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We present a weak measurement protocol that permits a sensitive estimation of angular rotations based
on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and
the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an
amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been
coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the
first realization of weak-value amplification in the azimuthal degree of freedom.We have achieved effective
amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods
that employ quantum states of light or extremely large values of orbital angular momentum.
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In 1988, Aharonov et al. [1] introduced a general form
of quantum measurement, known as a weak measurement.
In weak measurements, information is gained by weakly
probing the system, while approximately preserving its
initial state. The uncertainty in each measurement is large
due to the weak perturbative nature of the information
extraction; however, this is generally overcome by averag-
ing over a large number of identically prepared states. The
process of postselecting the prepared system makes weak
measurements interesting. Under certain conditions, the
outcome, which is called a weak value (WV), is not an
eigenvalue of the measurement operator. In fact, WVs can
even exceed the eigenvalue range of a typical strong or
projective measurement and, in general, are complex.
These features have allowed a wide range of applicability
in classical and quantum contexts. For example, they have
resulted in the measurement via amplification of small
transverse [2,3] and longitudinal [4–6] shifts, the direct
measurement of the quantum wave function [7–9], the
development of tomographic techniques [10], the amplifi-
cation of optical nonlinearities [11], and the clarification of
controversial debates in quantum physics [12,13].
Recently, there has been a strong impetus to employ

weak-value amplification (WVA) as an effective tool in
metrology [4,5,14,15]. AWVA protocol involves the prepa-
ration of an ensemble of particles with two independent
degrees of freedom (DOFs). These two DOFs are then
coupled by means of a weak perturbation and postselected
to collapse one of the DOFs, typically called the probe.
Because of the coupling existing between the probe and the
other DOF, called the pointer, the postselection induces a
shift in the linear position of the pointer which is propor-
tional to the weakly induced perturbation and the WV. This
has allowed the use ofWVA to estimate small quantities with
sensitivities comparable to quantum-enhanced metrology
[4,5,14–16], due to the fact that the use of quantum protocols

does not guarantee sensitivities beyond the standard quan-
tum limit, which is the limit for classical protocols [17,18].
Besides the extensive work on the estimation of longi-

tudinal displacements [4–6,14,17–19], high sensitivity meas-
urement of angular displacements has been another topic
of interest. Historically, inquiries regarding relativistic
dynamics stimulated interest in the azimuthal DOF [20].
A remarkable example is the Sagnac effect. Atomic versions
of the Sagnac interferometer have led to sensitive gyroscopes
that permit a precise measurement of rotations [21,22].
In addition, the use of light endowed with orbital angular
momentum (OAM) has motivated interest in new forms of
rotations. As identified by Allen et al. [23], an optical beam
with azimuthal phase dependence of the form eilϕ carries
OAM, where ϕ is the azimuthal angle and l is the OAM
value. These beams have been used for rotational control of
microscopic systems [24], and exploration of effects such as
the rotational Doppler shift [25] which has been recently
used in techniques for detecting spinning objects [26,27].
Recent efforts to increase the sensitivity in the measurement
of angular rotations involve the generation of large values
of OAM [28], quantum entanglement of high OAM values
[29], or the use of N00N states in the OAM bases [30]. These
protocols require complicated schemes to generate and
measure photons in such exotic states. However, the con-
cepts behind them constitute valuable resources not only for
optical metrology, remote sensing, biological imaging, or
navigation systems [26,27,31], but also for the understand-
ing of light-matter interactions [32–34].
In this Letter, we describe WVA in the azimuthal DOF and

theprocesses thatgive rise to theseeffects.The firstobservation
of these kinds of WVs suggests interesting physics from the
fundamental and applied perspective. For instance, the spin-
orbit coupling in our experiment gives rise to an interesting
optical effect in which the perturbation of polarization induces
ashift in theangularpositionandOAMspectrumof thepointer.
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We show that the real and the imaginary part of theWV for the
polarizationoperator canbeaccessedbymeasuring theangular
position and its conjugate variable of OAM, respectively.
Using this new form ofWVs based on spin-orbit coupling, we
propose a scheme for the measurement of small rotations. We
demonstrate an amplification in the measurement of angular
rotations that is as large as 100. The simplicity of our scheme,
namely the lack of need for an exotic quantum state of light or
extremely large values of OAM, makes this technique poten-
tially attractive for applications in optical metrology, remote
sensing, and optical manipulation of microscopic systems.
Consider the experimental setup depicted in Fig. 1.

This scheme comprises three parts: state preparation, a weak
perturbation, andpostselection.The state preparation involves
thegenerationof a light beamwith diagonal polarization and a
well-defined spatial profile. We select the initial polarization
state using a polarizer and a half-wave plate (HWP); this state
will serve as a probe and can be described by the polarization
qubit jΨpri ¼ 1=

ffiffiffi

2
p ðjHi þ jViÞ. The preparation of the

spatial mode or pointer consists of the generation of an
angular mode (ANG) fðϕÞ ∝ exp ð−ϕ2=2ηϕ2Þ, which is a
Gaussian-apodized angular slit of width ηϕ. This is shaped by
impressing amplitude and phase information onto the beam
by means of modulation of the blaze parameters on a spatial
lightmodulator (SLM), used togetherwith a4f optical system
containing a spatial filter in the Fourier plane [35]. The
advantages that pointer states carrying OAM provide over
Gaussian pointer states have been studied [36]. The beam is
injected into a Sagnac interferometer, where the horizontally
and vertically polarized components of the beam circulate in
opposite directions. TheDoveprism (DP) is rotated by a small
angle Δϕ=4 with respect to the plane of the interferometer,
which causes the two counterpropagating beams to be rotated
by an amount of �Δϕ=2 in opposite directions. This setup
enables a coupling between the polarization, marked by the
two counterpropagating beams, and the transverse azimuthal
DOF. In thenext step,weuse twoquarter-waveplates (QWPs)
and a HWP to induce a geometric phase between the two

circulating beams in the interferometer, permitting the exist-
ence of complex WVs (see the Supplemental Material [37]).
Finally, the postselection is carried out by setting the angle
of a polarizer almost orthogonal with respect to the angle
of the polarizer used in the preselection. At this stage,
a full characterization of the complex wave function in the
transverse angular basis and the conjugate basis of OAM
reveals information about the real and the imaginary part
of the WV, respectively.
The interaction in our experiment can be described by

the spin-orbit interaction Hamiltonian ĤSO ¼ μσ̂l̂z and a
Hamiltonian that describes the action of the wave plates
Ĥg ¼ δσ̂, where σ̂ is the Pauli operator defined by
σ̂ ≡ jHihHj − jVihVj, Δϕ=2 ¼ μΔt, ðθH=2 − π=2Þ ¼ δΔt,
and θH=2 is the induced geometric phase. Our state at the
input of the interferometer has the following form
jΨii ¼ jΨprijfðϕÞi. The interaction which occurs in the
interferometer couples the two DOFs as follows:

jΨfi¼e−i
Δϕ
2
σ̂l̂ze−iσ̂ð

θH
2
−π
2
ÞjΨii

¼ 1
ffiffiffi

2
p ðe−iθ2jHijfðϕ−Δϕ=2Þiþei

θ
2jVijfðϕþΔϕ=2ÞiÞ;

(1)

where (l̂z) act as the generator of rotations and is propor-
tional to the angular momentum operator projected
along the optical axis L̂z ¼ ℏl̂z, and θ equals θH − π.
As demonstrated by Eq. (1), the weak coupling creates
entanglement between probe and pointer. It should be noted
that since the probe and the pointer are different DOFs of a
single beam rather than separate systems or particles, then
this is an example of classical entanglement and, thus,
can be described classically [38,39]. Because of this, most
traditional weak measurement experiments, such as those
described in Refs. [2,4,5,7–10,36], are classically explain-
able. This also demonstrates what is required to perform
a nonclassical weak measurement experiment. We have

FIG. 1 (color online). Experimental setup. A light beam from HeNe laser working at 632.8 nm is coupled into a SMF and the output is
then collimated. The beam is sent to a phase-only SLM and then to a 4f optical system containing a spatial filter in the Fourier plane. A
polarization state is prepared by means of a polarizer and a HWP. A Dove prism, a HWP and two QWPs are placed inside the Sagnac
interferometer that uses a polarizing beam splitter (PBS). The DP induces a small rotation between the counterpropagating beams; this is
the weak perturbation. The QWPs together with the HWP induce a geometric phase between the H and V polarized beams. After
postselection, measurements of angular rotations and OAM spectra are performed to access the real or imaginary part of the weak value.
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chosen to use the mature language of weak measurement
theory, since it provides a simpler description and the
results readily apply to a wider range of phenomena
including nonclassical systems.
The postselection is performed by projecting the perturbed

state into jΦpsi¼ sinðγ=2−π=4ÞjHiþ cosðγ=2−π=4ÞjVi,
where γ is controlled by the polarizer. The postselection
collapses the polarization state of the probe and causes a shift
in the angular position and the OAM spectrum of the pointer
that can be described as

jΨpi ¼ jΦpsihΦpsjΨfi ≈ jΦpsijfðϕ − σwΔϕ=2Þi: (2)

Here, σw is the complex WV given by

σw ≡ hΦpsjσ̂jΨfpri
hΦpsjΨfpri

; (3)

jΨfpri is defined as 1=
ffiffiffi

2
p ðe−iðθ=2ÞjHi þ eiðθ=2ÞjViÞ. If the

induced phase θ and polarizer selection angle γ=2 are small,
the WV can be approximated as (see the Supplemental
Material [40])

σw ≈ −
2γ

γ2 þ θ2
þ i

2θ

γ2 þ θ2
: (4)

The postselected state described in Eq. (2) shows a change
in angle as ϕ → ϕ − σwΔϕ=2. If σw is real, which will be the
case for θ ¼ 0, then this leads to the rotation of the pointer by
the amount σw. However, if σw is complex then

fðϕ − σwΔϕ=2Þ ¼ eð−ðϕ−σwΔϕ=2Þ
2=2η2ϕÞ

∝ eð−½ϕ−ℜðσwÞΔϕ=2�2=2η2ϕÞeðiϕℑðσwÞΔϕ=2η
2
ϕÞ

¼ eð−ðϕ−ΔhϕiÞ
2=2η2ϕÞeðiϕΔhliÞ; (5)

where Δhϕi ¼ ℜðσwÞΔϕ=2 sets the amount of the pointer’s
rotation. Inaddition, thepointer experiences a shift in itsOAM
spectrum that equals Δhli ¼ ℑðσwÞΔϕ=2η2ϕ. We have used
the angular representation of the spatial mode of the photons,
andutilized theFourier relationbetween theconjugate pairsof
azimuthal angle and angular momentum. Alternatively, the
same results can bederived byusing the commutation relation
between angular position andOAMoperators, which is given
by ½ϕ̂; L̂z� ¼ iℏ½1 − 2πPðϕÞ�, where PðϕÞ represents the
angular probability at the boundary of the angle range [41].
The shift in the OAM spectrum can be understood as a form
of interaction between spin angular momentum (SAM) and
OAM. This interesting optical effect is a consequence of the
polarization-sensitive nature of the interactions in the inter-
ferometer, and should not be confused with the standard
spin-orbit coupling in the vector beams where both the SAM
and OAM are directed along the same axis [42].
In the experiment, we use a 3 mWHe-Ne laser (632.8 nm)

which is coupled to a single-mode fiber (SMF) and then
expanded to a spot size of 1.8 cm.The central part of the beam

homogeneously illuminates thedisplayof theSLMthat has an
active areaof (9.3 × 7 mm2).Becauseof the reflectanceof the
SLMand theefficiencyof theencodeddiffractivegratingon it,
the power drops to 470 nW once an ANG mode of width
ηϕ ¼ 13.7° is generated. TheDP in the Sagnac interferometer
is rotated by 0.3°, this angle is determined by measuring a
relative rotation of 1.2° between two identical ANG modes
propagating in the opposite directions. The induced displace-
ment Δϕ, is chosen to be much smaller than the width of the
ANGmode in order to guarantee the conditions for the weak
perturbation.Thepostselectionpolarizer is set to anangle γ=2,
with respect to the polarization state of the preselected state.
For this part, we have set θ to zero.
Since our interest is in the amplification of the weak value,

the angle γ=2 is set to a small number. The postselection
polarizer forces the two ANG modes to coherently interfere,
producing another ANG mode which is rotated due to the
azimuthal Gaussian intensity distribution impressed on the
ANG [43]. Such rotation is proportional to the angular
displacement Δϕ and the real part of the WV ℜðσwÞ. Since
the WV can take values larger than one, this scheme allows
the amplification of small rotations. However, as ℜðσwÞ is
increased more photons are lost as shown for different
postselection angles in Figs. 2(a)–2(e). In order to detect this
effect, a CCD camera is placed after the polarizer. This is
equivalent to measuring the expected value of the angular
position in the state jΨpi. As shown in Figs. 2(f)–2(j), the
measured power is in the range of 10–30 nW; however, these
images were taken using long exposure times. As can be seen
in Fig. 2, an aggressive postselection leads to a larger rotation.
The amplification factor (Amp) is defined as the ratio between
the angular position of the postselected mode Δhϕi and Δϕ.
This is equal toℜðσwÞ=2.BothΔhϕi andΔϕweredetermined
by using centroid measurements. The amplification limit is
given by the extinction ratio of the polarizer and themagnitude
of the weak perturbation or the angle of postselection. Larger
amplifications can be measured if the width of ANG is
increased and the postselection angle is decreased.
The imaginary part of the WV can be determined by

analyzing the shift of the OAM spectrum of the ANG. We
have chosen the rotation angle of the DP to be approx-
imately 0.4°, and we have tried different angular widths for
the input state. In order to allow ℑðσwÞ to be nonzero, the
phase θ must also be nonzero. This is done by inducing a
geometric phase between the polarization states jHi and
jVi. This phase is created using three rotatable wave plates
as shown in Fig. 1. The angle of the QWPs is set to π=4 and
the HWP is rotated by a small angle (see the Supplemental
Material [37]). We have set the HWP to an angle such that
θ=2 ¼ 5° and tried several different postselection angles for
the polarizer. Measurement of the OAM spectrum associated
with a beam can be done using a wide variety of techniques
[44–47]. We measured the OAM using a series of projective
measurements for various values of l. Using a similar pro-
cedure as that used for generating the angular slits, a hologram
was impressed onto a SLM and then a Fourier transforming
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lens and a spatial filtering from a SMF couples photons to an
avalanche photodiode (APD) which allows measurement at
single photon levels (see the Supplemental Material [48]).
We summed the counts during a 0.2 second window

and averaged it for 30 measurements for each projection over
different OAM modes. This procedure was repeated for
each mode and the reconstructed spectra are shown in
Figs. 3(a)–3(b). The error bars represent the standard
deviation over the ensemble of 30 measurements. The
spectrum is broader for angular modes with narrower widths
due to the uncertainty relation between angular position and
OAM [41]. As predicted by Eq. (5), and shown in Fig. 3, the
larger amplifications are obtained for angular modes with
narrow widths. However, such narrow ANG modes have
physically smaller cross sections and, hence, carry propor-
tionally less power. Each OAM power spectrum was fitted
using a weighted least-squares minimization to a shifted
Gaussian function. The mean values are plotted in Fig. 3(c)
along with error bars representing the 3σ confidence interval.
By exploiting the measurement process, we have amplified

small rotations by a magnitude of 100 without using high
OAM or entanglement.
Recently, there has been research casting doubt on

the sensitivity of measurements based on WVA [49,50].
However, it has been shown that in the presence of technical
noise WVs, and more specifically imaginary WVs, outper-
form traditional measurements [51]. Therefore, our experi-
ment can be potentially useful for sensitive measurement
of small rotation in real world scenarios. A quantitative
analysis of the sensitivity of our scheme can be done by
using the Fisher information metric. However, such quanti-
tative comparison is outside the scope of the current work
and will be the subject of a future study.
We have made the first step towards the study of WVA in

the azimuthal DOF. This has been approached by describ-
ing the mechanisms that lead to a shift in the angular
position and OAM of an optical beam. The OAM spectrum
is shifted as a consequence of the breakup in the polari-
zation symmetry, realized by a differential geometric phase.
Furthermore, we have implemented the first realization of

FIG. 3 (color online). Measured OAM power spectra of jΨpi without postselection (blue) and with postselection (green)
demonstrating the shift in hli due to ℑðσwÞ for (a) ηϕ ¼ 11.4°, γ=2 ¼ 6° and (b) ηϕ ¼ 13.7° and γ=2 ¼ 5°. The angle θ=2 equals
5° for all the cases. Histograms represent measured data, while lines represent theoretically predicted shifts. (c) OAM centroid shiftΔhli
for various measured OAM power spectra plotted against the imaginary WVamplification factor, ℑðσwÞ=2η2ϕ. Dots represent data, while
the line is the theoretical linear curve predicted by Eq. (5).

FIG. 2 (color online). Amplification of angular displacements using real weak values. (a)–(e) show simulations of our scheme for
Δϕ ¼ 1.2°, different postselection angles (PA) and amplification factors (Amp). (f)–(j) show experimental evidence of our protocol
under the same conditions.
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WVA in the angular position and OAM bases. The results
presented here provide a proof-of-principle demonstration
of the scope of WVA in this DOF. We believe that our
protocol opens the possibility for new schemes in optical
metrology. In addition, our approach shows an alternative
fashion for studying the exchange between SAM and OAM
in optical systems.
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