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We observe experimentally the self-phase modulation of a surface plasmon-polariton (SPP) propagating along a gold
film bounded by air in a Kretschmann–Raether configuration. Through analyzing the power dependence of the
reflectance curve as a function of the incidence angle, we characterize the complex-valued nonlinear propagation
coefficient of the SPP.Moreover, we present a procedure that can further extract the complex value of the third-order
nonlinear susceptibility of gold from our experimental data. Our work provides direct insights into nonlinear con-
trol of SPPs utilizing the nonlinearity of metals, and serves as a practical method to measure the complex-valued
third-order nonlinear susceptibility of metallic materials. © 2014 Optical Society of America
OCIS codes: (240.6680) Surface plasmons; (240.4350) Nonlinear optics at surfaces; (190.5940) Self-action effects;

(190.7110) Ultrafast nonlinear optics.
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Surface plasmon-polaritons (SPPs) are collective charge
oscillations coupled to photons at a metal–dielectric
interface [1,2]. SPPs exhibit a number of properties that
make them a promising nonlinear photonic platform at
the nanometer scale. Such properties include the capac-
ity for subwavelength field confinement, a strong field
enhancement near the metal surface [3,4], and the fact
that metals possess a strong and ultrafast third-order
nonlinear response at optical wavelengths [5,6]. Because
of this, substantial efforts have been devoted to the inves-
tigation of nonlinear phenomena in different plasmonic
systems, such as harmonic generation and frequency
mixing [7–14], self-phase modulation and plasmon–
soliton formation [15–21], optically induced damping,
and all-optical modulation [22–25].
In this Letter, we investigate the intensity dependence

of an SPP propagating on a gold film in a Kretschmann–
Raether configuration [26], and characterize experimen-
tally for the first time its complex-valued nonlinear
propagation coefficient. A measurement of this sort is
of utmost importance to develop a direct understanding
of how SPPs interact with themselves through the non-
linear response of the metal [17]. Furthermore, we
present a procedure through which the complex-valued
third-order nonlinear susceptibility of gold (Au) can be
deduced accurately from the experimental data.
We consider a one-dimensional SPP waveguide con-

sisting of a thermally evaporated Au film with a thickness
of 48� 0.5 nm sandwiched between a glass substrate
and air. Such a geometry supports an SPP that propa-
gates along the metal film plane with its electromagnetic
field strongly confined to the Au–air interface. The
complex propagation constant of this SPP is denoted
by ~κsp � κ0sp � iκ00sp, with its real and imaginary parts
representing the SPP’s wavenumber and attenuation
coefficient, respectively. The SPP is excited in the
Kretschmann–Raether configuration [26] by transverse
magnetic (TM) polarized light. In this configuration,
the incident light impinges onto the Au film from the

glass side and couples into the SPP when its wave vector
component along the film matches the SPP’s wavenum-
ber. This coupling results in a characteristic dip in the TM
reflectance curve as a function of the incidence angle,
which occurs at incidence angles larger than the critical
angle for a glass–air interface. The angle at which the dip
reaches its minimum, θK , is known as the Kretschmann
angle and is directly related to the value of κ0sp. On the
other hand, the width of the dip is directly related to
the value of κ00sp.

The experimental setup is illustrated in Fig. 1. A
Ti:sapphire mode-locked oscillator/amplifier system is
used to generate nearly transform-limited pulses with a
measured pulse duration (full width at half-maximum)
of tp � 107 fs, a center wavelength of λ0 � 795.6 nm,
and a repetition rate of f r � 333 Hz. The laser beam
passes through a half-wave plate followed by a polarizing
beam splitter in order to control the power of the incident
light on the sample and consequently to control the
power of the excited SPP. A 2 mm diameter circular
aperture is placed just before the sample to produce a
spatially uniform beam. The sample prism rests on a
motorized rotation stage with an angular resolution of
0.01°. A second right-angle prism is placed in direct con-
tact with the sample prism in order to direct the reflected
light to a power detector. Note that the laser pulses travel
approximately 5 mm inside the sample prism before hit-
ting the Au film. The dispersion of such a thickness of
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Fig. 1. Experimental setup. HWP, half-wave plate; PBS, polar-
izing beam splitter; PD, photodetector.
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glass does not introduce significant temporal broadening
to the optical pulse.
We measured the TM reflectance as a function of the

incidence angle θ at various incident average powers, Pi,
ranging from 2.7 to 28.4 mW; five representative curves of
these measurements are plotted in Fig. 2. The critical an-
gle that marks the onset of the total internal reflection
region is indicated by an arrow. In order to better observe
the change in the angular reflectance curve, we show in
the inset of Fig. 2 the reflectance over a narrower range
of incidence angles. One can see that as Pi increases, θK
shifts toward a larger angle and the depth of the reflec-
tance dip is reduced. At the same time, although less
evident from the figure, the width of the dip increases
with the incident power.
In order to quantify the power dependence of ~κsp, we

adopt an asymmetric SPP reflectance model [27] with the
following expression to fit the experimental data:

R�θ� ≈ ρ0

2
41 −

ρs � ρa
�
2πλ0

�����
εg

p sin θ − κ0sp
�

�
2πλ0

�����
εg

p sin θ − κ0sp
�
2 � �κ00sp�2

3
5; (1)

where ρ0 is a quantity associated with the Fresnel reflec-
tion coefficient at the glass–Au interface, ρs and ρa are
quantities that control the symmetry and asymmetry of
the reflectance curve, respectively, and εg is the relative
dielectric permittivity of the glass substrate, which is
measured to be 2.2765 through the determination of
the critical angle. The fits of Eq. (1) to the experimental
data are plotted in solid curves in Fig. 2. For all cases, the
R2 parameter that characterizes the goodness of the fit
[28] is larger than 0.998 and the root-mean-squared
(RMS) error is smaller than 0.0031.
The effective peak power density carried by the SPP

for a given incident average power Pi is estimated
through the relation Ssp � �1 −R�Pilsp∕f rtpA, where A
is the beam’s transverse area projected onto the metal
surface and lsp � �2κ00sp�−1 is the SPP’s effective propaga-
tion length. The values of κ0sp and κ00sp as functions
of Ssp are plotted in Fig. 3 with the dashed lines repre-
senting linear fits to the data. There is a clear linear

relationship between ~κsp and Ssp, which is indicative of
a self-phase modulation, whereby ~κsp is modified by
the power of the SPP itself following the relation

~κsp � ~κsp;0 � ~γspSsp: (2)

Here, ~κsp;0 is the propagation constant of the SPP in the
linear regime and ~γsp � γ0sp � iγ00sp is the complex non-
linear parameter of the SPP, with its real and imaginary
parts characterizing the extent of nonlinear phase and
nonlinear absorption experienced by the SPP, respec-
tively. Using the data in Fig. 3, we obtain ~κsp;0 �
�806.63� i2.638� × 104 m−1 from the intersection of the
fits with the ordinate and ~γsp � �8.08� i1.46� ×
10−7 W−1 from the slope of the fits. Note that Ssp has
units of power per unit length (W/m) due to the one-
dimensional nature of the SPP, and that ~γsp has units
of inverse power (W−1) rather than the more conven-
tional units of length per unit of power that arise for plane
wave propagation in bulk [6].

From the complex nonlinear parameter ~γsp, we can
estimate the nonlinear absorption coefficient αNL �
γ00spSsp and the nonlinear phase shift ϕNL � γ0spSsplsp.
Consider the maximum incident power used in the
experiment, for which we obtain lsp � 18.53 μm and
Ssp � 3.43 GW∕m. Using the extracted value of γ00sp, we
obtain αNL � 501 m−1. From this result, it is clear that
the effective propagation length of the SPP is not affected
significantly by the nonlinear absorption, as the contribu-
tion of αNL to the value of κ00sp is only about 2%. On the
other hand, using the extracted value of γ0sp we obtain
a maximum nonlinear phase shift of ϕNL � π∕61. Note
that the magnitude of the achievable nonlinear phase
shift under our current configuration is adversely
affected by the short propagation length of the SPP.
However, one could potentially alleviate this limitation
by incorporating optical gain into the SPP waveguide
such that lsp is increased significantly [29].

It is worth noting that the heat deposited by individual
ultrashort pulses is completely dissipated in a few nano-
seconds [30], a period much shorter than the time inter-
val between neighboring pulses in our experiment. Thus,
the observed nonlinearity is not the result of heat buildup
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Fig. 2. Reflectance as a function of incidence angle at various
incident power levels. The markers are experimental data and
the solid lines are numerical fits using Eq. (1). Inset: zoom-in of
the Kretschmann dip with the bottom and top arrows indicating
Kretschmann angles at low and high power, respectively.
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Fig. 3. Real (red filled circles) and imaginary (blue open
squares) parts of the SPP propagation constant ~κsp as a function
of effective power density, Ssp. The nonlinear parameter ~γsp is
obtained from the slope of the linear fits (dashed lines) to the
data.
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in the sample over many light pulses, but rather it takes
place within the duration of the laser pulse. The origin of
such an ultrafast nonlinearity is believed to be the
smearing of the Fermi–Dirac distribution function [5,31]
induced by the generation of “hot-electrons” in the con-
duction band after efficient absorption of SPPs by the
metal film.
We shall now turn to our task of extracting the

complex value of the third-order nonlinear susceptibility
of Au, ~χ�3�Au. To achieve this, we developed a nonlinear
transfer-matrix (NLTM) model similar in spirit to that
formulated by Owens et al. [32] to simulate the reflec-
tance curves accounting for the nonlinear response of
the materials. The numerical procedure consists of calcu-
lating the field distribution throughout the entire struc-
ture using a linear transfer-matrix algorithm while
accounting for the intensity-dependent permittivity of
the Au film in an iterative fashion. For each iteration,
the power of an incident plane wave is increased by a
small amount and the electromagnetic field in the struc-
ture is recalculated by taking the intensity-dependent
relative permittivity along the Au film as

~εAu�z� � ~εAu;0 � 3~χ�3�AujEAu�z�j2; (3)

where we assume that the nonlinear response is solely
due to a third-order process. Here, ~εAu;0 is the linear
relative permittivity of Au, z denotes the position along
the direction normal to the film’s surface, and EAu�z� is
the electric field distribution in the Au film calculated
in the previous iteration. We ensure good accuracy of
the results by resolving the field distribution EAu�z� in
steps of δz � 0.48 nm and by incorporating enough iter-
ation steps so that a convergent result is achieved.
Note that our NLTM model assumes an instantaneous

response of ~χ�3�Au and a continuous-wave excitation at a sin-
gle wavelength λ0. Such an approximation is valid since
the wavelength-induced variation of the Kretschmann
angle within our pulse bandwidth is negligible and the
value of ~χ�3�Au can also be approximated to be constant
over the pulse bandwidth [18].
We first determine the value of ~εAu;0 by fitting the

reflectance curve obtained from the linear transfer-
matrix model to a reflection curve predicted by Eq. (1)
using the linear propagation constant value of ~κsp;0 �
�806.63� i2.638� × 104 m−1 extracted from the measure-
ments (cf. Fig. 3). This yields a value of ~εAu;0 � −25.339�
i2.003, which is in good agreement with the value given in
Palik’s compendium [33]. We then proceed to fit the
NLTM model to all the experimental reflection curves
measured at nine different power levels by using ~χ�3�Au
as the only fitting parameter. Such a procedure gives
~χ�3�Au � �4.67� i3.03� × 10−19 m2∕V2, and the fitted results
(solid lines) for reflections at five representative power
levels are plotted in Fig. 4. One can see that the fitted
results of our numerical model are in good agreement
with all the experimental data, and reveal accurately
the nonlinear power dependence of the reflection curves.
The RMS error for all the fits is small, ranging between
0.018 and 0.026. Note that there is no appreciable differ-
ence in the fitting result whether the nonlinear response
of the glass and the air is considered or not. This is

expected since the nonlinear susceptibilities of these
media are several orders of magnitude smaller than
the value of ~χ�3�Au extracted here [6].

The fact that a single fitting parameter reproduces the
reflectance curves at a large range of incident power
levels is a strong indication that the extracted value of
~χ�3�Au is accurate. Note that the standard z-scan technique
has been used to measure the nonlinear absorption co-
efficient of Au [34,35]. However, the value of the nonlin-
ear refraction coefficient is often too small and, hence,
suffers from poor signal-to-noise ratio in z-scan measure-
ments. For that reason, the nonlinear refraction coeffi-
cient is often taken to be zero when converting z-scan
results to the value of ~χ�3�. While such an assumption
is reasonable in estimating the magnitude of ~χ�3�, it could
potentially lead to inaccuracies in the value and even the
sign of the real part of ~χ�3�. Thus, the measurement pro-
cedure presented here serves as a reliable alternative
to measure the complex optical nonlinearity of metallic
materials.

With this in mind, we proceed to compare our value of
~χ�3�Au with that estimated from the work of Rotenberg et al.
[12]. These authors reported measurements of the
nonlinear absorption coefficient of a Au film via
z-scan using 100 fs laser pulses at λ0 � 630 nm. From
their results, we find, by taking the nonlinear refraction
coefficient to be identically zero, that ~χ�3�≈
�−7.6� i0.4� × 10−19 m2∕V2. Note that the sign of the
real part is reversed relative to our result. Nonetheless,
we observe that the magnitudes of both results are of the
same order.

In summary, we have studied the nonlinear response of
an SPP supported by a Au film in a Kretschmann–Raether
configuration bounded by air at λ0 � 796.5 nm using
laser pulses with a duration of approximately 100 fs.
We have observed experimentally the power dependence
of the Kretschmann dip in the angular reflectance curve
for TM light beyond the critical angle, and have conse-
quently obtained the complex-valued nonlinear param-
eter that characterizes the extent of nonlinear phase
and nonlinear absorption experienced by the SPP.
Furthermore, we have developed an NLTM model, which
can extract reliably the complex third-order nonlinear
susceptibility, ~χ�3�, of gold from the TM reflectance
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Fig. 4. Measured reflectance as a function of incidence angle
at various incident power levels (markers) and numerical fits
obtained with the NLTM model using ~χ�3�Au as the only fitting
parameter (solid lines). Inset: zoom-in of the Kretschmann dip.
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curves measured at various power levels. Our procedure
provides a robust alternative approach for characterizing
the complex-valued ~χ�3� of various metallic materials over
a broad range of wavelengths.
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