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Thermal ghost imaging with averaged speckle patterns
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We present theoretical and experimental results showing that a thermal ghost imaging system can produce
images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that
is, “blurred”) speckle patterns, as long as the collected signal variation is predominantly caused by the random
fluctuation of the incident speckle field rather than other noise sources. In our experimental study, we show that
the quality of the ghost image is not degraded when as many as 25 speckle patterns are averaged together for
each measurement. This surprising result comes from the fact that the averaging of speckle patterns leads to a
decrease in the contrast but not in the kurtosis, and the image quality of a ghost imaging system is dependent
on the kurtosis rather than the contrast ratio of the illuminating field. These results suggest that a broad class of
imaging systems based on the use of speckle techniques can be implemented even using detectors that respond
slowly on the time scale of the fluctuating speckle pattern.
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I. INTRODUCTION

The term “speckle pattern” conventionally refers to the
intensity distribution produced by the mutual interference
of a set of randomly generated wave fronts, such as those
obtained when scattering a coherent laser beam off a rough
surface or in the propagation of star light through the turbulent
atmosphere. In recent years, a diverse range of applications
has been developed to make use of the speckle phenomena
in the context of astronomy [1], metrology for biomedical
applications [2–4], imaging of strongly interacting quantum
systems [5], random lasers [6], etc.

The success of many speckle-based techniques relies, more
or less, on the facts that a speckle field can have high
spatial and temporal randomness and that the detecting devices
have enough spatial and temporal resolution to monitor the
variations of individual speckles. The contrast ratio, which in
many circumstances is used to quantify the amount of variation
within a speckle pattern, can be defined as K = σ (I )/〈I 〉,
where σ (I ) ≡

√
〈I 2〉 − 〈I 〉2 is the standard deviation of the

intensity variation of the speckles and 〈· · ·〉 denotes either
temporal or spatial ensemble average.

When the detector used in such a system is slow in the sense
that its refresh rate cannot keep up with the temporal variations
of the illuminating speckle field, the effective illuminating field
that the system measures essentially becomes the intensity
average (or sum) of multiple mutually uncorrelated speckle
patterns. In such cases, the contrast ratio K of such an
intensity-averaged speckle pattern scales with the speckle
averaging factor M as M−1/2 [7] [cf. Eq. (9) and Fig. 2]. The
quantity M is calculated as τd/τc, that is, as the ratio between
the integration time τd of the detector and the coherence time

*P. Zerom and Z. Shi contributed equally to this work.
†zshi@optics.rochester.edu

τc of the random speckle field. In other words, M indicates
the number of independent speckle patterns that are averaged
together in each measurement. As a consequence of the
reduced contrast ratio, the performance of many speckle-based
metrology and imaging techniques would quickly deteriorate
as the response (integration) time of the detector increases [4],
i.e., as M increases.

Recently, speckle fields have been utilized to perform ghost
imaging [8–17], an indirect imaging method that acquires
the image of an object through spatial intensity correlation
measurements. Compared to conventional imaging techniques,
ghost imaging uses a nonspatially resolving bucket detector
to collect the optical signal directly from the object either
through reflection or transmission, and therefore it can be
advantageous in scenarios where using a detector array is
restricted or difficult.

One might naturally expect that a ghost imaging system
that uses slow detectors would produce images of degraded
quality, as is the case in many other speckle-based imaging
methods. However, in this article we show both theoretically
and experimentally that this is actually not the case and that the
image quality of a thermal ghost imaging system can remain
high even though the refresh rate of the detectors is much
slower than the coherence time of the illuminating speckle
field, as long as the fluctuations in the detected signal are due
predominantly to the randomness of the speckle pattern itself
and not due to noise in the detection system. Similar theoretical
results were presented earlier in Ref. [17]; the present paper
provides an experimental demonstration of this result.

Before proceeding with our analysis, a few preliminary
comments are in order. For years there has been some contro-
versy in the literature regarding the origin of pseudothermal
ghost imaging (cf. Refs. [18,19]). The key issue is whether it
can be explained as arising from classical intensity-fluctuation
correlations between speckle patterns illuminating the object
and the reference detector or whether it can only be understood
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FIG. 1. (Color online) Schematics of our thermal ghost imaging
setup. The spatial light modulator (SLM) is used to impress a
sequence of speckle patterns onto the laser field. BS: beam splitter;
CCD: imaging detector.

as coming from nonlocal two-photon interference. It has
recently been shown that it is possible to unify these two
disparate interpretations [20], and in our opinion objections to
this unification [21] have been successfully refuted [22]. Thus,
in this article we limit our analysis to the treatment of classical
fields because such an approach is both convenient and
appropriate for the description of the high-intensity (speckle-
limited) regime in which our experiments are performed. We
note further that the good agreement between theory and
experiment obtained in this work provides further evidence
that a quantum description of the process is not needed.

II. THEORY

Figure 1 illustrates our thermal ghost imaging system.
A collimated laser beam is used to illuminate a phase-only
spatial light modulator (SLM), which is programmed to
impose a uniformly distributed random-phase distribution
onto the incident beam [23]. The first-order diffracted beam
forms speckle patterns with negative exponential intensity
distributions [1] at the focal plane of a Fourier lens and is
used as the illuminating source. The generated illuminating
field is then projected, using an imaging lens and a beam
splitter, onto the object and reference planes. In the object
plane, the speckle pattern is projected onto a transmissive
object, and all the transmitted light is collected by a large-area
bucket detector placed behind the object. In the reference arm,
the intensity distribution of the illuminating speckle field is
directly collected by a detector array, a camera in our case.
By using many uncorrelated speckle patterns and correlating
the signals collected by the bucket detector and the camera,
one can obtain a ghost image of the object using the following
background-subtracted correlation function [24]:

G(�x) = 1

N

N∑
n=1

I
(n)
B I (n)(�x) − 1

N2

N∑
n=1

I
(n)
B

N∑
n=1

I (n)(�x), (1)

where

I
(n)
B =

∑
x

I (n)(�x)O(�x) (2)

is the total signal collected by the bucket detector for the nth
measurement, N denotes the total number of measurements,
I (n)(�x) is the intensity of the illuminating field collected by

the camera for the nth measurement at location �x, and O(�x) is
the transmission function of the object. For simplicity, we here
assume that the object has binary transmission; i.e., the value of
O(�x) is either zero or unity. Note that the second term in Eq. (1)
is the product background from two uncorrelated signals, and
by subtracting this term, we ensure that 〈G(�x)〉 = 0 for any
pixels where O(�x) = 0.

For an object with binary transmission, the image quality
of the obtained “ghost” image can be quantified using the
contrast-to-noise ratio (CNR), which can be defined by the
following expression [24]:

RCN ≡ 〈G1〉 − 〈G0〉√
σ 2

1 + σ 2
0

, (3)

where 〈G1〉 and 〈G0〉 are the ensemble average of the ghost
image signal at any pixel where the transmission is 1 and 0,
respectively, and σ 2

1 and σ 2
0 are the corresponding variances,

respectively.
One can derive analytically an expression for the CNR of

such a ghost imaging system in terms of the statistical proper-
ties of the illuminating speckle field with three simplified but
reasonable assumptions: (1) the intensity of the illuminating
patterns are statistically independent of each other, (2) the
intensity at each pixel is independent from that at each other
pixel, and (3) the detected signal fluctuation is primarily given
by the random intensity variation of the speckle fields, and
other noise sources, e.g., detector dark noise, can be neglected.
Note that the second assumption implies that we can replace
the ensemble averages in Eq. (3) with spatial average, and in
fact we use spatial average in our simulation and experiment
to calculate the CNR of the obtained ghost image.

Under these three assumptions, one can obtain the following
expression (see Appendix for details) for the expected CNR of
the ghost image:

RCN =
[

N − 1

(2T − 2 + 3/N) + (1 − 1/N) (γI /σI )4

]1/2

, (4)

where T is the ratio between the total transmitting area of the
object and the average speckle size of the illuminating speckle
pattern [24,25], σ 2

I ≡ 〈I 2〉 − 〈I 〉2 and γ 4
I ≡ 〈(I − 〈I 〉)4〉 are

the second and fourth moments about the mean, respectively, of
the intensity fluctuation for each illuminating speckle field, and
we use here the shorthand I ≡ I (�x). Note that Eq. (4) is valid
for any illuminating field with arbitrary statistical properties, as
long as the pixel intensities are statistically independent. This
expression also indicates that the image quality of a thermal
ghost imaging system is affected by the fourth standardized
moment (γI /σI )4, also known as the kurtosis, of the intensity
fluctuation of the illuminating field, rather than by the contrast
ratio K of a speckle pattern as in many conventional speckle-
based methods.

When the detectors are fast enough to record individual
speckle patterns, which obey negative exponential intensity
statistics [7], one can show that γ 4

I = 9〈I 〉4 and σ 2
I = 〈I 〉2.

Consequently, the CNR of the ghost image with background
subtraction is given by [25]

RCN =
[

N − 1

2T + 7 − 6/N

]1/2

. (5)
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When the detectors are slow, the ghost imaging system
responds only to the intensity average of M independent
speckle patterns for each measurement. In such cases, the ghost
image can still be expressed using Eq. (1), but with modified
expressions for the bucket detector signal and the spatially
resolved camera signal to take into account the intensity sum
of M independent speckles patterns for each measurement,
specifically,

I
(n)
B,M =

M∑
m=1

I
(n,m)
B (6)

and

I
(n)
M (�x) =

M∑
m=1

I (n,m)(�x). (7)

Using straightforward mathematics, one can show that the
fourth-order moment about the mean γ 4

IM
and the variance σ 2

IM

of the intensity of the effective illuminating speckle field are
given by

γ 4
IM

= 3(M + 2)M〈I 〉4 = 3(M + 2)

M3
〈IM〉4 (8)

and

σ 2
IM

= M〈I 〉2 = 1

M
〈IM〉2, (9)

where 〈I 〉 and 〈IM〉 are the expected values of the intensity for
each independent speckle pattern and the intensity-averaged
speckle field at any pixel, respectively. Substituting these
relations into Eq. (4), one can obtain the following remarkably
simple expression for the CNR of a ghost imaging system that
only responds to intensity-averaged speckle fields:

RCN =
[

N − 1

2T + 1 + 6/M − 6/(MN )

]1/2

. (10)

The above expressions show that, even though the contrast
ratio of the effective speckle fields “seen” by a ghost imaging
system decreases rapidly as the detectors become slow, the
quality of the ghost image actually remains approximately
the same as long as the transmitting area of the object is
much larger than the spatial coherence area of the individual
speckle fields. This surprising result comes from the fact
that the quantity that affects the image quality of a ghost
imaging system is the kurtosis of the intensity fluctuation of
the illuminating speckle field, which actually converges to a
constant value of 3 as M becomes larger than 10 (see Fig. 2).
Furthermore, in most practical situations, the transmitting
area of the object is much larger than the coherence area
of individual speckle field, i.e., T � 1. In such cases, the
image quality becomes essentially independent of the speckle
averaging factor M [cf. Eqs. (4) and (10)]. Note that our Eq. (4)
is a generalized result for thermal ghost imaging systems using
illuminating fields having arbitrary statistical properties. Our
Eq. (10) is a special case of this result for an illuminating field
in the form of the intensity sum of multiple speckle patterns.
The result of Eq. (10) is consistent with the earlier prediction
given in Table I of Ref. [17].

100

101

100

10-1

101 102 103

speckle averaging factor M

kurtosis

contrast ratio

FIG. 2. (Color online) Speckle contrast ratio K and kurtosis
(γI /σI )4 as functions of the speckle averaging factor M . Here the lines
are the theory [cf. Eqs. (8) and (9)], and symbols are the calculated
results from one typical numerical simulation realization [1,23].

III. EXPERIMENTAL RESULTS

In our experiment, our transmissive object is a double
slit, whose transmitting area is approximately 200 times the
average speckle size of each independent speckle field, i.e.,
T ≈ 200. The CCD and bucket signals are averaged for
M uncorrelated speckle patterns before the two signals are
correlated using Eq. (1) to mimic the use of slow detectors that
respond to the average of M independent speckle patterns.
Note that, for M = 1, our system reduces to a conventional
ghost imaging system in which the detectors respond to each
independent speckle pattern.

We make the measurements for speckle averaging factor M

equal to 1, 5, 15, and 25, respectively, to study quantitatively
the effect of the response time of the detecting system on the
quality of the “ghost image” that we obtain. For each value
of M , we take 10 000 effective measurements. Figures 3(a)
and 3(b) show two typical illumination patterns recorded
by the CCD camera for M = 1 and M = 25, respectively.
The speckle contrast ratio K for the two cases is 1 and
0.2, respectively. The ghost images after 10 000 effective
measurements for the two cases are shown in Figs. 3(c) and
3(d), respectively. One sees that there is no obvious difference
in image quality, which is consistent with our theoretical
prediction.

To better demonstrate our theoretical predictions, we plot in
Fig. 4 (as symbols) our measured CNR of the ghost image as
a function of the number of measurement N for four different
values of the speckle averaging factor M . It can be seen that
even though the response time of the detectors in the four cases
is very different, there is no obvious difference in the resulting
image quality. Also shown in Fig. 4 (as lines) are the results of
numerical simulation. The agreement between simulation and
laboratory measurement is very good. The slight disagreement
may be due to other noise sources (such as camera dark
noise) that are not considered in the simulation. Note that
in our experiment, the coherence area of the speckle field is
approximately 100 pixels, whereas in our model we assumed
that each pixel experienced independent intensity fluctuations.
However, we have performed extensive numerical simulations,
such as those reported in Fig. 4, which show that the predictions
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(a) (b)
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0 1normalized intensity
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FIG. 3. (Color online) (a) Representative speckle pattern of the
sort used in our experiments and (b) the intensity average of 25
patterns of the sort shown in (a). The statistics of the two patterns
are very different, as described in the text. Nonetheless, ghost images
obtained under the two conditions are essentially identical. (c) A
ghost image of a double-bar pattern (1.2 mm long, 100 μm wide, and
with 40 μm gap in between) taken using individual speckles and (d) a
ghost image taken using the intensity average of M = 25 individual
speckle patterns. In each case, N = 10 000 measurements were used
to obtain the ghost image.

of our model are not influenced by the average speckle size
with respect the pixel size of the camera.

IV. SUMMARY

In conclusion, we have presented a theoretical analysis
with experimental demonstration which shows that the image
quality of a thermal ghost imaging system is essentially
independent of the response time of the detectors as compared
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FIG. 4. (Color online) CNR as a function of the number of mea-
surements N for the ghost imaging system that responds to different
numbers M of averaged speckle patterns for each measurement. Here
the symbols are experimental results, and the lines are simulation
realizations.

to the coherence time of the illuminating speckle fields. This
surprising result arises from the fact that the image quality
of a ghost imaging system is actually only weakly dependent
on the kurtosis of the intensity fluctuation of the illuminating
speckle field that the detectors respond to. As the detecting
system becomes slow and sees only an average of multiple
speckle patterns, the contrast ratio of the effective speckle field
decreases monotonically, but the kurtosis actually converges
to a value of 3 for thermal light. Consequently, the quality of
the ghost image is almost not affected by the detector speed as
long as all nonspeckle noise, such as the detector dark current
noise, is small compared to the fluctuation of the averaged
speckle fields.

While most thermal ghost imaging systems demonstrated to
date have used pseudothermal light whose coherence time can
be controlled to match the speed of the detectors, the possibility
of performing ghost imaging with true thermal light has always
been considered intriguing and highly desirable [16,26]. The
work presented here shows that there need not be any blurring
of the final image even when the detection system is much
slower than coherence time of the thermal light source, as long
as the illumination is strong enough that shot noise and detector
noise can be neglected. Our result opens up the possibility of
using slow detectors for thermal ghost imaging with quickly
varying thermal speckle fields and may shed light on other
applications using speckle fields as well.
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APPENDIX: DERIVATION OF THE CNR OF THERMAL
GHOST IMAGING

Let O(x) be the intensity transmission function of an object
we wish to image. For simplicity we take the object to be
binary, i.e., O(x) = 0 or 1. The object is also assumed to be
pixelated and to transmit at a total of T pixels. The object is
illuminated with N random intensity patterns, each represented
by I (n)(x) for n = 1, . . . ,N . For each illuminating pattern,
the total energy transmitted through the object is recorded,
denoted by I

(n)
B . Given the assumption that the detected signal

is primarily given by the random intensity variation of the
speckle fields and that other noise sources, e.g., detector dark
noise, can be neglected, the image can be acquired using the
following correlation formula:

G(x) = 1

N

N∑
n=1

I (n)(x)I (n)
B − 1

N2

N∑
n=1

I (n)(x)
N∑

n=1

I
(n)
B . (A1)

We quantify the image quality by the CNR, which is given
by the following relation:

RCN = 〈G1〉 − 〈G0〉√
σ 2

1 + σ 2
0

, (A2)

where G1 ≡ G(x1) for a point x1 where O(x1) = 1 and G0 ≡
G(x0) for a point x0 where O(x0) = 0. Similarly, σ 2

1 and σ 2
0

are the variances of the signal at x1 and x0, respectively.
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We now derive in detail the expression of CNR in terms
of the statistical properties of the illuminating light under a
few simplifying, but reasonable, assumptions: (1) the intensity
of the illuminating patterns are statistically independent from
each other, and (2) the intensity of each pixel is independent

of other pixels. Using the first assumption, we directly find the
equations for the expected imaging signal,

〈G(x)〉 = N − 1

N
[〈IIB〉 − 〈I 〉〈IB〉], (A3)

and for the variance,

σ 2(x) = 1

N

(
N − 1

N

)2 〈
I 2I 2

B

〉 + (N − 1)(N − 2)

N3

[〈I 2〉〈IB〉2 + 〈I 〉2
〈
I 2

B

〉 − 〈IIB〉2
] − 2

1

N

(
N − 1

N

)2 [〈I 2IB〉〈IB〉 + 〈
II 2

B

〉〈I 〉]

+ 2
(N − 1)(3N − 4)

N3
〈IIB〉〈I (x)〉〈IB〉 + N − 1

N3
〈I 2〉〈I 2

B

〉 − 2
(2N − 3)(N − 1)

N3
〈I 〉2〈IB〉2, (A4)

where we have used the shorthand notation I ≡ I (x).
Now, using the second assumption, we can further simplify the equations by substituting the following relations:

〈I 〉 = μ1, (A5)

〈IB〉 = T μ1, (A6)

〈I 2〉 = μ2, (A7)

〈
I 2

B

〉 = T (T − 1) μ2
1 + T μ2, (A8)

〈IIB〉 = (T − O(x))μ2
1 + O (x) μ2, (A9)

〈I 2IB〉 = (μ3 − μ2μ1) O (x) + T μ2μ1, (A10)

〈
II 2

B

〉 = [
μ3

1 − μ2μ1 + 2μ1 (T − 1)
(
μ2 − μ2

1

)]
O (x) + T μ2μ1 + T (T − 1)μ3

1, (A11)

〈
I 2I 2

B

〉 = [
μ4 − μ2

2 + 2μ1 (T − 1) (μ3 − μ2μ1)
]
O (x) + T μ2

2 + T (T − 1)μ2μ
2
1, (A12)

where μr ≡ 〈I r〉 is the rth moment of the intensity distribution of each illuminating pattern.
Using Eqs. (A3)–(A12), one can obtain the following expression for the numerator of Eq. (A2):

〈G1〉 − 〈G0〉 =
(

N − 1

N

)
σ 2

I , (A13)

where we define σ 2
I ≡ μ2 − μ2

1 as the variance of the intensities in each illuminating pattern. Similarly, we find the noise squared
is given by

σ 2
1 + σ 2

0 =
(

N − 1

N2

) [
2T σ 4

I + (5 − 6/N)
(
2μ2μ

2
1 − μ4

1

) − (2 − 3/N) μ2
2 − (1 − 1/N ) (4μ3μ1 − μ4)

]

=
(

N − 1

N2

) [
(2T − 2 + 3/N)σ 4

I + (1 − 1/N)γ 4
I

]
, (A14)

where γ 4
I ≡ 〈(I − μ1)4〉 = μ4 − 4μ3μ1 + 6μ2μ

2
1 − 3μ4

1 is the fourth-order moment about the mean of each illuminating pattern.
Substituting these relations in Eq. (A2), the CNR of the obtained ghost image is given by the remarkably simple formula

RCN =
[

N − 1

(2T − 2 + 3/N) + (1 − 1/N ) (γI /σI )4

]1/2

. (A15)

One sees that the CNR is determined by the number of measurements, the transmitting area relative to the spatial coherence area
of the speckle field, and the quantity (γI /σI )4, also known as the fourth standardized moment, or the kurtosis, of the intensity
distribution of the illuminating speckle fields.
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