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We wish to report a typographical error made in the preparation of our manuscript. Specifically,
on line 10 of the second paragraph of page 5, we quote values of the parameters that we use to
simulate the turbulence. The distances we quote are =z 171.71 m and =z 1.5382 m. The first
value is correct, but the second value should read =z 7692 m. The correct value was used in our
laboratory studies, and thus the conclusions of the paper are not modified.

We thank Jeffery H Shapiro of MIT for pointing out to us an inconsistency in our
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Abstract
We describe a procedure by which a long (≳1 km) optical path through atmo-
spheric turbulence can be experimentally simulated in a controlled fashion and
scaled down to distances easily accessible in a laboratory setting. This procedure
is then used to simulate a 1 km long free-space communication link in which
information is encoded in orbital angular momentum spatial modes. We also
demonstrate that standard adaptive optics methods can be used to mitigate many
of the effects of thick atmospheric turbulence.

Keywords: optical free-space communication, optical orbital angular momen-
tum, turbulence

1. Introduction

Understanding how light propagates is one of the most fundamental topics in the field of optics.
Although this problem is very well understood for deterministic systems, the problem of
understanding how light behaves in random or fluctuating media is still a very active area of
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research [1–4]. Even propagation through the air, which at first glance might be thought of as
being equivalent to free-space propagation, will show stochastic behavior when observed over
sufficiently long distances due to small random fluctuations in the refractive index along the
path.

Early research studying optical propagation along random paths arose in the context of
imaging of astronomical objects through the turbulence in atmosphere [5]. The most important
effect on image quality in such systems is the random phase imprinted onto the beam by the
turbulence. This phase aberration can be described by the quantity r0, a coherence length scale
of the turbulence defined in the receiver aperture and known as Friedʼs parameter [6, 7]. If all
other effects of turbulence can be ignored (e.g. amplitude fluctuations), then the turbulence can
be approximated by a random phase screen in the aperture of the receiver. This approximation,
known as the ‘thin phase screen approximation’, simplifies the problem and allows the
turbulence strength to be fully characterized by the dimensionless parameter, D r0, where D is
the diameter of the aperture or beam. Thus the effects of turbulence depend not only on the
intrinsic fluctuations in the air, but also on details of the system. This thin screen approximation
is often appropriate in astronomical systems as turbulence effects on beam propagation are
greatest where the atmosphere is thickest, which is typically located directly in front of the
telescope.

Another area in which understanding the effects of turbulence on optical beams is
important is in optical communication in free-space [8]. It is well known that beams of light that
contain a phase vortex of the form ψ ϕ ϕ∝ ℓr i( , ) exp( ), where ℓ is an integer, carry orbital
angular momentum (OAM). A single photon prepared in such a state will have an OAM equal
to ℓ in addition to any angular momentum carried by the polarization [9]. In recent years there
has been a good deal of excitement based on encoding information in a free-space channel onto
such OAM beams of light [8, 10, 11], as such modes are a natural basis for such systems (i.e.
they are the eigenmodes of a channel with cylindrical symmetry) [12]. Such spatial mode
encoding schemes allow for increasing of the bit rate as each pulse may contain more than two
possible symbols. This scheme also provides an enhancement to the security when used for
quantum key distribution [13, 14].

Degradation of the signal in a free-space channel due to atmospheric turbulence is a
primary limitation to the information-carrying capacity of such a channel. Much work has been
done to study how this affects communication systems that utilize spatial mode encoding
[15–21]; however much of this work focuses on turbulence that is fully described by a random
thin phase screen in the receiver aperture. In more realistic situations, such as communication
along a long horizontal path through which the turbulence is continuously distributed, one will
see amplitude fluctuations, that is scintillation, in addition to the problems caused by pure phase
fluctuations. Some of this degradation can still be compensated for by phase-only adaptive
optics (AO), correcting for low-spatial-frequency aberrations for a horizontal path of a few
kilometers or more [22]. For more stronger scintillation one will begin to see intensity nulls that
are associated with phase vortices [23, 24]. These phase vortices, or branch points, are known to
degrade the performance of AO systems [25], and there is a complete breakdown in the
performance for horizontal paths greater than approximately 5 km due to this effect [26]. For
communication systems that communicate using OAM, this phenomenon presents an additional
problem as phase vortices are precisely the means of the encoding, and randomly generated
vortices introduce errors into such a scheme.
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The propagation of an optical beam through thick turbulence is not in general analytically
solvable and thus requires either simulation or testing in a real-world setup. The cost and lack of
control of testing in a real-world setup makes finding suitable methods of simulating turbulence
highly desirable for understanding this problem. In this paper we describe a method of
simulating a thick turbulence channel and show how this can be implemented in a laboratory
setup (section 2). To demonstrate the power of this method we simulate a 1 km long free-space
OAM-based communication link; these results are presented in section 3.

2. Simulating thick turbulence in the laboratory

To examine the effects that a thick horizontal turbulent path might have on OAM-based
communication channel while still allowing information transfer and AO correction, we chose
to consider a 1 km path L with aperture sizes of the sender and receiver of =D 18.2 cm, at a
wavelength of λ = 785 nm corresponding to a Fresnel number of π λ= =N D L(4 ) 33f

2 . The

numerical value of Nf is related to the total number of spatial modes that the channel supports,

and the value of 33 was chosen to be both realistic as well as large enough to support at least a
few dozen OAM modes [12].

To allow for such a system to be realized in a laboratory setting, one must find a way to
incorporate turbulence into the channel, as well as properly scale the system down to more
manageable length scales. Section 2.1 contains a heuristic description of atmospheric turbulence
and its various effects on beam propagation. Section 2.2 describes a method of emulating a
thick turbulence path with two thin phase screens that can be represented in the lab with spatial
light modulators (SLMs). Scaling rules that are invariant under Fresnel propagation are detailed
in section 2.3 and the experimental setup is discussed in 2.4.

2.1. Atmospheric turbulence

Turbulence is a phenomenon that occurs in any fluid that is characterized by a large Reynolds
number,   ν= V , where V is the fluidʼs mean velocity,  is the length scale of the fluid, and
ν is the viscosity. The fluid will then break up into a cascade of turbulent eddies of decreasing
size until the length scale,  = l0 is such that  ⩽ 1 and the kinetic energy can be dissipated as
heat. l0 is known as the inner scale and is typically on the order of 1 mm in the atmosphere,
negligibly small relative to the length scales in a free-space communication channel [27].

The fluid velocity v(r) at any point r in a turbulent fluid is a random process whose spatial

structure can be described by the structure function, defined as ≡ −D v vr r r r( , ) ( ) ( )v 1 2 1 2

2
.

For ∥ − ∥ > lr r1 2 0 the structure function is governed by ‘Kolmogorov statistics,’ given by

δ=D C r , (1)v v
2 2/3

where δ ≡ ∥ − ∥r r r1 2 , and where Cv
2 is known as the velocity structure parameter which

characterizes the strength of the fluctuations [28]. The turbulent eddies will mix the air, creating
pockets of slightly different temperatures and thus pressures. As a consequence of this variation
in air pressure the index of refraction will also vary statistically in the same way, leading to the
refractive index structure function [29]
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δ=D C r . (2)n n
2 2/3

The random fluctuations in the index of refraction is characterized by Dn and lead to a
random phase, ϕ r( ) at the receiver. It was shown by Fried [6] that for Kolmogorov turbulence
the phase structure function can be given by

δ=ϕ

⎛
⎝⎜

⎞
⎠⎟D

r

r
6.88 , (3)

0

5/3

where r0 is again Friedʼs parameter and can be calculated from Cn
2 by the formula

∫= =
− −⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥r k C z z k C L

2.91
6.88

( ) d
2.91
6.88

, (4)
L

n n0
2

0

2
3/5

2 2
3/5

where we have assumed for simplicity a constant value for Cn
2 along the path.

A random phase imprinted on an optical beam will, upon propagation, will lead to
variations in the amplitude as well, thus modifying the field at the receiver in both the phase and
the amplitude. We can write the field as ϕ χ= +U U ir r r r( ) ( ) exp( ( ) ( ))0 , where U0 is the field
in the absence of turbulence, ϕ is the random phase, and χ is the random log-amplitude. These
amplitude fluctuations, or ‘scintillations’ can then be characterized by the variance in χ which is

calculated from Cn
2 as [29]

∫σ = = *
χ k C z z z k C L0.563 ( ) d

0.563 6
11

. (5)
L

n n
2 7/6

0

2 5/6 7/6 2 11/6

Not only does χ cause scintillation within the beam, but this also leads to fluctuations in
the total power of the beam, even if there are no losses in the path itself. These power
fluctuations are due to beam wander and clipping by the finite aperture at the receiver. The

normalized power over the aperture Σ of area ΣA , defined by ∫ χ≡
ΣΣ

P r rd exp(2 ( ))
A

1 , is used

to numerically find the normalized power variance in the aperture,

∬σ ≡ − 〈 〉 = 〈 〉 − = − ′ −
Σ ΣΣ′

′χ( )( )P P P
A

e r r1
1

1 d d 1, (6)P
C r r2 2 2

2
4 ,

where χ χ χ χ′ = 〈 − 〈 〉 ′ − 〈 〉 〉χC r r r r( , ) ( ( ) ) ( ( ) ) is the log-amplitude covariance function [1].

2.2. Two phase screen model

We have found that through use of two phase screens we can accurately model the horizontal
turbulent channel, faithfully reproducing all of itʼs relevant statistical properties. Specifically we
require this path to have the same values for r0, σχ

2, and σP
2 as described in section 2.1.

We can represent these three parameters by using thin Kolmogorov phase screens each
with its own value of r0. The values of r0 for each screen, as well as each screenʼs position along
the path, give us four independent parameters that can be tuned until the two screen path
reproduces the same three parameters of the full horizontal channel. This still gives us an
additional degree of freedom, and since phase vortices in ϕ create significant problems for AO
correction as well as for OAM-based encoding [23–26], we choose the density of branch points,
ρ

BP
, as our fourth parameter to constrain the problem.
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For a horizontal path with a constant value of the refractive index structure parameter
= × − −C 1.8 10 mn

2 14 2/3, which represents a typical horizontal path near ground level, we
compute the parameters given in equations (4)–(6). The computed values are =r 24.4 mm0 ,

σ =χ 0.1972 , and σ = × −7.04 10P
2 3. By Monte-Carlo simulation the density of branch points in ϕ

is found to be ρ = −500 m
BP

2. Physically this means that a typical realization of turbulence will
create 13 phase vortices within the receiverʼs aperture, which one could imagine being a serious
impediment to oneʼs ability to measure the intended phase vortex of the original transmitted
OAM state.

The second step in designing the two-phase-screen model is to find the values for the
position and r0 for each screen that will give the same values of r0, σχ, σp, and ρ

bp
of the thick

path. The procedure is diagrammed in figure 1. One starts with an initial guess for r01 (i.e. r0 for
screen one), and then solves for the value of r02 that will give the correct value for D r0. Next,
one randomly picks a value for the position of the second screen, z2, and finds z1 such that one
gets the correct value for σχ. z2 is then varied (along with z1 to maintain σχ) to set the correct

value for σP. Given this solution, ρ
BP

is computed by Monte-Carlo simulation. If at this point we
get the correct ρ

BP
, a solution has been found; otherwise one starts over with a new choice for r01.

Using this procedure we found we could simulate our 1 km path with the parameters
=r 3.926 cm01 , =r 3.503 cm02 , =z 171.7 m1 , and =z 1.538 m2 (measured from the senderʼs

aperture).
As an independent test of this solution, a beam propagation simulation was performed to

compare a thick turbulent path with the analogous two-screen solution. The continuous path
was simulated using a standard split-step method in which the path L is broken up into N
discrete steps. Each of the N sections of turbulent atmosphere is replaced by non-turbulent
propagation followed by an effective thin random phase screen that represents the effects of
refractive index fluctuations within the slab. The propagation through a slab can be
approximated by a thin screen so long as the scintillation due to propagation after encountering
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Figure 1. Procedure used to compute Friedʼs parameters and positions of the two thin
phase screens needed to reproduce r0, σχ , σp, and ρ

bp
of the equivalent thick channel.



a random phase is negligible. As a rule of thumb one must require that the scintillation due to
propagation through the slab must be less than 10% of the total amount [30] in order to be able
to represent the slab by a single screen, which is quantified as

σ σ<χ χL N L( ) 0.1 ( ). (7)2 2

We choose N = 10, which for the horizontal path considered here becomes by equation (5)

σ σ = ≈ ≪χ χ
−L N N( ) 0.01 0.1. (8)2 2 11/6

In each simulation a different random realization of turbulence was made and the Strehl
ratio, defined as the ratio of the peak intensity to ideal peak intensity of a spot at a focal plane of
the receiver, was computed. By repeating this many times, a probability distribution for the
Strehl ratio was found and the results are shown in figure 2. As can be seen in the plot, the
Strehl ratios of the two-screen and the ‘continuous,’ ten-screen paths show very good agreement
with each other. This result demonstrates that the two-screen model not only reproduces the
correct mean values for the statistical parameters of interest (by construction), but can also be
expected to give similar distributions of possible measurement outcomes.

2.3. Fresnel scaling

The second thing that must be done to effectively simulate a turbulent path in a laboratory
setting is to scale the optical paths down to more manageable lengths. In order to ensure that the
scaled path still represents the desired physical path, the propagation must remain invariant
under the scaling. Fresnel propagation from one plane to another a distance z away as shown in
figure 3 is given by:

∫ρ
λ

=
π

λ ρ−U
ie

z
U r e d r( ) ( ) (9)B

ikz

A

i
z

r( ) 22

Now if we scale the coordinates using α′ =r rr , ρ α ρ′ = ρ , and α′ =z zz then the above

propagation equation becomes:
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path represented by ten Kolmogorov phase screens (red line) and its equivalent two-
phase screen solution (blue line).



∫ρ
α α λ α α

′ =
′

′ ′
ρ

α πα
λ α

ρ
α

′
′

′ − ′
ρ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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⎝

⎞
⎠U

ie

z
U

r
e d r (10)B

ikz

r z
A

r

i

z
r/

2
z z

r

2

Since we require the Fresnel number to remain constant, α α α= ρz r. Then we can rewrite

equation (10) as:

∫α
ρ
α λ α

′ =
′

′ ′
′ ′α

ρ ρ

πρ
λ

π
λ

π
λ

ρ
′ −

−
′

−
′ ′− ′

ρ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

e
U e

ie

z
U

r
e e d r (11)

( )ikz

B

i
f

ikz

A
r

i r
f

i
z

r
1 1/

( ) 2
z

r

2 2
2

where = ′ −ρ
α
αρ( )f z 1 r and = ′ − α

α
ρ( )f z 1

r r
. From equation (11) we see that the horizontal

path between planes A and B can be scaled down (to within a scaling and phase constant)
simply by adding a lens with focal length f

r
at A, propagating a distance ′z , and then adding

another lens with focal length ρf at B to cancel out the residual quadratic phase.

2.4. Experimental setup

A diagram of our experimental setup is presented in figure 4. The sender, Alice, prepares a
beam in a specific OAM state to send to the receiver, Bob, from an attenuated HeNe using an
SLM combined with a f4 system. Diffraction gratings with spatially modulated properties can
be shown to create any complex spatial field distribution in the first diffracted order (selected by
the f4 filter) [31]. This applies whether the grating is an amplitude [32, 33] or phase [34] only
hologram. A phase-only SLM was used in our experiment to allow for maximum efficiency in
generating the modes. The prepared state is then sent through the simulated 1 km path scaled
down as described in section 2.3 to a total length of 1.3 m. The two thin phase screens used to
simulate thick turbulence in our setup (section 2.2) were implemented using an SLM in a
double-pass configuration. In addition, the quadratic phases required for proper scaling of the
propagation path were added to the phases on the SLMs.
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with coordinates ρ = u v( , )



After propagation through the turbulent channel, the beam at Bobʼs aperture is imaged
with a f4 system onto a Thorlabs AO kit consisting of a 12 × 12 actuator deformable mirror and
a Shack–Hartmann wavefront sensor. After the AO system, the beam is similarly imaged onto
the first element (R1) of the OAM sorter. The OAM sorter uses two refractive optical elements
(R1 and R2) and a Fourier transforming lens to spatially separate different OAM modes
allowing for the OAM spectrum to be efficiently measured as described in [35].

3. Experimental results

In order to examine the effects of the turbulent channel on OAM communication, we
experimentally measured the OAM spectrum that Bob detects conditioned on what Alice sent.
In a perfect channel, if Alice sends OAM mode s, then Bob will measure an OAM spectrum that
is simply a Kronecker delta centered at the same mode. However, in an imperfect or turbulent
channel, there will be some spreading into neighboring OAM modes to the prepared state. The
conditional probability matrix, |P d s( ) where d is the detected OAM mode and s is the sent
mode, provides a natural expression for this crosstalk induced by the imperfections or
turbulence in the channel.

|P d s( ) is plotted for three different scenarios in figure 5. Figure 5(a) shows |P d s( ) when
there is no turbulence in the channel, showing only crosstalk due to any misalignment in the
system and inherent crosstalk of the sorter [35]. Figure 5(b) shows the effects of thick
turbulence ensemble averaged over 100 realizations, which act to greatly spread the signal over
many neighboring channels. This selective spreading of OAM into neighboring modes rather
than randomly into any OAM state is qualitatively similar to what is seen in the thin turbulence
regime demonstrated in [17]. For the third case shown in figure 5(c), adaptive correction was
applied to the turbulence with the AO system, allowing much of the signal to be recovered. The
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Figure 4. Alice sends a beam prepared in a specific orbital angular momentum state, ℓ,
to Bob. Bob receives the beam after propagation through a channel representing a 1 km
turbulence path. The beam is (optionally) corrected using a deformable mirror and sent
to a sorter to make a measurement of the of the orbital angular momentum spectrum of
the beam.



phase aberrations induced from each realization of turbulence was sensed and corrected by the
AO using the OAM ℓ = 0 mode. Each mode was then sent through the channel and AO
system, and the OAM spectrum was measured by Bob. This procedure was repeated and
averaged over 50 realizations of turbulence.

In order to quantify the crosstalk induced by the turbulence as well as the quality of the AO
correction, we compute the mutual information between Alice and Bob for all three cases above.
The mutual information between Alice and Bob, I A B( ; ), provides a measure of the channel
capacity, as it gives the maximum possible transmission rate that can be extracted by Bob in bits
per photon (or classically per detected pulse). The mutual information is given by the expression,

∑= | |
∑ |

⎛
⎝⎜

⎞
⎠⎟I A B

N
P d s

P d s N

P d s
( ; )

1
( )log

( )
( )

, (12)
s d s,

2
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Figure 5. Measurement of the crosstalk in the channel represented by the conditional
probability matrix, P d s( ) for three cases: (a) no turbulence, (b) with turbulence, and (c)
with turbulence and adaptive correction.

Figure 6. Measured channel capacity as a function of the number of OAM modes used
for the spatial encoding.



where N is the number of distinct symbols. Figure 5 qualitatively shows that thick turbulence
greatly degrades the quality of the channel. Using equation (12), we quantify these results by
calculating the mutual information as a function of the encoding dimension N. The mutual
information for the three cases of no turbulence, thick turbulence, and turbulence with AO
correction, is plotted in figure 6 as a function of N. One can see that the AO system allows us to
cancel roughly half of the loss of channel capacity due to turbulence.

Further, since turbulence preferentially scatters power into neighboring OAM modes rather
than randomly into all modes, one can increase the channel capacity by choosing to use a less
dense set of OAM modes [19]. For instance, rather than encoding every OAM mode, one can
encode in every second mode (or third or fourth mode, etc.). Changing the encoding is also
independent of any AO system one may use, and thus a modified encoding can be used along
with AO correction to further enhance the channel capacity. Figure 7 shows the increase in the
mutual information one can obtain for a given number of encoded modes, N. The channel
capacity of an ideal 2-bit system is shown for reference. It is worth noting that the use of spatial
mode encoding shows an improvement over such a system with very moderate resources (i.e.
three modes with a channel spacing >4).

4. Conclusions

In this work we have demonstrated how one can experimentally simulate a thick horizontal
turbulent path as part of a free-space communication channel. This model was applied to the
case of a 1 km path and the effects were studied in the context of an OAM communications
channel. It was shown that although the turbulence severely degraded the channel, a high
information capacity was still possible by optimizing the encoding and adaptively correcting for
some of the induced phase aberrations.
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used for communication.
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