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Abstract
There is recent interest in the use of light beams carrying orbital angularmomentum (OAM) for creat-
ingmultiple channels within free-space optical communication systems.One crucial issue is that, for a
given beam size at the transmitter, the beamdivergence angle increases with increasingOAM.There-
fore the larger the value ofOAM, the larger the aperture required at the receiving optical system if the
efficiency of detection is to bemaintained. Confusion exists as towhether this divergence scales line-
arly with, orwith the square root of, the beam’sOAM.We clarify howboth these scaling laws are valid,
depending uponwhether it is the radius of thewaist of the beam’s Gaussian termor the radius of rms
intensity of the beam that is kept constant while varying theOAM.

1. Introduction

Over the past 20 years there has been a growing interest in the orbital angularmomentum (OAM)of light, which
is carried by any optical beampossessing helical phase fronts [1]. For phase fronts described by an azimuthally
dependent phase factor ϕℓexp (i ), theOAM is equivalent to ℓ per photon [2]. ThisOAMof a light beam can be
derived in a number of ways, but for our purposes it can be seen to arise from the local direction of the Poynting
vector. At all points within the beam, the Poynting vector is perpendicular to the phase front and hence possesses
an azimuthalmomentum component [3]. Throughout this paperwe consider only the case of free-space
propagation of light beam. As confirmed bymeasurement [4], the helical phase fronts of anOAM-carrying
beam lead to the local Poynting vector being skewedwith respect to the beam axis by an angle β, which is a
function of r, the radial distance from the beam axis:

β = ℓ

k r
, (1)

0

where π λ=k 20 . One analytically simple andwidely used formof helically phased beams is the Laguerre–
Gaussian (LG)modeswhich have a field amplitude given as the product of aGaussian termwith beamwaistw0

(defined as the radius at which the electric field of theGaussian term is lower by a factor e1 ), with a generalized
Laguerre polynomial with indices∣ ∣ℓ and p. The radial index p gives the number of off-axis nodes in the radial
direction.

In this workwe restrict ourselves to the small numerical aperture case where the size of any spatial features in
themodes or their superpositions is significantly larger than the optical wavelength. For p=0 and =ℓ 0 one has
the fundamental Gaussianmode. For p=0 and >ℓ 0 the LGmodes are single-ringed annularmodeswith an
azimuthal phase term ϕℓexp (i ) and a radius ofmaximumoptical intensity, r I( )max , given as [3]
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= ℓ( )r I w z
2

( ), (2)max

where = +w z w z z( ) 1 R0
2 2 and =z kwR

1

2 0
2 is the Rayleigh range (here π λ=k 2 ). One notes that for high

OAMvalues the size of the LGmode ismuch larger than the beamwaist. The restriction of our study to the
paraxial regime also implies that λ≫w z( ) and hence that β (see equation (1)) remains small for all radii at
which the beamhas a non-negligible intensity.

In terms of their complex amplitudes, LG beamswith differentmode indices are orthogonal to each other
and this leads to their potential use in communication applications where the orthogonality of themodes allows
formultiple states within a channel or independent channels. A simple optical communication systembased on
OAMwas demonstrated over 10 years ago [5], but recently the idea has been revisitedwith reports of both high
data rates [6] and outdoor demonstrations [7]. One issue of critical importance is the degree towhich the use of
OAM-carrying beams require the use of larger aperture optics. Confusion exists as towhether the divergence
and hence the far-field size of a beam carryingOAMscales linearly orwith the square root of its angular
momentum.

2.Divergence of anOAMcarrying beam

The the geometrically calculated skew angle of the Pointing vector calculatedwith respect to the beam axis given
by equation (1)might be thought to approximate the angular divergence of the beam.However, an additional
contribution to the divergence that has to be considered is the normal diffractive spreading arising from the
finite beamdiameter. Rather than the beamwaistw0, or the radius ofmaximum intensity r I( )max , the divergence
of a light beam is governed by the standard deviation of its spatial distribution, rrms [8, 9]. The calculation of
these quantities is straightforward.We start from the definition of a LGmodewhich gives the intensity
distribution for the lowest-order radialmode (p=0) as

ϕ
π

= −
ℓ

ℓ

ℓ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟I r z

w z

r

w z

r

w z
( , , )

2

( ) !

2

( )
exp

2

( )
, (3)

2

2 2

2

which is normalized such that∫ ϕ ϕ =ℓI r z r r( , , ) d d 1. From this distribution, we can calculate the radial
position of themaximumof intensity, by solving the equation∂ ∂ =ℓI r 0, obtaining (as anticipated in
equation (2) [3])

= ℓ( )r I w z
2

( ). (4)max

However, as r I( )max is zero for =ℓ 0, clearly one cannot generally use this quantity to derive the angular spread
of the beamas it propagates. As has been reported previously, a better quantity onwhich to base a calculation of
the divergence of a light beam is the standard deviation of the spatial distribution of the beam, rrms. This radius is
a function of z and it is given by the square root of the radial variance of the intensity distribution [10]:

∫π ϕ=
∞

ℓr z r I r z r r( ) 2 ( , , ) d (5)rms
0

2

= +ℓ
w z

1

2
( ). (6)

In the plane of the beamwaist, z=0, this radius is

= +ℓ
r w(0)

1

2
. (7)rms 0

In any given plane,figure 1 shows the ℓ dependence of r I( )max and rrms. One notes that

= +ℓ

ℓ( )
r

r I

1
, (8)rms

max

which tends to 1 as∣ ∣ℓ increases, so these two radii become equal for large ℓ, see figure 1.
Given the radius r z( )rms as a function of propagation distance, z, we can calculate the corresponding

divergence angle of a p= 0LGmode,αℓ, to be

α =
∂

∂ℓ
⎛
⎝⎜

⎞
⎠⎟z

r z

z
( ) arctan

( )
(9)rms
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= +ℓ⎛
⎝⎜

⎞
⎠⎟

w

z

z

w z
arctan

1

2 ( )
. (10)

R

0
2

2

This divergence angle is a function of z, but it asymptotically reaches a limiting value (when the beam is
sufficiently far from thewaist).Within the paraxial regime, for smallαℓ, we can equate the tangent of the angle
with the angle and for =→∞ z w z z wlim , ( )z R 0. Hence in the far field, the divergence angle of a p=0 LGmode is
given by

α = +ℓ
ℓ

k w

1

2

2
. (11)

0 0

Equation (11) is a convenient form for expressing the ℓ dependence of the beamdivergence while holdingw0

of the LGmode constant, revealing the approximate square root scaling of the far-field beam size; see figure 2.
Alternatively the divergence angle of the beam can bewritten in terms of other quantities; for instance, using

equation (7), one can instead express the ℓ dependence of the beamdivergence for a constant r (0)rms as

α = +ℓ
ℓ

k r

1

(0)
. (12)

0 rms

Under this condition, of afixed r (0)rms , we see that the beamdivergence scales linearly with ℓ, see figure 2. Note

also for afixed r (0)rms thatw0 itself becomes a function of ℓ and scales as ∣ ∣ + −ℓ( 1) 1 2.

Figure 1.A comparison between the radii ofmaximum intensity, r I( )max , and the rms radius, rrms, of the spatial distribution of a p=0
LGmode. For large ℓ, the two radii get asymptotically close, as r I( )max is proportional to ∣ ∣ℓ , while rrms is proportional to ∣ ∣ +ℓ 1 .

Figure 2.The divergence of anOAMbeamobtained by keeping the rrms radius in the launch plane constant is larger than for anOAM
beamobtained by keeping theGaussianwaistw0 constant.Moreover, the first scales as ∣ ∣ +ℓ 1whereas the second scales as ∣ ∣ +ℓ 1 .
This log–log plot is given in units of the divergence angleα = w z2 R0 0 of a fundamental Gaussian beam. The lines serve purely as a
guide to the eye.
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3.Discussion

Typical of a practical optical system is that the aperture of the optics isfixed by design, with a limiting radiusR.
Since the radius ofmaximum intensity of an LGbeam can bemuch larger thanw0, in order to design a system
capable of using awide range of differentOAMmodes onemust choose awaist ≪w R0 .

One example of an approach that producesmodes of afixed beamwaist is the cylindrical-lensmode
converter that converts any incomingHermite Gaussianmode into the corresponding LGmodewith the same
beamwaist [11].When using amode converter of this type to produce the LGmodes one should observe a
square root scaling of the far-field beamdivergence, equation (11), i.e. a scaling approximately proportional to

∣ ∣ℓ .
Amore frequently used and flexiblemethod of producing beams carryingOAM is the illumination of a

diffractive optical element (computer generated hologram)with an expandedGaussianmode froma
conventional laser. If the diffractive element is a spatial lightmodulator (or similar) then the displayed kinoform
can be updated to change the beam type allowing a switching of the systembetween differentOAM states.Most
commonof such kinoforms is a forked diffraction grating that produces a helically phased beam in the first
diffraction order [12]. In the plane of the diffractive element, the beamhas the required helical phase structure,
but possesses theGaussian intensity distribution of the illuminating beam. This beam corresponds to a
superposition of different LGmodes, all of the sameOAM ℓ, but with various values of p. The precise p-
weighting of this superposition is a complicated function of both∣ ∣ℓ and the value of beamwaistw0 chosen to
perform the decomposition [13]. An obvious choice of beamwaist for the decomposition is the onewhich
maximizes the amount of power in the p=0mode, as referred to above this optimumbeamwaist scales
∣ ∣ + −ℓ( 1) 1 2. Therefore rather than the resulting beamhaving a particular∣ ∣ℓ -dependent beamwaist, the∣ ∣ℓ
-invariant quantity is simply the size of the beam incident on the diffraction grating and hence the systemhas a
fixed r (0)rms . Therefore when using a forked diffraction grating as the beam generation componentwithin an
optical system to produce LG-likemodes one should observe the approximately linear∣ ∣ℓ -scaling of the far-field
beamdivergence, equation (12). This linear scaling of the beam size as a function of∣ ∣ℓ has previously been noted
within optical tweezers andmicroscope systems [14].

We note that the reasoningwe have followed above is consistent with an understanding of the scaling in
terms of the spatial resolution of an optical system. For example, if one considers a transmitted beam comprising
a superposition of ±ℓ modes, then the resulting beamprofile is an annular ring of ∣ ∣ℓ2 maxima, or ‘petals’. In the
farfield the spacing between these petals cannot be smaller than the resolving power of the optical system. Since
the number of petals scales with∣ ∣ℓ , this implies that the beam size and hence the beamdivergencemust also scale
with∣ ∣ℓ . A square root scaling of the beamdivergenceαℓ and corresponding decrease in petal separationwould
seemingly be in conflict with this simple resolution argument.However, a square root scaling requires a constant
beamwaistw0, which implies a beam size r (0)rms and hence aminimum transmission aperture thatmust
increase with the square root of∣ ∣ℓ . This increasing aperture itself supports a higher spatial resolution,meaning
that the reduced spacing of the resulting petals remains compatible with the resolution limit.

4. Conclusions

In conclusion, we have explained howoptical systems exploiting the propagation of light beams carryingOAM
can produce a far-field beamdivergence that scales either with the square root of theOAMor linearly with the
OAM, see figure 3. The square root scaling applies to systemswhere the beamwaist of theGaussian term,w0, is
held constant for all values of ℓ, such as the case where the beams are produced using a cylindrical lensmode
converter [11]. The linear scaling of the beamdivergence applies to systemswhere the rms radius of the launch
beam is held constant, such as the case where the beam is produced by a simple forked diffraction grating
implemented on a spatial lightmodulator illuminatedwith aGaussian beamoffixed beam6.

Acknowledgments

We thank the referee for their careful reading of ourmanuscript andwe acknowledge the financial support from
theUKEPSRCunder a ProgramGrant, COAMand the ERCunder anAdvanced Investigator Grant, TWISTS.
RWBand FMMacknowledge support from theCanada Excellence ResearchChairs programme.MPJL is
supported by a Royal Academy of Engineering Research Fellowship.

6
One notes thatmore sophisticated hologramdesigns can produce arbitrary combinations of LGmodes with any values of ℓ, p andw0 (see

for instanceMDennis et al Nat. Phys. 6, 118 (2010)), albeit at greatly reduced efficiency compared to the simple fork design that is
widely used.
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