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Abstract: Here we describe a laboratory procedure by which we have
increased the resolution of a measurement of the position of an optical
component by a factor of 16. The factor of 16 arises from a four-fold
quantum enhancement through the use of an N = 4 N00N state and a
four-fold classical enhancement from a quadruple pass through a prism pair.
The possibility of achieving supersensitivity using this method is discussed.
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1. Introduction

The ability to accurately measure small variation of physical parameters with limited amount
of resource has been of fundamental importance in classical interferometry and metrology. Un-
fortunately, quantum mechanics and the nature of classical light impose a well defined limit on
the precision that can be achieved in such a measurement. This limit is known as the standard
quantum limit (SQL). In the context of precision measurements of phase, this is represented
by the phase uncertainty ΔφSQL = 1/

√
n, where n is the the mean number of photons involved

in performing the measurement. It is possible to beat this classical limit by using nonclassical
light, leading to a phenomenon known as supersensitivity [1]. However, the precision in the
measurement of phase with nonclassical light is also fundamentally limited. This limit, com-
monly referred to as the Heisenberg limit, is given by ΔφHL = 1/n.

A wide variety of experiments have been proposed with the aim to overcome the SQL. Many
of these experiments are based on the generation and detection of N00N states of light [2–5]. In
spite of the their vulnerability to loss and difficult methods of generation and detection, N00N
states have became a key resource for quantum interferometric lithography, quantum imaging
and quantum metrology. Initially it was thought that the “superresolved” nature of interference
patterns obtained beyond the Rayleigh diffraction limit was due to the quantum nature of N00N
states. However, Korobkin et. al. soon demonstrated that superresolution can be achieved with
classical light [6]. On the other hand, phase supersensitivity is only exhibited in the case of
quantum interference.

Recently, Thomas-Peter et. al. showed that the phase measurement sensitivity in N00N state
interference is strongly dependent on experimental imperfection [7]. The delicate nature of
N00N states and real-world detector efficiencies makes the majority of the N-photon detection
events lost. Further, non-unit fringe visibility decreases the measurement accuracy, and the
visibility can be used to identify whether a superresolved interference pattern exhibits phase
supersensitivity. In practice, this imperfection of system establishes experimental boundaries
which make it essentially difficult to beat the SQL with N00N states.

In this paper, we show that the sensitivity of entangled-state phase estimation can be en-
hanced more by combining quantum and classical protocols. We demonstrate a novel experi-
mental technique that allows us to increase the resolution of a phase measurement by a factor
of 16. In order to achieve this, we combine a quantum interferometric method with multiple
passes through a prism pair [8]. The quantum method gives us a four-fold enhancement of res-
olution through the use of an N = 4 N00N state. The N00N state undergoes four passes through
a prism pair, which gives us an additional four-fold enhancement of resolution. In addition,
the experimental data analysis shows that our phase measurement accuracy is also increased.
The precision of our phase measurement strongly depends on the system loss, such as the ab-
sorption and reflection of optics as well as imperfect detection efficiency. We discuss the phase
measurement precision achieved with our method and compare it with that obtained without.
This method could find applications in phase variation measurements for the detection of grav-
itational waves [1, 9], in bio-imaging [10], and in nano-scale optomechanics [11].
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2. Theory

We first describe the resolution enhancement that is achieved in a Mach-Zehnder interferometer
through the use of N00N states. Assume a variable phase retarder is located in mode A of the
interferometer. Each photon existing in this mode will experience a phase shift φ . As the phase
of the retarder is varied, a classical interference pattern is obtained in the output ports of the
interferometer. The intensity of this pattern is modulated by one period for a phase shift of 2π ,
and is described by the sinusoidal function cos2(φ/2).

When the N00N state (|N〉A |0〉B + |0〉A |N〉B) is input into the interferometer, the net phase
acquired by the N photons results in the output state (e−iNφ |N〉A |0〉B + |0〉A |N〉B). N-photon
detection at the output of the interferometer gives an interference pattern described by the si-
nusoidal function cos2(Nφ/2) [2]. It is clear that the resolution of the resulting interference
fringes is increased by a factor of N. This resolution enhancement can be mimicked by using
classical protocol of multiple reflections. If we introduce multiple passes in the arm of the in-
terferometer containing the variable phase retarder, a further enhancement of the resolution can
be achieved [12]. When the photons pass M times through the same variable phase retarder,
they will acquire a net phase of Mφ . Furthermore, these quantum and classical protocols can
be combined. If a N00N state is input into such an interferometer, the output state will have
the form (e−iNMφ |N〉A |0〉B + |0〉A |N〉B), and the interference pattern will be described by the
function cos2(NMφ/2) showing that the resolution is increased by a factor of NM, compared
with that of single-pass classical-light interference.

In quantum mechanics, a variable phase retarder can be described by using the unitary oper-
ator U(φ) = exp(−iφH), where H represents the phase transformation operator H = â†â [13].
Here, â and â† represent annihilation and creation operators respectively. The output state
is then related to the input state by the equation Ψ(φ) = U(φ)Ψ(0). In quantum estimation
theory, the phase uncertainty Δφ is related to the quantum Fisher information [14] FQ(φ) as
Δφ ≥ 1/

√
qFQ(φ), where q is the number of repeated measurements [13].

The quantum fisher information for a coherent state in an interferometer is related to the
amplitude of the state as FQ(φ) = |α0|2. This is equivalent to the average number of photons,
n̄. The uncertainty in phase for such a system is then given by the relation Δφ ≥ 1/

√
qn̄. For a

coherent state in an interferometer with M multiple passes in one arm, the quantum fisher in-
formation is increased to FQ(φ) = M2n̄, resulting in a lower bound for the uncertainty in phase
Δφ ≥ 1/(M

√
qn̄). This enhancement in sensitivity can be applied to a N00N state interferome-

ter by adding M multiple passes in an interferometer arm, further lowering the phase uncertainty
bound. The quantum fisher information for such a system is given by FQ(φ) = (NM)2. This re-
sults in an even lower bound for the uncertainty in phase given by Δφ(N,M) ≥ 1/(NM

√
q). Thus,

we see that adding M multiple passes in a N00N state interferometer enhances the resolution
and phase sensitivity of the system by a factor of M.

In reality, experimental imperfections such as system loss and non-unit detector efficiency
have a strong effect on the phase sensitivity. Further, the non-unit visibility will linearly reduce
the accuracy of the phase measurement [5, 15]. In addition, one must take into account the in-
trinsic N00N state generation efficiency, which is the ratio of the number of photons generated
in a particular N00N state to the N-photon interference [5]. For N = 2 N00N state, this effi-
ciency is equal to one. However, for N > 2 N00N states, the generation efficiency is reduced to
lower than one [5, 16]. We elaborate on the generation efficiency of our N = 4 N00N state in
the next section. Taking these factors into account, our uncertainty in phase is now defined as

Δφ(N,M) ≥ 1/(NMV
√ηgηnetq) (1)

where V is the visibility of the interference pattern and ηg is the intrinsic N00N state generation
efficiency. ηnet is the net system efficiency and is given by ηnet = (ηsysηM

ppηdet)
N . Here, ηsys is
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Fig. 1. (a) Schematic of the experimental setup. BS: non-polarizing beam splitter, IF: in-
terference filter, PZT: Piezoelectric actuator, PP: prism pair, and APD: detector. Inset: The
detailed prism pair alignment and the beam path for M = 2 through the prism pair. d: the
lateral displacement of two prisms, x: the longitudinal movement of a prism, and L: the
hypotenuse length. (b) Simplified schematic of the setup, and the four-photon states at each
stage I, II, and III. φ is the phase difference between two paths, A and B.

the optical transmittance of the interferometer, ηpp is the single-pass transmittance of the prism
pair, and ηdet is the detector efficiency.

3. Experimental setup

A proof-of-principle experiment was performed by using a Mach-Zehnder interferometer as
shown in Fig. 1(a). Second harmonic Femto-second pump pulses at 400 nm were split into two
paths A and B at a beam splitter (BS) and each beam was incident on a β -Barium Borate (BBO)
crystal. Energy-time entangled photon pairs were randomly generated in each BBO crystal by
the process of spontaneous parametric down conversion (SPDC) under type-I collinear phase
matching conditions [17]. The pump power in both paths was adjusted to generate probabilis-
tically equal numbers of photon pairs. The input state at stage I of Fig. 1(b) is a coherent
pump-photon state, and the generated two-and four-photon number states in paths A and B after
the interference filters (IF) are probabilistically given by

|Ψ2〉 =
1√
2
(ei2φ |20〉AB + |02〉AB) (2)

|Ψ4〉 =
1
2
(ei4φ |40〉AB + |04〉AB)+

1√
2

ei2φ |22〉AB , (3)

where φ is the phase difference between two paths, A and B. Note that the two-photon N00N
state has unit intrinsic efficiency, but that of the four-photon N00N state is 1/4 due to the un-
wanted |22〉AB term in equation 3. The four-photon state at stage III in Fig. 1(b) has |13〉CD
state with the amplitude of i(1− ei4φ )/4 indicating that quantum interference cancels the con-
tribution from |22〉AB state to |13〉CD state via post-selection [5, 18]. The beam splitters BS3:7
and BS5:5 and detectors APD3 and APD4 are additionally used for measuring post-selected
four-photon events. The intrinsic efficiency of the four-photon N00N state in this paper can be
enhanced by a factor of 1.5 by using the four-photon creation method described in Ref. [5]. A
lens is located in each path to increase the collection efficiency of the photons. A prism pair
(PP) with a piezo actuator (PZT) on one prism is located in path A. Another prism pair is placed
in path B for the purpose of path-length matching. A triangular waveform voltage is applied to
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the actuator with a repetition rate of 0.004 Hz. The prism on the piezo actuator moves by 400
nm for a voltage change of 4.8 V. Both beams are combined at the second beam splitter (BS),
and the output from the beam splitter is measured by single-photon counting detectors (APDs)
with a coincidence circuit. The coincidence circuit has a time windows of 7 ns for two-photon
coincidences and 5.4 ns for four-photon coincidences. The integration times used for detecting
single-, two- and four-photon coincidence counts were 0.2, 0.2, and 100 seconds, respectively.

The beam path inside the prism pair for M = 2 passes is shown in the inset of Fig. 1. Photons
entering through the hypotenuse of a right angle prism will undergo multiple reflections and
exit the prism also through the hypotenuse in a direction parallel to the input path [8]. The
number of reflections M through the prism pair is related to the hypotenuse length L and the
displacement parameter d according to M = round(L/2d). The prism pair has the practical
advantage of relatively simple alignment when changing the number of passes M through the
two prisms, as compared to two parallel/concave mirrors [12, 19].

4. Experimental results

Interference patterns obtained with our interferometer are shown in Fig. 2. Single-photon counts
are plotted as a function of piezo voltage in Fig. 2(a). These show the interference pattern
obtained by sending a strongly attenuated coherent state at 800 nm through the interferometer
in Fig. 1 without multiple passes through the prism pairs (M = 1). Figures 2(b)-2(c) show
measured two-photon coincidence count rates as a function of piezo voltage. These exhibit
interference patterns obtained with an N = 2 N00N state for different numbers of multiple
passes M = 2 and 4 through the prism pairs. Figure 2(d) shows the measured four-photon
interference pattern for M = 4 multiple passes through the prism pair, and Fig. 2(e) is a zoomed-
in plot of Fig. 2(d). The resolution enhancement is apparent in Figs. 2(a)-2(d) and is clearly
seen to be proportional to the product of the entangled photon number N and the number of
multiple passes M through the prism pairs. Specifically, the four-photon interference pattern
with a quadruple pass through the prism pair (Fig. 2(d)) exhibits a resolution enhancement by
a factor of 16 compared with that of the single-photon interference pattern with single pass (n
= M = 1). These superresolution results clearly show that the resolution of interference patterns
can be enhanced by combining N00N state interferometry with a simple double prism setup.

Next, we analyze our data to determine the accuracy in phase measurement. A sinusoidal
fit made to the data in Figs. 2(a)-2(d) shows visibilities V of 85%, 70%, 65%, and 40%, re-
spectively. Taking in account the efficiency of our single photon detectors (ηdet = 0.62) and
the ratio between measured single and two-fold coincidence counts (6.3%), the net detection
efficiency of our system ηnet is estimated to be 0.25 for single photon detection assuming iden-
tical losses in both pathes. The transmission loss due to multiple passes through the prism pair
is negligible due to the use of anti-reflection coatings on the prisms used. The minimum phase
uncertainty (in radians) for a coherent state with no multiple pass through the prism pairs is then
calculated to be Δφ = 1/(V

√
ηnet n̄q) = 1/(0.85 ·√0.25 ·1) = 2.35. In contrast, the minimum

phase uncertainty for an N = 2 N00N state with M passes through the prism pairs is given by
Eq. (2) as Δφ(N,M) = 1/(NMV

√ηgηnetq). Here, ηnet = (0.25)2 = 0.0625, as we are measuring
two-photon events. The minimum phase uncertainty in Figs. 2(b)-2(c) is then calculated to be
Δφ(2,2) = 1.4 and Δφ(2,4) = 0.8.

For the N = 4 N00N state, note that additional beam splitters BS3:7 & BS5:5 and detectors
APD3 & APD4 are added in front of APD2 reducing the system efficiency of APD2, APD3,
and APD4 by 1/3 when compared to that of APD1. Then the net system efficiency is very
low

(
ηnet = 0.254/33 = 0.000145

)
. This low net system efficiency as well as low visibility and

non-unit intrinsic efficiency for the four-photon interference has a strong effect on the minimum
phase uncertainty for the case shown in Fig. 2(d), which is calculated to be Δφ(4,4) = 26.0.
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Fig. 2. Experimental data showing interference patterns obtained as a function of piezo
voltage. (a) Single-photon count rates for a strongly attenuated coherent state at 800 nm
without any passes through the prism pair (M = 1). Two-photon count rates for the N = 2
N00N state with (b) M = 2 and (c) M = 4 multiple passes through the prism pair. (d) Four-
photon count rates for the N = 4 N00N state for M = 4 multiple passes through the prism
pair, and (e) the zoomed-in plot of the dashed box in (d). The interference patterns in (a)-(d)
were performed under identical experimental conditions. The solid curves are theoretical
fits to the data. Error bars show the standard deviation of counts (±√

counts).

From these results, it is clear that we are able to enhance the phase sensitivity of our in-
terferometer by introducing multiple passes through a prism pair. Unfortunately, the non-unit
detector ηdet and system ηsys efficiencies significantly lower the accuracy in phase measure-
ment as we go to a larger number of multiple-photon events N. The use of multiple passes in
the interferometer arms can be used to ameliorate the effect of low detection efficiency on the
phase sensitivity. This is seen clearly as we increase the number of multiple reflections in the
N = 2 N00N state interferometer from 2 to 4. The minimum phase sensitivity is lowered from
1.4 to 0.8 in this case. In principle, we could apply a similar tactic to the N = 4 N00N state
interferometer to achieve high phase sensitivity in addition to superresolution.

5. Conclusions

We have performed an experiment showing an enhancement in resolution and phase sensitiv-
ity of a quantum interferometric method with the simple addition of a prism pair. We achieve
an interference pattern that displays a resolution enhancement by a factor of 16 when com-
pared to a traditional Mach-Zehnder interferometer. The factor of 16 comes from a quantum
enhancement of 4 through the use of an N = 4 N00N state and a classical enhancement of 4
from a quadruple pass through a prism pair. Further, we are able to show that the addition of
multiple passes in the arms of the interferometer leads to a more accurate phase measurement
than without. However, we do not achieve phase supersensitivity due to the fact that the sensi-
tivity in phase is strongly dependent on our net system efficiency [7]. This is severely limited
by imperfect detectors, system transmission, and N00N state generation efficiency. In order to
achieve phase supersensitivity, we would need to obtain unit fringe visibility and increase our
net system efficiency to 0.707 for an N = 2 N00N state. To achieve this criterion with an N = 4
N00N state by our current experimental apparatus, we would need unit fringe visibility and a
unit net system efficiency. We are working towards improving our interference visibility and
net system efficiency for future experiments.
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