10〉 − | − 10〉)/

√
2 �−→ |A〉,

|rl〉 = (|10〉 + i| − 10〉)/
√

2 �−→ |R〉,
|ll〉 = (|10〉 − i| − 10〉)/

√
2 �−→ |L〉. (4)

Note that although the quantum density matrix is by
definition a semipositive definite matrix, the results of state
tomography for a pure state often turn out to have negative
eigenvalues [29]. This is primarily due to imperfect projective
measurements and the noise in the experiment. We have
used the maximum likelihood recovery algorithm to find a
positive state that is the most probable given the data from
the measurement. The average fidelity of transferred states
with their corresponding initial states is approximately 99%,
demonstrating a notably good agreement with the theoretical
predictions.

From a practical point of view, pure states are an ide-
alization; irrespective of how carefully a state is prepared,
noise will inevitably render a pure state mixed. It is then
significant if an implementation can also accommodate mixed
states. Additionally, pure states are only a restricted set of
physical states in the Hilbert space. The vast majority of
states are mixed states [29]. Since we always project onto
the same Bell OAM-radial state, our implementation allows
us to also transfer the mixed states. For demonstration we
have also transferred three typical mixed states. To produce

mixed states we randomly switch the hologram on SLM1 and
use a long (10-min) integration time using a power meter.
We randomly switch between two holograms on SLM1 such
that 75% of the time we prepare one pure OAM state and
25% we prepare another pure state. The states are chosen to
be 0.75|hl〉〈hl| + 0.25|vl〉〈vl|, 0.75|dl〉〈dl| + 0.25|al〉〈al|, and
0.75|rl〉〈rl| + 0.25|ll〉〈ll|. These OAM states are ideally tele-
ported to the polarization states 0.75|H 〉〈H | + 0.25|V 〉〈V |,
0.75|D〉〈D| + 0.25|A〉〈A|, and 0.75|R〉〈R| + 0.25|L〉〈L|, re-
spectively. In Fig. 4 we have reported the fidelities between
the polarization states from the experiment with the ones from
theory. Note that the fidelity between two mixed states defined
as ρ,σ is F = tr

√
ρ1/2σρ1/2. The average fidelities for the

three representative mixed states are found to be 99.33%,
which confirms the accurate operation of our experimental
realization.

Considering that the formalism of classical nonseparability
applies to any three degrees of freedom, we anticipate that
this machinery can be utilized to transfer the state of other
DoFs to another, provided the technical complication in
performing the appropriate rotations and projections on
other DoFs can be met. This is a nontrivial problem. For
example, the radial degree of freedom that was utilized here
as an ancilla has attracted a lot of interest recently [28].
Nonetheless, the problem of efficient projection on arbitrary
Laguerre-Gaussian modes remains a challenge.

Our specific example provides the capability to map an
arbitrary state of any two OAM modes to a polarization
state in a one-to-one fashion. Given the important role that
transferring states between different degrees of freedom plays
in recent experiments in quantum information science [30,31],
we believe that our specific example has the potential for a
wide range of applications. It should be noted that there are
also other approaches that can be used to transfer OAM states
onto the polarization of the beam [32,33].

IV. CONCLUSION

While entanglement is an essential part of the quantum
paradigm, the mathematical idea behind it, i.e., nonseparabil-
ity, may manifest itself in systems whose description does not
requiring the invoking of quantum theory. Careful examination
of such an analogy may help us develop a modern perspective
toward old concepts [10,11], as well as develop techniques
whose simplicity has not been appreciated, and/or whose
applicability has not been fully exhausted.

In this manuscript we took inspiration from the phe-
nomenon of teleportation to develop a state-transfer protocol
that is mathematically equivalent to teleportation but uses
classical nonseparability instead of entanglement. Initially the
OAM modes are separable from the radial and polarization
of degree of freedom, and polarization and the radial degree
of freedom share a maximally nonseparable state. Then we
implement a Bell-state projection on OAM-radial degree of
freedom. The polarization of the beam emerging from this
projection carries the same information as the initial OAM
states. Our protocol allows one to transfer an arbitrary and a
priori unknown state of any two OAM modes of a beam of
light to its polarization state.
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S.M.H.R. and M.M. contributed equally to this work.

[1] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
[2] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460

(1981).
[3] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804

(1982).
[4] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and

A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).
[5] E. Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555

(1935); ,32, 446 (1936).
[6] E. Schmidt, Math. Ann. 63, 433 (1906).
[7] R. J. Spreeuw, Found. Phys. 28, 361 (1998).
[8] K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E.

Saleh, Nat. Photonics 7, 72 (2013).
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