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Direct measurement of a 27-dimensional
orbital-angular-momentum state vector
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The measurement of a quantum state poses a unique challenge for experimentalists.

Recently, the technique of ‘direct measurement’ was proposed for characterizing a quantum

state in situ through sequential weak and strong measurements. While this method has been

used for measuring polarization states, its real potential lies in the measurement of states

with a large dimensionality. Here we show the practical direct measurement of a high-

dimensional state vector in the discrete basis of orbital angular momentum. Through weak

measurements of orbital angular momentum and strong measurements of angular position,

we measure the complex probability amplitudes of a pure state with a dimensionality, d¼ 27.

Further, we use our method to directly observe the relationship between rotations of a state

vector and the relative phase between its orbital-angular-momentum components. Our

technique has important applications in high-dimensional classical and quantum information

systems and can be extended to characterize other types of large quantum states.
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T
he measurement problem in quantum mechanics has led
us to constantly redefine what we mean by a quantum
state1,2. The act of measuring a quantum state disturbs it

irreversibly, a phenomenon referred to as collapse of the
wavefunction. For example, precisely measuring the position of
a single-photon results in a photon with a broad superposition of
momenta. Consequently, no quantum system can be fully
characterized through a single measurement. An established
method of characterizing a quantum state involves making a
diverse set of measurements on a collection of identically
prepared quantum states, followed by post-processing of the
data. This process, known as quantum state tomography3, is akin
to its classical counterpart of imaging a three-dimensional object
using many two-dimensional (2D) projections. A novel
alternative to tomography was recently demonstrated, in which
the complex probability amplitude of a pure quantum state was
directly obtained as an output of the measurement apparatus,
bypassing the complicated post-processing step4. In this method,
the position of an ensemble of identically prepared photons was
weakly measured5,6, which caused a minimal disturbance to
their momentum. A subsequent strong measurement of their
momentum revealed all the information necessary to characterize
their state in the continuous bases of position and momentum.

While a careful study comparing direct measurement with
quantum state tomography is still lacking, it has already shown
promise as a simple and elegant method for characterizing a
quantum state in the continuous position-momentum basis4

as well as the 2D polarization basis7. Here, we extend this
novel technique to characterize a photon in the discrete,
unbounded state–space of orbital angular momentum (OAM).
Photons carrying OAM have been the subject of much
recent scientific attention8–11. The discrete, high dimensionality
of the OAM Hilbert space provides a much larger information
capacity for quantum information systems12,13 as compared
with the conventionally used 2D state–space of polarization.
More significantly, a larger dimensionality allows for an
increased tolerance to eavesdropping in quantum key
distribution14. Photons entangled in OAM15,16 are prime
candidates not only for such high capacity, high security
communication systems but also for fundamental tests of
quantum mechanics17. Thus, it is essential that fast, accurate
and efficient methods for characterizing such high-dimensional
states be developed.

In this Article, we use weak measurements of OAM followed
by a strong measurement of angular position to directly measure
the complex probability amplitudes of a 27-dimensional state in
the OAM basis. In this manner, we are able to obtain both the
amplitude and the phase of each OAM component within our
state–space. In addition, our technique enables us to measure
rotations of a state vector in the natural basis of OAM. Rotation
of the state by a fixed angle manifests as an OAM mode-
dependent phase, illustrating the relationship between the angular
momentum operator and rotations in quantum mechanics18.

Results
Theory of direct measurement in the OAM basis. We can
express the state of our photon as a superposition of states in the
OAM basis as

jCi ¼
X
‘

a‘ j‘i; ð1Þ

where a‘ are complex probability amplitudes. In direct analogy to
a photon’s position and linear momentum, the angular position
and OAM of a photon form a discrete Fourier conjugate pair19,20.
Consequently, any OAM basis state j‘i is mutually unbiased with
respect to any angular position basis state |yi—that is, their inner

product always has the same magnitude. This property allows us
to define a strategic quantity c¼hy0 ‘j i=hy0 Cj i, which is constant
with respect to j‘i for y0¼ 0. By multiplying our state above by
this constant and inserting the identity, we can expand
it as

c jCi ¼ c
X
‘

j‘ih‘ Cj i ¼
X
‘

j‘i hy0 ‘j ih‘ Cj i
hy0 Cj i

¼
X
‘

hp‘iw j‘i:

ð2Þ
Notice here that we have introduced the quantity hp‘iw, which

is proportional to the probability amplitude a‘ from equation (1).
This is known as the OAM weak value5,6 and is equal to the
average result obtained by making a weak projection in the OAM
basis p̂‘ ¼ j‘ih‘ jð Þ followed by a strong measurement in the
conjugate basis of angular position (y). In this manner, the scaled
complex probability amplitudes ca‘ can be directly obtained by
measuring the OAM weak value hp‘iw for a finite set of ‘.
Following this procedure, the constant c can be eliminated by
renormalizing the state |Ci. In order to measure such weak
values, we utilize a two-system Hamiltonian where the OAM of a
photon is coupled to its polarization, which serves as a
measurement pointer4. We perform a weak projection of OAM
by rotating by a small angle the polarization of the OAM mode to
be measured. Following this, a strong measurement of angular
position is performed via a post selection of states with y¼ y0.
The OAM weak value is read out by measuring the average
change in the photon’s linear and circular polarization (see
Methods section for details).

Experimental procedure for measuring the OAM weak value.
Performing a weak measurement of OAM at the single-photon
level is an experimental challenge. In order to do so, we first use
an optical geometric transformation in combination with a
beam-copying technique to efficiently separate the OAM modes
of our photons21–23. This process is depicted in Fig. 1 for a single
OAM mode. R1 and R2 are custom refractive elements that
transform an OAM mode with azimuthal phase variation ei‘y to a
momentum mode with position phase variation ei‘x=a. Following
a Fourier transform lens (L1), a fan-out hologram implemented
on a phase-only spatial light modulator (SLM2) creates three
adjacent copies of this momentum mode24,25. Following another
Fourier transform lens (not shown in Fig. 1), SLM3 is used to
remove a relative phase difference introduced in the beam-
copying process between the three copies. The resultant
momentum mode is three times the size of the original, while
also having three times the phase gradient of the original.
A second lens (L2) Fourier transforms this larger momentum
mode into a position mode at SLM4. This results in well-
separated OAM modes (‘) having less than 10% overlap on
average with neighbouring modes (‘±1) (see Methods section for
details).

The weak projection of an OAM mode is performed by
rotating its polarization by an angle a¼ p/9 (a strong projection
would correspond to a¼p/2). We use SLM4 and a quarter-wave
plate (QWP0) in double pass to carry out this polarization
rotation26. QWP1 and HWP1 are used to remove any ellipticity
introduced by transmission and reflection through the non-
polarizing beam splitter. A strong measurement of angular
position is performed by a 10-mm slit placed in the Fourier plane
of lens L3. Since the plane of the slit is conjugate to the plane
where the OAM modes are spatially separated (SLM4), a
measurement of the linear position by the slit is equivalent to a
measurement of angular position.

The average change in the photon’s linear and circular
polarization is proportional to Rehp‘iw and Imhp‘iw,
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respectively4. If the initial polarization of the photon is vertical,
the OAM weak value is given by

hp‘iw ¼
1

sin a
hsf j ŝ1 j sf i� ihsf j ŝ2 j sf ið Þ; ð3Þ

where a is the rotation angle, ŝ1 and ŝ2 are the first and second
Pauli operators and |sfi is the final polarization state of the
photon (see Methods section for detailed derivation of
equation 3). In order to measure the expectation values of
ŝ1 and ŝ2, we transform to the linear and circular polarization
bases with QWP2 and HWP2 and measure the difference
between orthogonal polarization components with a polarizing
beam splitter and two single-photon avalanche detectors. In this
manner, we directly obtain the scaled complex probability
amplitudes ca‘ by scanning the weak measurement through ‘
values of ±13. While the size of the OAM state–space is
unbounded, we are limited to a dimensionality of d¼ 27 by our
mode transformation technique.

Direct measurement of a 27-dimensional OAM state. The
authors of the first work on direct measurement showed this
technique to give identical results for heralded single photons
and attenuated coherent states4. Therefore, in our experiment,
photons from a highly attenuated HeNe laser are tailored into a
high-dimensional quantum state by impressing a specific OAM
distribution on them with SLM1 and a 4f system of lenses
(Fig. 1)27. The laser power is reduced such that probabilistically

only one photon is present in our apparatus at any given time.
First, we create a sinc distribution of OAM using a wedge-shaped
mask on the SLM. Just as a rectangular aperture diffracts light
into a sinc distribution of linear momenta, photons diffracting
through an angular aperture of width Dy result in a state vector
with a sinc distribution of OAM probability amplitudes19

a‘ ¼ k sinc
Dy‘

2

� �
: ð4Þ

This distribution has a width given by D‘¼ 2p/Dy, which
refers to the mode index of its first null. Using an angular
aperture of width Dy¼ 2p/9 rad (inset of Fig. 2b), we create
such an ensemble of identical photons and perform the direct
measurement procedure on them. The measured real and
imaginary parts of the state vector are plotted in Fig. 2a as a
function of ‘. Using these quantities, we calculate the probability
density Cð‘Þj j2 and the phase f(‘), which are plotted in Fig. 2b,c.
The width of the sinc-squared fit to the probability density is
measured to be D‘¼ 9.26±0.21, which is very close to the value
of D‘¼ 9 predicted from theory.

The measured phase plotted in Fig. 2c has a quadratic form
with p-phase jumps at OAM mode numbers ‘¼±9. These mode
numbers correspond to the probability density minima in Fig. 2b,
which is where the sinc-shaped amplitude crosses the x axis and
changes sign. The asymmetric quadratic feature in the phase
appears due to small misalignments in our optical system. A 4f
imaging system (not shown in Fig. 1) is used to magnify the
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Figure 1 | Experimental setup for direct measurement of a high-dimensional state vector. State preparation: a quantum state in an arbitrary

superposition of OAM modes is prepared by impressing phase information with SLM1 on spatially filtered (SMF) photons from an attenuated HeNe laser.

Weak measurement: a particular OAM mode is weakly projected by rotating its polarization. In order to do so, the OAM modes are first transformed into

finite-sized momentum modes by two refractive optical elements made out of Poly methyl methacrylate (R1 and R2). Then, a Fourier transform lens (L1)

and a fan-out hologram implemented on SLM2 are used to generate three adjacent copies of each momentum mode. The phase between these copies is

corrected by SLM3. Another lens (L2) converts these larger momentum modes into well-separated position modes at its focus. Finally, a QWP0 used in

double pass with SLM4 is used to rotate the polarization of the OAM mode to be weakly projected. Another quarter-wave plate and a half-wave plate

(QWP1 and HWP1) are used to remove any ellipticity introduced by transmission and reflection through the non-polarizing beam splitter (NPBS). Strong

measurement: a strong measurement of angular position is performed by Fourier transforming with a lens (L3) and post-selecting state y¼ y0 with a 10-mm

slit. Readout: the OAM weak value p‘h iw is obtained by measuring the change in the photon polarization in the linear and circular polarization bases.

QWP2, HWP2, a polarizing beam splitter (PBS) and two single-photon avalanche detectors (SPADs) are used for this purpose.
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Fourier plane of lens L2 on SLM4. A misalignment in the z axis of
this imaging system appears as a quadratic phase. Further, the
asymmetry in the phase is due to a first-order tilt aberration in
our optical system, which is simply a result of the plane of SLM2
not being perfectly parallel to the plane of SLM4. Taking these
two alignment imperfections into account, we use a quadratic
model of the form ax2þ bxþ c in order to calculate a fit to
the phase using a least-squares fitting algorithm in Matlab.
Theoretical fits are plotted as blue lines in Fig. 2c. As can be seen,
the phase error is unavoidably large when the amplitude
approaches zero.

Direct measurement of rotations in the OAM basis. We now
use this technique to analyse the effect of rotation on a photon
carrying a broad range of angular momenta. Rotation of a state
vector by an angle y0 can be expressed by the unitary operator
Û ¼ exp iL̂zy0

� �
, where L̂z is the angular momentum operator.

Operating on our quantum state |Ci with Û , we get

j C0i ¼ Û j Ci ¼
X
‘

k sinc
Dy‘

2

� �
ei‘y0 j ‘i: ð5Þ

Thus, rotation by an angle y0 manifests as an ‘-dependent
phase ei‘y0 on the OAM basis. For this reason, the angular
momentum operator is called the generator of rotations under the
paraxial approximation28. To measure this phase, we create a
rotated state vector by rotating our angular aperture by an angle
yþ ¼p/9 rad (inset of Fig. 3b). Then, we perform the direct
measurement procedure as before and measure the real and
imaginary parts of the rotated state vector as a function of ‘
(Fig. 3a). The probability density and phase of the state vector are
calculated and plotted in Fig. 3b,c. For clarity, we subtract the
phase of the zero rotation case (Fig. 2c) from our phase reading,
so the effect of rotation is clear. Barring experimental error, the
amplitude does not change significantly from the unrotated case
(Fig. 2b). However, the phase of the OAM distribution exhibits a
distinct ‘-dependent phase ramp with a slope of 0.373±0.007 rad
per mode. This is in close agreement with theory, which predicts
the phase to have a form f(‘)¼±p‘/9, corresponding to a phase
ramp with a slope of ±0.35 rad per mode. A linear fit to the
phase is calculated by the process of w2 minimization, which takes
into account the phase error at each point. This process is
repeated for a negative rotation angle y� ¼ � p/9 rad, which
results in a mostly unchanged probability density but an ‘-
dependent phase ramp as expected with a negative slope of
� 0.404±0.007 rad per mode (Fig. 3d–f).

These results clearly illustrate the relationship between phase
and rotation in the OAM basis in that every ‘ component ac-
quires a phase proportional to the azimuthal quantum number ‘.
The measured slopes in both cases are slightly larger than those
expected from theory possibly due to errors introduced in the
geometrical transformation that is used to spatially separate the
OAM modes. The mode-sorting process is extremely sensitive
to the choice of axis, and a very small displacement of the
transforming elements R1 and R2 can propagate as a phase error.

Discussion
In conclusion, through weak measurements of OAM and strong
measurements of angular position, we have measured the
complex probability amplitudes that completely characterize a
pure quantum state in the high-dimensional bases of OAM and
angular position. Using our technique, we have also measured the
effects of rotation on a 27-dimensional state vector in the OAM
basis. The rotation manifests as an OAM mode-dependent phase
and allows us to observe the action of the angular momentum
operator as a generator of rotations18. While we have directly
measured pure states of OAM, this method can be extended to
perform measurements of mixed or general quantum states7,29.
By scanning the strong measurement of angular position as well,
one can measure the Dirac distribution, which is informationally
equivalent to the density matrix of a quantum state30,31. Further,
photons entangled in OAM can be measured by extending this
technique to two photons. In this case, one would need to
perform independent weak and strong measurements on each
photon, followed by a joint detection scheme for the polarization
measurement. It is important to mention that while we have used
a quantum description for the direct measurement method, it is
perfectly explained using classical wave mechanics32. However,
the quantum mechanical description is simpler, more elegant and
extendable to systems that do not have a classical description.

Direct measurement may offer distinct advantages over con-
ventional methods of quantum state characterization such as
tomography. This method does not require a global
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Figure 2 | Experimental data showing direct measurement of a

27-dimensional state vector in the OAM basis. The state is created by

sending photons through an angular aperture of width Dy¼ 2p/9 rad (inset

of (b)). (a) The measured real (blue circles) and imaginary parts (red

triangles) of the state vector, (b) the calculated probability density Cð‘Þj j2,

and (c) the calculated phase f(‘) are plotted as functions of the OAM

quantum number ‘ up to a dimensionality of ‘¼±13. The probability

density has a sinc-squared shape. The phase has an asymmetric quadratic

shape due to small misalignments in our optical system. Additionally,

p-phase jumps are seen in the phase when the probability amplitude

changes sign (not seen in the probability density). Theoretical fits to the

probability density and phase are plotted as blue lines. Error bars are

calculated by propagating the detector error (due to background light and

dark counts) through to all measured quantities. Error bars larger than the

symbols are shown. The data shown are the average result obtained from

50 experimental runs.
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reconstruction, a step that involves prohibitively long processing
times for high-dimensional quantum states such as those of
OAM33,34. Consequently, the quantum state is more accessible in
that it can be measured locally as a function of OAM quantum
number ‘, as in our experiment. However, a detailed quantitative
comparison between direct measurement and tomography
will require careful consideration of parameters such as state
reconstruction fidelity and will be the subject of future work.
These advantages may allow us to use direct measurement
for characterizing very large quantum states of OAM much
more efficiently, with significant potential applications in
high-dimensional quantum and classical communication
systems13,35,36. Furthermore, the direct measurement procedure
is not just limited to optical systems such as ours and can be used
for the characterization of other high-dimensional quantum
systems.

Methods
Experimental details. Elements R1 and R2 are free-form refractive elements made
out of Poly methyl methacrylate (PMMA) that map polar coordinates (r, f) to
rectilinear coordinates (x, y) through the log-polar mapping x¼ a(fmod 2p) and
y¼ � a ln(r/b) (ref. 22). These are used for transforming OAM modes with
azimuthal phase variation exp(i‘f) to plane wave modes with position phase
variation exp(i‘x/a). R1 unwraps the phase and R2 removes a residual aberration
introduced in the unwrapping process. These elements were machined using a
Nanotech ultra precision lathe in combination with a Nanotech NFTS6000 fast tool
servo. The optical thickness of element R1 can be written as a function of (x, y) as23

Z1ðx; yÞ ¼
a

f ðn� 1Þ y arctan y=xð Þ� x ln
ffiffi
ð

p
x2 þ y2Þ=b

� �
þ x� 1

2a
x2 þ y2
� �	 


ð6Þ

where f is the focal length of the lens integrated into both elements. This lens

performs the Fourier transform operation that is required between the unwrapping
and phase-correcting procedures22. The two free parameters, a and b, dictate the
size and position of the transformed beam. The optical thickness of element R2 can
be similarly written as

Z2ðx; yÞ ¼ �
ab

f ðn� 1Þ exp � u
a

� �
cos

v
a

� �
� 1

2ab
u2 þ v2
� �	 


: ð7Þ

where u and v are spatial cartesian coordinates in the output plane. The distance
between these two elements must be exactly f, and the elements must be aligned
precisely along the same optical axis. For this reason, they are mounted in a cage
system with fine position and rotation controls.

After element R2, the component OAM modes of the photon still have an
overlap of B20%. This is due to the finite size of the transformed momentum
mode, which is bounded by the function rect (x/2pa). A fan-out hologram24,25

implemented on a phase-only SLM2 creates three adjacent copies of the
momentum mode. The fan-out hologram is calculated from values given in
Prongue et al.24 and Romero and Dickey37. The three copies generated by SLM2
have a phase offset from one another, which is removed by a phase-correcting
hologram implemented on SLM3. The larger momentum modes created by this
process result in smaller position modes when Fourier transformed by a lens.

SLM1, SLM2 and SLM4 are Holoeye PLUTO phase-only SLMs antireflection
coated for visible light. These SLMs have a spatial resolution of 1,920� 1,080 pixels
and a pixel size of 8 mm. These are used for mode generation27, beam copying
(fan-out)24 and polarization rotation26. SLM3 is a Cambridge Correlator
SDE1024 liquid-crystal-on-silicon SLM with a resolution of 1,024� 768 pixels.
This SLM is used as the phase-corrector for the fan-out hologram, as the lower
resolution is sufficient for this process. The quarter and half-wave plates used in
our experiment are zero-order wave plates manufactured by Thorlabs and
optimized for a wavelength of 633 nm. The slit used for post selection is 10-mm
wide and is also manufactured by Thorlabs. The single-photon avalanche detectors
are Perkin Elmer SPCM-AQRH-14 modules with a dark count rate of
100 counts s� 1.

OAM weak-value derivation. Here we derive the relationship between the
OAM weak value hp‘iw and expectation values of the ŝ1 and ŝ2 Pauli operators
(equation (3)). The von Neumann formulation can be used to describe the coupling
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Figure 3 | Experimental data showing the direct measurement of a rotated high-dimensional state vector. The created state is rotated by angles

y±¼±p/9 rad (insets of (b,e)). (a,d) The measured real (blue circles) and imaginary parts (red triangles) of the rotated state vectors. (b,e) The

calculated probability densities Cð‘Þ�
�� ��2. (c,f) The phase difference f±(‘) between the calculated phase and the phase of the unrotated case from

Fig. 2c. Theoretical fits to the probability densities and phases are plotted as blue lines. The linear fits in (c,f) are calculated via the process of w2

minimization, which takes into account the error at each point. Error bars are calculated by propagating the detector error (due to background light

and dark counts) through to all measured quantities. Error bars larger than the symbols are shown. The data shown are the average result obtained

from 50 experimental runs.
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between the OAM (system) and polarization (pointer) observables1,38. The product
Hamilton describing this interaction can be written as

Ĥ ¼ � g p̂‘ � Ŝ2 ¼ �
g �h
2

� �
p̂‘ � ŝ2; ð8Þ

where g is a constant indicating the strength of the coupling, p̂‘ is the projection
operator in the OAM basis and ŝ2 is the Pauli spin operator in the y direction on
the Bloch sphere (not to be confused with the coordinate space describing the
polarization). The measurement pointer is initially in a vertical polarization state

j sii ¼
0
1

	 

ð9Þ

and the system is in an initial state |Ii. The initial system-pointer state is modified
by a unitary interaction Û ¼ expð� iĤt=�hÞ, which can be written using the
product Hamiltonian above as

Û ¼ exp
i gt p̂‘ � ŝ2

2

� �
¼ exp

i sin a p̂‘ � ŝ2

2

� �
ð10Þ

Here we have substituted sina in place of gt as a coupling constant. This refers
to the angle a by which we rotate the polarization of the OAM mode to be
measured in our experiment. When a is small, the measurement is weak. In this
case, we can express the operator Û as a Taylor series expansion truncated to first
order in sina. The initial state then evolves to

j CðtÞi ¼ 1� iĤt
�h
� � � �

� �
j Ii j sii

¼ j Ii j siiþ
i sin a

2
p̂‘ j Iiŝ2 j sii

ð11Þ

We can express the strong measurement as a projection into a final state |FS:

hF j Û j Ii j sii ¼ hF Ij i j siiþ
i sin a

2
hF j p̂‘ j Iiŝ2 j sii ð12Þ

We can then divide by /F |IS to get the final pointer-polarization state:

j sf i ¼ j siiþ
i sin a

2
hF j p̂‘ j Ii
hF Ij i ŝ2 j sii

¼ j siiþ
i sin a

2
hp‘iwŝ2 j sii

ð13Þ

Notice that the weak value hp‘iw ¼ hF j p̂‘ j Ii=hF Ij i appears in the above
equation. Using this expression for the final state of the pointer, we can calculate
the expectation value of ŝ1 as follows:

hsf j ŝ1 j sf i ¼ si j ŝ1 j sih iþ i sin a
2

hp‘iwhsi j ŝ1ŝ2 j sii� hp‘iywhsi j ŝ2ŝ1 j sii
h i

ð14Þ
Using the substitution hp‘iw ¼Re hp‘iw

� 

þ iIm hp‘iw

� 

and the initial state

|sii from equation (9), the above equation can be simplified further:

sf ŝ1j jsfh i ¼ i sin a
2

Re p‘h iw
� 


si ŝ1ŝ2 � ŝ2ŝ1j jsih i
�

þ i Im p‘h iw
� 


si ŝ1ŝ2 þ ŝ2ŝ1j jsih i
�

¼� sin a Re p‘h iw
� 


si j ŝ3 j sih i
¼sin a Re p‘h iw

� 

ð15Þ

Similarly, we can calculate the expectation value of ŝ2 as follows:

sf j ŝ2 j sfh i ¼ si j ŝ2 j sih iþ i sin a
2

p‘h iw si j ŝ2ŝ2 j sih i� p‘h iyw si j ŝ2ŝ2 j sih i
h i

¼ i sin a
2

Re p‘h iw
� 


si ŝ2ŝ2 � ŝ2ŝ2j jsih i
�

þ i Im p‘h iw
� 


si ŝ2ŝ2 þ ŝ2ŝ2j jsih i
�

¼� sin a Im p‘h iw
� 


si ŝ2
2

�� ��si
� �

¼� sin a Im p‘h iw
� 


ð16Þ
Thus, we see that the real and imaginary parts of the OAM weak value p‘h iw are

proportional to the expectation values of the ŝ1 and ŝ2 Pauli operators
(equation (3)):

p‘h iw¼ Re p‘h iw
� 


þ i Im p‘h iw
� 


¼ 1
sin a

sf ŝ1j jsfh i� i sf ŝ2j jsfh i½ �
ð17Þ
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