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Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and
turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We
construct a free-space communication system that encodes information onto the plane-wave (PW) modes of light. We
study the performance of this system in the presence of atmospheric turbulence, and compare it with previous results for
a system employing orbital-angular-momentum (OAM) encoding. We are able to show that the PW basis is the preferred
basis set for communication through atmospheric turbulence for a system with a large Fresnel number product. This
study has important implications for high-dimensional quantum key distribution systems.
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1. Introduction

Free-space optical links provide an easy means of
high-bit-rate communications for line-of-sight systems.
Furthermore, these links require a much simpler infras-
tructure as compared to fiber-based systems. The majority
of the proposed applications of free-space optical com-
munications use polarization, wavelength, or the timing
information of an optical pulse for encoding information [1,
2]. Recently, there have been a number of studies suggesting
use of spatial profile of optical fields as an extra degree
of freedom for encoding information [3–5]. It has been
demonstrated that the use of spatial modes as an extra layer
of multiplexing can substantially increase the bit rate of
a classical communication link [6]. In addition, the large
Hilbert space of spatial modes can make quantum key dis-
tribution (QKD) systems more tolerant to eavesdropping
errors [7].

Orbital angular momentum (OAM) is often suggested as
a preferable set of spatial modes for free-space communi-
cation. It has been argued that, in principle, there is no limit
on the number of bits of information that can be carried by a
single photon using this encoding scheme [3,6]. In practice,
however, the number of spatial modes that can be commu-
nicated in any free-space system is always limited by the
undesired effects of diffraction and atmospheric turbulence.

In this paper, we briefly review the effects of diffraction
on the propagation of scalar fields. This analysis suggests
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that, in the absence of turbulence, OAM modes form an
optimal basis for use in free space communication systems
with rotational symmetry. However, in order for such sys-
tems to carry a large number of modes, they also must
have large apertures. In this limit, diffraction does not play
a major role, and the channel capacity is mostly limited
by turbulence. In the presence of turbulence, the choice
of optimal encoding basis is not obvious. We experimen-
tally investigate the propagation of an alternative group
of spatial modes in this situation. This basis comprises an
orthonormal set of uniform beams with tilted wavefronts,
also known as plane wave (PW) modes. The set of PW
modes forms a large orthonormal basis set that can be used
for encoding information. Furthermore, the PW modes can
easily be separated by using a single lens at the receiving
aperture. Mode decomposition analysis is used to perform
a quantitative comparison of the performance of PW and
OAM modes under the adverse effects of turbulence. The
results suggest that the PW basis is more robust against
atmospheric turbulence, closely confirming the theoretical
predictions of Boyd et al. [8].

2. Diffraction and communication modes

Consider a prototypical free-space communication link as
depicted in Figure 1. Due to diffraction, a spatially confined
beam generated in the transmitting aperture spreads upon
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Figure 1. Schematic diagram of a free-space communication link. (The color version of this figure is included in the online version of the
journal.)

propagation. The area of the beam over which most of its
energy is confined can be calculated at any plane using
diffraction theory. However, after propagating beyond the
near field, the beam has long transverse tails that continue
toward infinity [9]. Since the receiving aperture has a finite
size, a portion of energy of the beam will be lost in the
detection process. Additionally, the strength of this induced
loss is dependent on the form of the transmitted field. As
a result, a set of initially orthogonal fields in the transmit-
ting aperture will no longer form an orthogonal set at the
receiving aperture, and hence it is not possible to perfectly
discriminate among them.

The input–output characteristics of a communication link
can be described using the Rayleigh–Sommerfeld diffrac-
tion formula, which describes the free-space propagation of
an arbitrary scalar field as

Ψout(rR) =
∫

Ψin(rT)K (rT, rR) d2rT, (1)

in which Ψin(rT) and Ψout(rR) are the electric fields in the
transmitting and the receiving apertures. The propagation
kernel K (rT, rR) can be written as [9]

K (rT, rR) = − 1

2π

∂

∂z

exp(ik | rT − rR |)
| rT − rR | . (2)

Equation (1) indicates that the fields in the two apertures
are related via a linear transformation. Using Dirac nota-
tion, this transformation can be written simply as |Ψout〉 =
P̂ |Ψin〉, where P̂ is the propagation operator. Note that
the propagation kernel as defined above represents a uni-
tary transformation. In order to calculate the detected field,
however, we must take into account the finite size of the
apertures. This imposes the condition K (rT, rR) = 0 for
rR > R1 and rT > R0. As a result of adding this constraint,
the propagator is no longer a unitary operator.Anon-unitary
transformation does not preserve inner products. Hence, a
set of orthogonal modes in the transmitting aperture are
not necessarily orthogonal in the receiving aperture upon
propagation, that is,

〈Ψm−out | Ψn−out〉 = 〈P̂Ψm−in | P̂Ψn−in〉
= 〈Ψm−in | P̂† P̂ | Ψn−in〉 �= 0. (3)

Note that since P̂ is not unitary, P̂† P̂ need not constitute
the identity matrix.

The problem of finding the optimum set of modes for
transmitting energy and information from one finite aperture

to another has long been investigated in the context of
apodization theory [10] and the theory of communication
modes [4]. An orthogonal set of modes in the transmitting
aperture which remain orthogonal upon propagation can be
found by performing a singular value decomposition (SVD)
of the propagation operator. This can be formally expressed
as

P̂† P̂ | Φn〉 =| λn |2| Φn〉. (4)

The functions |Φn〉 are sometimes called the communica-
tion modes of the system [4,11]. The coefficient | λ2

n | is a
coupling coefficient and is equal to the portion of the energy
of the corresponding mode that falls within the receiving
aperture [4,12].

The SVD procedure guarantees that the communication
modes form a complete orthonormal set in the receiving
aperture.

〈Φm−out | Φn−out〉 = 〈Φm−in | P̂† P̂ | Φn−in〉
= | λn |2 〈Φm−in | Φn−in〉
= | λn |2 δmn . (5)

Therefore, these modes form a preferred set for free-space
communication.

A real-world communication link usually consists of
circular components such as lenses, apertures, and mirrors.
In this situation, the rotational symmetry of the system can
be exploited to find analytical solutions for Equation (4).
Assuming paraxial Fresnel diffraction, it can be shown that
the solutions have the form

Φn,�(ρ, φ) = Rn,�(ρ)

ρ1/2
exp(i�φ), (6)

where the radial parts Rn,l(ρ) are known as the general-
ized prolate-spheroidal functions [10,13]. The azimuthal
dependence exp(ilφ) suggests that these solutions are eigen-
functions of the orbital angular momentum operator [14].
The eigenfunctions of Equation (6) provide a complete
two-dimensional basis set for free-space communication
between two circular apertures. In practice, however, vortex
beams are often formed with a top-hat rather than the
Laguerre–Gaussian intensity structure. This is because
the functional dependence of the solutions on the radial
and the azimuthal coordinates is separable, and any two
functions with different OAM indices maintain their orthog-
onality upon propagation, regardless of their radial form.

The logic presented above suggests that OAM modes are
the natural choice for encoding information in a free-space
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Figure 2. (a) A PW mode is prepared by using a phase grating, of the sort shown in (b). This procedure is realized through use of an SLM
illuminated by an expanded He–Ne laser beam. The first-order diffracted beam is imaged by a 4-f system onto the receiving aperture,
where a 750 mm lens separates the modes. (c) Thin-phase turbulence is added to the phase grating. The first-order diffracted beam in this
case represents a PW mode after propagation through turbulent atmosphere. (The color version of this figure is included in the online
version of the journal.)

optical link. However, it can be shown that the number of
communication modes that can be efficiently transmitted
over a free-space link scales with NF = AR AT/(λL)2,
which is the product of the Fresnel numbers of the two
apertures in the system [12,15]. Therefore, for a commu-
nication system to be substantially enhanced by the use of
spatial encoding, large apertures are needed.

The calculation of the communication modes and their
coupling coefficients is a nearly degenerate problem in sys-
tems with large apertures [15]. This means that for a given
coupling coefficient λn , there exist multiple functions Ψn

satisfying the singular value decomposition of the prop-
agation kernel according to Equation (4). The number of
such modes is approximately equal to the Fresnel number
product of the system and their coupling coefficients are
almost equal to unity [12,15]. This specific subset of the
eigenfunctions is sometimes known as the degenerate com-
munication modes. It is easy to see that, as a consequence of
degeneracy, any linear superposition of these modes is itself
a communication mode. In other words, diffraction plays
no major role in an optical system with large apertures and
therefore the set of communication modes is not unique.
This allows us to use a linear transformation to map the
degenerate communication modes to the set of plane waves
(PWs).

We explore the possibility of employing an encoding
scheme based on the use of PW modes. The choice of
this encoding scheme is partly motivated by the fact that
the generation and separation of PW modes are simple
as compared to those of OAM modes. OAM modes are
conventionally generated using high-resolution spatial light
modulators [16] or a series of forked holograms [6], whereas
to generate a PW mode, one has to simply add a wavefront
tilt to a top-hat beam. Similarly, sorting OAM modes needs
carefully crafted custom optical elements [17,18], which
are very sensitive to misalignment [19]. The process of
separating PW modes, on the other hand, can be achieved
with a single lens. This lens transforms different PW modes
to spatially separated spots in its focal plane.

3. Effects of turbulence on PW and OAM modes

In a classical communication system, aberrations induced
by turbulence on the transmitted modes result in a spread
of the detected modes in the receiver, increasing the cross-
talk and thus reducing the channel capacity of the system
[16,20]. In a QKD system, the turbulence induced loss of
quantum coherence results in an increase of the error rate
which can compromise the integrity of the protocol [5]. Here
we consider the role of atmospheric turbulence on a free-
space communication system that employs PW encoding
at high light levels. The connection between quantum and
classical properties can be understood by considering the
fact that photons are units of excitation of the modes of light.
Therefore the mode mixing introduced by the turbulence
affects both classical and QKD systems in identical ways.

We consider a system where the transmitting aperture is
imaged onto the receiving aperture. Additionally, we as-
sume the apertures of the imaging system are chosen to
be sufficiently large so that the effects of diffraction can
be safely ignored. This corresponds to a situation that the
Fresnel number product, NF, is much larger than the space-
bandwidth product of the transmitted modes. We have
modeled the mode scrambling due to the turbulence by a
single phase-screen in the transmitting aperture [21]. The
so-called thin-phase turbulence model is valid as long as the
aberrations caused by turbulence are not too large so that the
scintillation effects can be ignored. These phase aberrations
can be described by normal random variables characterized
by the quantity 〈[φ(r1) − φ(r2)]2〉. This quantity is known
as the phase structure function and can be evaluated using
Kolmogorov turbulence theory to give the result

〈
[φ(r1) − φ(r2)]2

〉
= 6.88

∣∣∣∣ x1 − x2

r0

∣∣∣∣
5/3

. (7)

The parameter r0 is known as Fried’s coherence parameter
and is a measure of the length of correlation of the phase
aberrations [22].

Using the model of phase aberrations introduced above,
Boyd et al. have analyzed the effects of turbulence on the
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Figure 3. (a) Average cross-talk values 〈sΔ〉 for PW modes are plotted as a function of turbulence level L/r0 for the m = 0 input. The
theoretical predictions are shown by the solid lines. The error bars show the standard deviation values calculated for an ensemble consisting
of 100 realizations of turbulence. The plots level off to constant values at the limit of very little turbulence due to the residual cross-talk
arising from our sorting technique. (b) The theoretical and experimental values of 〈sΔ〉 for an � = 0 OAM mode as reported in [16]. (The
color version of this figure is included in the online version of the journal.)

propagation of PW modes [8]. The PW modes considered
here are confined to a finite square aperture and have tilts
only in one dimension. These modes as launched by the
transmitter can be represented as

A(x, y) = A0W (x/L)W (y/L) exp

(
im

2πx

L

)
, (8)

where A0 is the field amplitude, W (ξ) is the aperture func-
tion defined so that W (ξ) = 1 for |ξ | ≤ 1/2 and zero
otherwise, and m is the mode index of the launched field.
The theoretical analysis in [8] suggests that the turbulence-
induced cross-talk in the detection of these modes can be
calculated by evaluating the integral

〈sΔ〉 = 8
∫ 1/2

0
dη

(
1

2
− η

)

× exp
[
−3.44(ηL/r0)

5/3
]

cos(4πΔη), (9)

where L is the width of the rectangular transmission aper-
ture, and 〈sΔ〉 is the conditional probability of detecting a
photon in the PW mode m + Δ, given that the photon was
sent in the PW mode m. The integration is performed over
the normalized transverse coordinate η. Since the integral
in Equation (9) is only an explicit function of L/r0, the
cross-talk probability can be quantified using this single
parameter.

A similar approach has previously been used to analyze
the effects of turbulence on propagation of OAM states
[23–25]. A numerical comparison of the performance of
PW modes versus OAM modes has been done in [8]. The
authors have concluded that the PW encoding is less quickly
degraded by a factor of about three. In this paper, we exper-
imentally verify this result.

Figure 2 shows the schematic diagram of our experiment.
Spatially collimated light from a He–Ne laser illuminates

a spatial light modulator (SLM), which is utilized along
with a 4f system and an aperture to generate different PW
modes. Since the turbulence is modeled by a single phase-
screen in the transmitting aperture, the same SLM is used
to impress Kolmogorov phase aberrations onto the beam. A
750 mm lens is employed at the receiving aperture to sort
the different PW modes into spatially separated spots in its
focal plane.ACCD is used for recording the intensity profile
of the sorted modes in this plane.

When the turbulence phase-screen is not present, each
mode is focused to a diffraction-limited spot on the CCD’s
screen. We divide the area on the CCD into non-overlapping
adjacent spatial bins which correspond to the central posi-
tions of these spots. In the presence of turbulence, each
mode will form a random shape on the screen. The amount
of beam power falling within each spatial bin is proportional
to the value of 〈sΔ〉 for the given input mode. We have
measured these values in 51 different regions corresponding
to |Δ| ≤ 25. A range of turbulence levels characterized by
L/r0 ∈ [10−2 : 102] was tested. For each value of L/r0, the
results are averaged over 100 phase-screens. To stay within
the spatial bandwidth of the SLM, the minimum value of r0
was chosen to be sufficiently large.

The theory presented in [8] dictates that the average
cross-talk values 〈sΔ〉 are independent of the transmitted
mode index m. We have verified this property by repeating
the experiment for all possible input modes in the chosen
range. To within the experimental accuracy, the results are
identical for different values of m. The measured values of
〈sΔ〉 for the m = 0 case are presented in Figure 3(a) for the
range of 0 ≤ Δ ≤ 4. The Δ = 0 line represents the fraction
of the power that remains in the launched mode after prop-
agation through atmospheric turbulence. The other curves
indicate the portion of the power that has been transferred
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Figure 4. (a) The fraction of energy s0 staying in an m = 0 PW mode as it propagates through atmospheric turbulence is plotted along
with the s0 values for an � = 0 OAM mode. (b) Influence of Kolmogorov turbulence on the channel capacity of a PW communication
channel as compared to that of an OAM channel. The channel capacities are calculated for a system dimensionality of N = 7, 9 and 11.
The solid and dashed lines present the theoretical predictions as fitted to the measured channel capacities at zero turbulence level. The
‘x’ signs represent the PW data and the square marks represent the OAM data. (The color version of this figure is included in the online
version of the journal.)

to the neighboring modes. As can be seen, the Δ = 0 line
begins at a value close to unity and drops steadily as the
turbulence strength increases. The curves for all other values
of Δ initially increase as L/r0 increases and eventually
decrease with a further increase of L/r0. The decrease at
high turbulence levels occurs because the power in the input
mode spreads among more and more PW modes. It can be
seen that for a sufficiently large value of L/r0 the optical
power spreads equally among all the modes.

We previously measured the performance of OAM modes
for the same range of turbulence values [16]. For compar-
ison, the OAM results from this previous experiment are
shown in Figure 3(b). It should be emphasized that the
turbulence strength in this case is characterized by D/r0,
where D is the diameter of the circular transmitting aper-
ture. It is seen that the OAM cross-talk values behave in
a qualitatively similar fashion to those of the PW modes.
To make a quantitative comparison possible, the Δ = 0
values for OAM and PW modes are presented on the same
plot in Figure 4(a). It can be seen that the power remains
in the transmitted PW mode for larger levels of turbulence
as compared to the OAM mode. More specifically, the PW
curve reaches the same value as that of OAM at a turbulence
level that is almost three times larger.

The aberrations caused by atmospheric turbulence are
largely consisted from wavefront tilts [22]. This leads to
pointing errors which can directly cause cross-talk in a
PW-based encoding scheme. On the contrary, the topolog-
ical charge associated with the OAM modes is a robust
quantity for weak to moderate values of turbulence [23].
Therefore, the superior performance of the PW basis in
the presence of turbulence might sound counter-intuitive.
However, the definition of OAM is dependent on the choice
of optical axis. An off-axis vortex mode can be described by
a superposition of a broad range of OAM modes, whereas its
topological charge is unaffected by the lateral shift. Tip-tilt

aberrations along both the x and the y directions cause
cross-talk in an OAM-based communication system. In
contrast, the one-dimensional PW modes described above
are unaffected by the wavefront tilts along the y direction.

The consequences of these results for a communication
link can be better understood using the concept of channel
capacity. From the information theory, the channel capacity
of a communication channel is defined as

C = max[H(x) − H(x | y)]

= max{Pi}

⎡
⎣−

N∑
i=1

Pi log2(Pi ) +
N∑

i=1

Pi

N∑
j=1

Pi j log2(Pi j )

⎤
⎦ .

(10)

Here, N is the total number of modes in our system, Pi is
the probability of transmission of mode i , and Pi j is the
conditional probability of transmission of mode i followed
by detection of mode j . We can calculate the channel capac-
ity of our PW channel using the values of Pds = 〈s(d−s)〉.
Experimental data for the channel capacity of the PW com-
munication channel with N = 7, 9 and 11 are shown in
Figure 4(b). The channel capacity, c, is plotted as a function
of the turbulence strength L/r0. For comparison, we have
plotted the data for an OAM channel from [5] on the same
figure. In both cases, the measured channel capacities are
substantially lower than the theoretical limit of log2 N due
to the limitations of the sorting techniques. It can be seen that
the channel capacities for the PW modes tend to decrease
much slower than those of the OAM modes as the turbulence
level increases. More significantly, there exists a range of
turbulence values for which the PW channel has non-zero
capacities while the channel capacity of the OAM channel
is almost equal to zero.
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4. Conclusions

In summary, we have analyzed the performance of spatial-
mode encoding in a free-space communication system for
PW and OAM basis sets. Reviewing the theory of communi-
cation modes, we conclude that that the OAM basis set is the
preferred encoding scheme when the effects of diffraction
are dominant. However, a spatial encoding scheme can only
be beneficial in a system with large apertures. In this situa-
tion, the effects of diffraction on the transmitted modes are
minimal and the choice of encoding basis needs to be made
considering the effects of atmospheric turbulence. We have
considered the PW basis as a candidate for such systems
considering the simplicity of its generation and separation.
The effects of Kolmogorov thin-phase turbulence on prop-
agation of PW modes have been studied experimentally.
We have quantitatively compared the channel capacity of a
PW-based communication system with the previous results
from OAM-based systems. Our results suggest PW basis is
preferable to OAM basis as an encoding scheme for free-
space communication in systems with large apertures.
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