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Abstract
Simulation of photonic structures is a necessary step in the design of devices with tailored optical
properties. As 3D simulations are time-intensive, the effective index method (EIM) is widely
used to reduce systems to 2D models, including in the design of photonic crystal devices. We
show that the EIM is poorly suited to model photonic crystal waveguides, giving inaccurate
approximations of group velocity and propagation loss. The proposed effective period method
provides significantly more accurate estimations of device behaviour without any increase of
computation time.

Keywords: photonic crystal, simulation and design, photonic devices, nanophotonics

1. Introduction

The benefits of low-dispersion slow light in photonic crystal
(PhC) waveguides, such as nonlinear enhancement, optical
delay and reductions in device footprint [1–12] have spurred a
large body of PhC design work investigating diverse designs.
This research on slow light waveguides has resulted in two
important concepts: dispersion and loss engineering. Careful
modifications of the PhC geometry can be used to control the
slow light response and propagation loss of PhC waveguides
[13–20]. Our ability to design such structures relies on
accurate simulations, capable of sweeping a large parameter
space, without experimental verification of intermediate
designs. A large variety of established simulation methods
exist for PhCs, such as finite difference methods (e.g. finite
difference time domain), finite element and mode expansion
methods. For all of these simulation methods the best pre-
dictions of experimental results are achieved when the full 3D
structure of the design under investigation is taken into
account. However, due to the small grid spacings required in
the optical and near infrared spectral regions, such 3D
simulations are very computation intensive, prompting many

authors to simplify their work to 2D simulations3, typically
reducing the complexity (memory and computation time) by
2–3 orders of magnitude. The effective index method (EIM)
is the most common approach to account for the vertical
device structure in 2D simulations [21]. Worryingly, we show
that the EIM does not in fact yield accurate approximations
for PhC waveguides. It fails to accurately predict the group
index and propagation loss, key characteristics of device
performance. We suggest an alternative, the effective period
approach for 2D simulations of PhC waveguides, which
yields more accurate estimations of the device performance
without any additional computation effort. For the purpose of
this work all simulations are performed using the MIT pla-
newave expansion package (MPB) [22] with the loss model
implemented according to reference [17], although the
validity of both the EIM and the effective period approach is
independent of the chosen implementation.
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3 A web search (scholar.google.com) on the 27 February 2015 with the
search terms “photonic crystal’ +waveguide -fibre” revealed that 269 results
were found as published within 2015. A quick analysis indicates that roughly
25% of these results use only 2D simulations to describe the device under
consideration.
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2. Simulation methods

2.1. Effective index method

The principle underlying the EIM is straight forward; the
dimensionality of a problem can be reduced by ignoring the
out-of-plane dimension and replacing the material refractive
indices by an appropriate modal index. Consider devices with
a heterostructure in the z-direction (light is assumed to pro-
pagate in the xy plane). We can calculate the guided modes
within this heterostructure and use their effective indices
instead of the material indices within our simulation, reducing
the dimensionality, as shown in figure 1. For some cases this
can be taken even further; for example, a ring resonator can
be reduced to a 1D problem, by replacing its material index
with the effective index of the waveguide mode.

For hetero-structure slab PhC, this method is typically
used to replace the vertical dimension, where light confine-
ment is provided by total internal reflection. The calculation is
now limited to a slab that is infinite and invariant in the z
direction and periodically perturbed, with potential defects
such as waveguides or cavities, in the x and y directions. The
EIM was shown to be a reasonable approximation for PhC
bandstructure calculations in 2002 [21], but it has never been
validated for more precise parameter determination, such as
group index or operating bandwidth calculations. Indeed it
has been shown to not provide accurate estimations for these
parameters in simple, rectangular waveguide based devi-
ces [23].

2.2. Effective period method

In order to provide accurate estimations of the group index,
loss and operating wavelength, we introduce the effective
period method. In this approach, all calculations are per-
formed in 2D, using the exact parameters of the 3D structure
(excluding the slab thickness), including bulk material indi-
ces. An effective period, which approximates the correct
optical path length, is applied to find the correct operating
wavelength after simulations have been completed (see
equation (2)). The fundamental reasoning behind this
approach is that the majority of device performance metrics
are weakly affected by the z-distribution of the the optical

mode. For example the scattering from fabrication defects,
which leads to propagation losses, is a local effect, dependent
on the field at the defect. The z-distribution only affects
scattering through a modification of the overlap between the
defects and the optical mode. Therefore a 2D simulation that
retains the bulk refractive indices should provide a better
approximation for such device metrics. The key exception
here is the operating wavelength, which is strongly dependent
on the vertical dimension of the slab structure. Therefore, in
the effective period approach all simulations are performed
using the bulk material refractive index and the effective
modal index of the hetero-structure slab is incorporated when
converting from dimensionless frequency to a real frequency
(or wavelength), after the simulations are completed. The
frequency, ν, of a typical bandstructure calculation is in units
of c

a
[24]. It therefore follows that the operating wavelength is

given by:

a
. (1)λ

ν
=

We now consider the difference of the two 2D simulation
methods on the operating wavelength. The period as
experienced by light is not in fact given by a, but by nma,
where nm is the refractive index of the material under
consideration; i.e. the period is experienced as the optical path
length, rather than a physical path length. This explains
clearly why the EIM provides a reasonably accurate
estimation of the operating wavelength; it accounts for the
fact that the experienced optical path length is reduced, as not
all of the field is contained within the high index slab. Since a
bulk index calculation overestimates the operating wave-
length by a factor equal to the ratio of the bulk index to the
effective index, we simply introduce an effective period for
our unit conversion, to account for the vertical slab structure
and to recover a more accurate estimation of the operating
wavelength, that is:

a n

n

a
, (2)eff eff

bulk
λ

ν ν
= =

where a
n

n
aeff

eff

bulk
= is the effective period.

Figure 1. (a) 3D sketch of a photonic crystal waveguide. (b) 2D adaptation of this waveguide as it would be treated with the effective index
method (EIM), the bulk slab material index (nbulk) has been replaced with the slab mode effective index (neff).
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3. Comparison of simulation methods

Here, we compare both the EIM and the effective period 2D
approaches against 3D simulations (the most accurate, albeit
time consuming approach). As an exemplary PhC, we con-
sider a slow light and loss engineered waveguide that has
been fully characterized, both experimentally and 3D simu-
lations, in previous work [17]. The waveguide consists of an
air-bridged silicon membrane (220 nm thick), has a lattice
period, a, of 410 nm, a hole radius of r = 0.270a and exhibits
a low dispersion slow light region with a group index of 27.
As performance metrics we will consider the slow light
operating wavelength, the group index distribution and the
propagation loss behaviour.

3.1. Group index calculations

In early works, the most important calculation for PhC design
was the matching of the cut-off wavelength of a PhC wave-
guide with the intended operating wavelength. However,
since the advent of dispersion engineering, we are not only
interested in the wavelength at which the transmission starts
to drop (and the group index diverges), but also any spectral
slow light region and the associated group index and band-
width. It therefore seems natural to examine the group index
of our exemplary waveguide vs the operating wavelength, as
shown in figure 2. Both the EIM and the effective period
method provide a good approximation of the operating
wavelength, with a wavelength offset of around 3%, well
within the variations of nano-fabrication [25]. This seems to
indicate that both 2D approximations are well suited for PhC
waveguides, however the actual value of the group index in
the low dispersion slow light region is better approximated
by the effective period method (Δng = 5 for the effective
period method versus n 11gΔ = for the EIM, where

n n ng g g3D 2DΔ = − ).

3.2. Propagation loss

Since the practical length of modern PhC waveguide is
typically loss limited [18], it is critical to evaluate the
extrinsic—originating from defect scattering—propagation
loss, α, during the design of PhC devices. Previous work
showed that this calculation can be performed efficiently
using the planewave approximation method, as both the out-

of-plane and back-scattering coefficients, γ and ρ respectively,
can be calculated from the electric field distributions
according to the following equations [17]:

c n c n (3)g g1 2
2α γ ρ= +

E D
1

(4)
L

T
m

N

all holes

2

c
∫∑γ

ϵ
= +

E E D D.
1

. (5)
L

T T N N

all holes 1 2

2

c
∫∑ρ

ϵ ϵ
= +

here c1 and c2 are fabrication coefficients that also contain the
optical strength of the scattering defects, ( )2Δϵ , and the
coherence length, Lc, is taken to be the hole circumference.

Several factors need to be considered during a 2D pro-
pagation loss calculation. These are: the regions where light
can interact with disorder; the normalization processes used
by the simulation method; and the optical strength of the
scattering defects. In previous reports [17, 26, 27] it was
outlined that only the etched surfaces on the inside of the
holes contribute to the scattering. Therefore only the fraction
of the optical mode that lies within the high index slab can
interact with the etched surfaces, the tails above and below
the slab do not contribute to optical losses. This reduction in
the scattering volume is directly accounted for by 3D simu-
lations, however it has to be reassessed for 2D approxima-
tions, as they assume an infinite and invariant slab in the z-
direction. The EIM states that the optical behaviour of a finite
slab with bulk refractive index is approximately the same as
that of an infinite slab with the correct effective index.
Therefore it should suffice to adapt the constants c1 and c2,
which contain the 2Δϵ dependence of the optical scattering
[26, 27], to account for the reduced optical strength of scat-
terers within this slab and then consider scattering from the
complete fields within the unit cell. For the effective period
method, which uses the bulk refractive indices, we need to
consider the normalization of fields within the simulation to
account for the correct scattering volume. Simulation tools
normalize the fields such that the total field within one unit
cell is unity. In 3D simulations the vertical (z-direction) field
distribution is calculated and therefore the limited z-span of
the disorder is directly accounted for. However in 2D simu-
lations the unit cell consist of a single plane. Therefore the
field is now taken to be unity within this plane, overestimating
the light-disorder interactions. To account for this difference
our scattering coefficients, as calculated using the effective
period approach, will be renormalized to only account for the
correct scattering volume. The appropriate normalization
constant is the field fraction within the slab, which can be
easily calculated using standard mode solving techniques.

Figure 3 shows the results from this calculation. Both 2D
simulations underestimate the group index at which the pro-
pagation loss undergoes a rapid increase. In the region before
this threshold, their agreement with the 3D simulation is very
good, but strikingly, the EIM has a larger error in the
threshold group index than the effective period method.

Figure 2. Group index for a dispersion engineered waveguide, as
calculated by the different simulation methods. The true 3D
simulations, the EIM (neff) and the effective period method (aeff).
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We now focus on this main discrepancy, the under-
estimation of the threshold group index. In [17] it is shown
that this threshold is due to a rapid increase in the back-
scattered light and therefore only the back-scattering term
needs to be considered for the purpose of our analysis. From
equation (3), two explanations seem most reasonable: (1) the
2D simulations predict an incorrect scattering coefficient, ρ,
with a too rapid increase or an increase at the wrong point; (2)
the 2D simulations do not accurately predict the group index
distribution, ng, of our system.

To differentiate between these potential explanations we
will deviate from the standard practice of focusing on loss as a
function of group index or operating wavelength. Instead, we
will examine the scattering coefficients and group index as a
function of the wave-vector, k. Inspecting the back-scatter
coefficient, ρ, in this way reveals that all simulation methods
are in excellent agreement, provided that the appropriate
normalization and optical strength of scatterers is considered
(see supplementary information).

3.3. Group index versus wave-vector

Having established that the inaccurate modeling of the pro-
pagation loss does not stem from an inaccuracy in ρ, we
revisit the group index calculation. It is worth recalling that
the EIM has been used extensively in researching designs of
slow light PhC waveguides (see footnote 3). However, our
initial group index analysis in section 3.1 showed that the
reasonably accurate estimation of the operating wavelength
should not be confused with an accurate estimation of the
group index behaviour. We recall that the operation wave-
length is not an intrinsic property of a PhC, instead it can
easily be modified without changing the PhC design, by
changing the lattice period and keeping all other design
parameters as the same fraction of the lattice period [24]. The
fundamental quantity on which PhC behaviour depends is the
wave-vector, k, which describes the Bloch wave and
momentum of light inside the PhC. Therefore we now con-
sider the group index as a function of the wave-vector, as
shown in figure 4.

We immediately notice that qualitative behaviour of all
curves is very similar—all methods predict the flat band slow

light region for the same k-range—while the quantitative
behaviour differs significantly. Both 2D simulation methods
underestimate the group index, however, as for the case of
propagation losses, the effective period method is the more
accurate approach. We conclude that the EIM is a far less
suitable approximation of the 3D structure under investigation
and that the underestimation of the group index is the origin
of the increased discrepancy in the propagation loss calcula-
tion. We can state that for this waveguide design the PhC slab
is better approximated by our effective period approach.

4. Generalization of results

The previous section clearly demonstrates the improved per-
formance of the effective period method over the traditional
EIM, for a single waveguide design. Here we generalise this
conclusion, comparing the performance of the two 2D
simulation methods for a variety of waveguide designs. These
designs cover the main dispersion engineering approaches
[18], are based on previously published waveguide para-
meters, include both air- and silica-clad PhCs, as well as a
non-engineered W1 waveguide [13, 28–30]. For our com-
parison we chose the group index curve as estimated by the
two 2D methods, compared to the true (3D) results, see
figure 5.

In all cases, the effective period method provides a more
accurate estimation of the group index, propagation loss and
operation wavelength, consistent with the previous discus-
sion. Since all these simulations were for a slab of 220 nm
thickness, we furthermore investigate various slab thick-
nesses. As the slab thickness increases, the effective slab
mode index approaches the bulk refractive index and both the
EIM method and 3D results converge on the effective period
approximation, which for the purpose of group index against
wave-vector calculations remains unchanged (as shown in the
supplementary information). However, as the 3D simulation
and the EIM approach from different directions, this reveals
an interesting and unexpected result: the error in the group
index curve increases for both 2D approaches, but it increases
faster for the EIM. Therefore the EIM becomes less suitable
as the slab thickness, or the ratio of thickness to lattice period,
is reduced. In all cases the effective period method remains

Figure 3. Plot of propagation loss against group index. The true
behaviour, 3D simulations, is better approximated by the effective
period method (aeff) rather then the EIM (neff). However both 2D
simulation methods underestimate the threshold for the rapid
increase of propagation loss.

Figure 4. Plot of the group index against the wave-vector. The true
3D value is better approximated by the bulk index 2D calculation
(aeff) then by the EIM (neff).
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more accurate, indicating that our conclusion is general and
independent of the waveguide type and slab thickness.

Conclusions

In this paper we show an accurate characterization of PhC
waveguides—operating wavelength, group index curves and
propagation losses—through 2D simulations. However, such
a full characterization cannot be accurately performed using
the EIM, which in its standard form is not suitable for PhC
waveguides. Instead, we propose the effective period method,
where simulations are performed using the bulk refractive
index and the effect of the out-of-plane refractive index dis-
tribution is included through a renormalization of the propa-
gation loss and the operating wavelength. Our method allows
for the more accurate design of PhC waveguides using 2D
simulations, including the predicted propagation loss and
group index curves, with the same computation time.

However, it is essential to remember that while a better
approximation than the EIM, the effective period method
remains exactly that: an approximation. Full 3D simulations
remain necessary, when precise estimates (better than
10–20% error) of operating parameters are desired. Our
results are applicable to all high index contrast slab PhC
waveguides with a uniform cladding and we believe that
caution is also advised for other structures with strong
structural dispersion, such as nanobeam PhC devices or PhC
cavities, and during the study of physical effects in such

devices, for example optical transmission, pulse propagation
through PhC and light localization in such devices [31–34].
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