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When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for elec-
tromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emit-
ters of radiation. The total momentum density associated with a field in a dielectric medium has three
contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated
with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response
of the medium to the field, the latter having a form evidently first derived by Nelson (1991) [8]. All three
contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielec-
tric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom
or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the
dispersion of the dielectric medium as well as a dispersive component in the response of the particle
to the field. The force can be greatly increased in slow-light dielectric media.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Electromagnetic momentum in a dielectric medium is a subject
with a very extensive literature, especially in connection with its
different formulations. The two most favored forms by far are
those of Abraham and Minkowski; as aptly remarked in a recent
paper [1], ‘‘There is . . .a bewildering array of experimental studies
and associated theoretical analyses which appear to favor one or
other of these momenta or, indeed, others.” An aspect of this sub-
ject that has received surprisingly little attention concerns the ef-
fects of dispersion on the Minkowski and Abraham momenta and
on the electromagnetic forces on polarizable particles. The intent
of the present paper is to address such effects, which might help
to clarify the physical interpretation of the Abraham and Minkow-
ski momenta and the distinction between them.

We first review briefly the Abraham and Minkowski momenta
for the situation usually considered—a dielectric medium assumed
to be dispersionless and non-absorbing at a frequency x. The Abra-
ham and Minkowski momentum densities are, respectively,

PA ¼
1
c2 E�H and PM ¼ D� B ð1Þ

in the standard notation for the fields on the right-hand sides. We
will take the permeability l to be equal to its vacuum value l0,
which is generally an excellent approximation at optical frequen-
ll rights reserved.

i).
cies. For single photons the magnitudes of the Abraham and Min-
kowski momenta are given by (see Section 2)

pA ¼
1
n

�hx
c

and pM ¼ n
�hx
c
; ð2Þ

where n is the refractive index at frequency x. From D ¼ �0n2E it
follows that

@PM

@t
¼ @PA

@t
þ fA

; ð3Þ

where

fA ¼ 1
c2 ðn

2 � 1Þ @
@t
ðE�HÞ ð4Þ

is the Abraham force density. For single-photon fields the momen-
tum pA associated with the Abraham force is ðn2 � 1Þ=n

� �
�hx=c,

and (3) becomes pM ¼ pA þ pA.
The Abraham momentum is generally regarded as the correct

momentum of the electromagnetic field [2], whereas the Minkow-
ski momentum evidently includes the momentum of the dielectric
medium as well as that of the field. Ginzburg [3] calls pM the
momentum of a ‘‘photon in a medium,” and notes that its use, to-
gether with energy and momentum conservation laws, yields cor-
rect results for Cerenkov radiation as well as the Doppler shift.
Experiments appear by and large to indicate that it is the momen-
tum n�hx=c per photon that provides the recoil and radiation pres-
sure experienced by an object immersed in a dielectric medium [4].
However, when dispersion (dn=dx) is accounted for, n�hx=c is not
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the Minkowski momentum of a photon, as we review in the follow-
ing section.

This paper is organized as follows. In the following section we
briefly discuss the generalization of the Abraham and Minkowski
momenta to the case of a dispersive dielectric medium [5] and con-
sider two examples: (i) the Doppler shift in a dielectric medium [6]
and (ii) the displacement of a dielectric block on a frictionless sur-
face due to the passage of a single-photon field through it [7]. A
consistent description of momentum transfer in these examples
requires that we account for momentum imparted to the medium.
In Section 3 we calculate the force exerted by a quasimonochro-
matic plane wave on a polarizable particle and on a dispersive
dielectric medium modeled as a continuum, and obtain a disper-
sive contribution to the latter in agreement with an expression
that, to the best of our knowledge, was first derived, in a rather dif-
ferent way, by Nelson [8]. In Section 4 we consider the momentum
exchange between a plane-wave pulse and an electrically polariz-
able particle immersed in a non-absorbing dielectric medium, and
show that this momentum depends on both the dispersion of the
medium and the variation with frequency of the polarizability; in
particular, in slow-light media it can be large and in the direction
opposite to that in which the field propagates. Section 5 presents
derivations of some results relevant to Section 6, where we gener-
alize the results of Section 4 to include absorption and discuss the
forces exerted by a pulse on a small dielectric sphere in a host
slow-light medium. Section 7 briefly summarizes our conclusions.

2. Abraham and Minkowski momenta for dispersive media

We first recall the expression for the total cycle-averaged en-
ergy density when a plane-wave monochromatic field E ¼½
Exe�ixt ; H ¼ Hxe�ixt; H2

x ¼ ð�=l0ÞE
2
x� propagates in a dispersive

dielectric at a frequency x at which absorption is negligible [9]:

u ¼ 1
4

d
dx
ð�xÞE2

x þ l0H2
x

� �
; ð5Þ

or equivalently, in terms of Ex and the group index ng ¼ dðnxÞ=dx,

u ¼ 1
2
�0nngE2

x: ð6Þ

When the field is quantized in a volume V, u is in effect replaced
by q�hx=V , where q is the expectation value of the photon number
in the volume V; therefore, from Eq. (6), E2

x is effectively
2�hx=ð�0nngVÞ per photon. Thus, for single photons, the Abraham
momentum defined by Eq. (1) is

pA ¼
n
c

1
2
�0

2�hx
�0nngV

V ¼ 1
ng

�hx
c
: ð7Þ

Similarly,

pM ¼
n2

ng

�hx
c
; ð8Þ

which follows from the definition in Eq. (1) and the relation
D ¼ �0n2E; thus pM ¼ n2pA. These same expressions for pA and pM

can of course be obtained more formally by quantizing the fields
E, D, H, and B in a dispersive medium [5].

Two examples serve to clarify the differences among the mo-
menta involved in the momentum exchange between light and
matter. The first example is based on an argument of Fermi’s that
the Doppler effect is a consequence of this momentum exchange
[6], as follows. Consider an atom of mass M inside a host dielectric
medium with refractive index nðxÞ. The atom has a sharply de-
fined transition frequency x0 and is initially moving with velocity
v away from a source of light of frequency x. Because the light in
the atom’s reference frame has a Doppler-shifted frequency
xð1� nv=cÞ determined by the phase velocity (c=n) of light in
the medium, the atom can absorb a photon if xð1� nv=cÞ ¼ x0,
or if

x ffi x0ð1þ nv=cÞ: ð9Þ

We denote the momentum associated with a photon in the
medium by } and consider the implications of (non-relativistic)
energy and momentum conservation. The initial energy is Ei ¼
�hxþ 1

2 Mv2, and the final energy, after the atom has absorbed a
photon, is 1

2 Mv 02 þ �hx0, where v 0 is the velocity of the atom after
absorption. The initial momentum is }þMv , and the final momen-
tum is just Mv 0. Therefore

1
2

Mðv 02 � v2Þ ffi Mvðv 0 � vÞ ¼ Mvð}=MÞ ¼ �hðx�x0Þ; ð10Þ

or x ffi x0 þ }v=�h. From Eq. (9) and x ffi x0 we conclude that

} ¼ n
�hx
c
: ð11Þ

Thus, once we accept the fact that the Doppler shift depends on the
refractive index of the medium according to Eq. (9), we are led by
energy and momentum conservation to conclude that an atom in
the medium must recoil with momentum (11) when it absorbs
(or emits) a photon of energy �hx. Momentum conservation in this
example is discussed in more detail below.

In our second example we consider, following Balazs [7], a rigid
block of mass M, refractive index n, and length a, initially sitting at
rest on a frictionless surface. A single-photon pulse of frequency x
passes through the block, which is assumed to be non-absorbing at
frequency x and to have anti-reflection coatings on its front and
back surfaces. The length a of the block is presumed to be much
larger than the length of the pulse. If the photon momentum is
}in inside the block and } out outside, the block picks up a momen-
tum MV ¼ } out � }in when the pulse enters. If the space outside
the block is vacuum, }out ¼ mc, where m ¼ E=c2 ¼ �hx=c2. Similarly
}in ¼ mvp, where vp is the velocity of light in the block. Without
dispersion, vp ¼ c=n and the momentum of the photon in the block
is evidently }in ¼ mc=n ¼ �hx=nc. The effect of dispersion is to re-
place vp ¼ c=n by vg ¼ c=ng and }in ¼ �hx=nc by }in ¼ �hx=ngc. With
or without dispersion, this example suggests that the photon
momentum in the medium has the Abraham form. Note that the
essential feature of Balazs’s argument is simply that the velocity
of light in the medium is vp (or, more generally, vg). This, together
with momentum conservation, is what leads him to conclude that
the momentum of the field has the Abraham form.

This prediction can in principle be tested experimentally. Con-
servation of momentum requires, according to Balazs’s argument,
that MV ¼ mðc � vgÞ. When the pulse exits, the block recoils and
comes to rest, and is left with a net displacement

Dx ¼ VDt ¼ m
M
ðc � vgÞ

a
vg
¼ �hx

Mc2 ðng � 1Þa ð12Þ

as a result of the light having passed through it. This is the
prediction for the net displacement based on the momentum pA gi-
ven in (7). If the photon momentum inside the block were assumed
to have the Minkowski form n2�hx=cng given in (8), however, the
displacement of the block would in similar fashion be predicted
to be

Dx ¼ �hx
Mc2 aðng � n2Þ; ð13Þ

and if it were assumed to be n�hx=c, as in Eq. (11), the prediction
would be that the net displacement of the block is

Dx ¼ �hx
Mc2 angð1� nÞ: ð14Þ
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These different assumptions about the photon momentum can lead
to different predictions not only for the magnitude of the block dis-
placement but also for its direction.

The first (Doppler) example suggests at first thought that the
momentum of the photon is n�hx=c [Eq. (11)], while the second
(Balazs) example indicates that it is �hx=ngc. Let us consider more
carefully the first example. There is ample experimental evidence
that the Doppler shift is nvx=c regardless of dispersion, as we have
assumed, but does this imply that the momentum of a photon in a
dielectric is in fact n�hx=c? We will show in the following section
that the forces exerted by a plane monochromatic wave on the
polarizable particles of a dielectric result in a momentum density
of magnitude

pmed ¼
�0

2c
nðnng � 1ÞE2

x ¼ ðn�
1
ng
Þ �hx

c
1
V

; ð15Þ

the second equality applies to a single photon, and follows from
the replacement of E2

x by 2�hx=ð�0nngVÞ, as discussed earlier.
Now from the fact that the Doppler shift implies that an absorber
(or emitter) inside a dielectric recoils with momentum n�hx=c, all
we can safely conclude from momentum conservation is that a
momentum n�hx=c is taken from (or given to) the combined system
of field and dielectric. Given that the medium has a momentum
density (15) due to the force exerted on it by the propagating field,
we can attribute to the field (by conservation of momentum) a
momentum density

n
�hx
c

1
V
� Pmed ¼

1
ng

�hx
c

1
V
¼ pA: ð16Þ

That is, the momentum of the field in this interpretation is given by
the Abraham formula, consistent with the conclusion of the Balazs
thought experiment. The recoil momentum n�hx=c, which in general
differs from both the Abraham and the Minkowski momenta, evi-
dently gives the momentum not of the field as such but of the com-
bined system of field plus dielectric. It is the momentum density
equal to the total energy density u ¼ �hx=V for a monochromatic
field divided by the phase velocity c=n of the propagating wave.
As already mentioned, experiments on the recoil of objects im-
mersed in dielectric media have generally indicated that the recoil
momentum is n�hx=c per unit of energy �hx of the field, just as in
the Doppler effect. But this should not be taken to mean that
n�hx=c is the momentum of a ‘‘photon” existing independently of
the medium in which the field propagates. Regardless of how this
momentum is apportioned between the field and the medium in
which it propagates, the important thing for the theory,
of course, is that it correctly predicts the observable forces exerted
by electromagnetic fields. We next turn our attention specifically
to the forces acting on polarizable particles in applied electromag-
netic fields.
3. Momenta and forces on polarizable particles

We will make the electric dipole approximation and consider
field frequencies such that absorption is negligible. Then the in-
duced electric dipole moment of a particle in a field of frequency
x is d ¼ aðxÞEx expð�ixtÞ, and the polarizability aðxÞ may be ta-
ken to be real. With these assumptions we now consider the forces
acting on such particles in applied, quasi-monochromatic fields.

We begin with the Lorentz force on an electric dipole moment d
in an electromagnetic field [10]:

F ¼ ðd � rÞEþ _d� B ¼ ðd � rÞEþ d� ðr � EÞ þ @

@t
ðd� BÞ

� FE þ FB; ð17Þ

where we define
FE ¼ ðd � rÞEþ d� ðr� EÞ; ð18Þ

FB ¼
@

@t
ðd� BÞ: ð19Þ

In writing the second equality in (17) we have used the Maxwell
equation @B=@t ¼ �r� E. The dipole moment of interest here is in-
duced by the electric field. Writing

E ¼ E0ðr; tÞe�ixt ¼ e�ixt
Z 1

�1
dD~E0ðr;DÞe�iDt ; ð20Þ

in which j@E0=@tj � xjE0j for a quasi-monochromatic field, we
approximate d as follows:

dðr; tÞ ¼
Z 1

�1
dDaðxþ DÞeE0ðr;DÞe�iðxþDÞt

ffi
Z 1

�1
dD aðxÞ þ Da0ðxÞ½ �eE0ðr;DÞe�iðxþDÞt

¼ aðxÞE0ðr; tÞ þ ia0ðxÞ @E0

@t

� �
e�ixt: ð21Þ

Here a0 ¼ da=dx and we assume that higher-order dispersion is
sufficiently weak that terms dma=dxm can be neglected for m P 2.
Putting (21) into (18), we obtain after some straightforward manip-
ulations and cycle-averaging the force

FE ¼ r
1
4
aðxÞjEj2

� �
þ 1

4
a0ðxÞk @

@t
jEj2; ð22Þ

where E and k are defined by writing E0ðr; tÞ ¼ Eðr; tÞeik�r. Since the
refractive index n of a medium in which local field corrections are
negligible is given in terms of a by n2 � 1 ¼ Na=�0, N being the den-
sity of dipoles in the dielectric, we have a0 ¼ ð2n�0=NÞðdn=dxÞ and

FE ¼ r
1
4
aðxÞjEj2

� �
þ �0

2N
kn

dn
dx

@

@t
jEj2: ð23Þ

The first term is the ‘‘dipole force” associated with the energy
W ¼ � 1

2 aðxÞE2 involved in inducing an electric dipole moment in
an electric field:

W ¼ �
Z E

0
d � dE ¼ �aðxÞ

Z E

0
E � dE ¼ �1

2
aðxÞE2: ð24Þ

The second term in (23) is non-vanishing only because of dispersion
(dn=dx – 0). It is in the direction of propagation of the field, and
implies for a uniform density N of atoms per unit volume a momen-
tum density of magnitude

PD ¼
1
2
�0n2 dn

dx
x
c
jEj2 ¼ 1

2
�0

c
n2ðng � nÞjEj2; ð25Þ

since k ¼ nðxÞx=c. This momentum density comes specifically from
the dispersion (dn=dx) of the medium.

The force FB defined by (19), similarly, implies a momentum
density PA imparted to the medium:

PA ¼ Nd� B: ð26Þ

As the notation suggests, this momentum density is associated with
the Abraham force density (4). The result of a straightforward eval-
uation of PA based on (21) and r� E ¼ �@B=@t is

PA ¼ 1
2
�0ðn2 � 1Þ k

x
jEj2; PA ¼ 1

2
�0

c
nðn2 � 1ÞjEj2; ð27Þ

when we use k � E ¼ 0 and our assumption that j _E0j � xjE0j. The
magnitude of the total momentum density in the medium due to
the force of the field on the dipoles is therefore

Pmed ¼ PD þ PA ¼ �0

2c
n2ðng � nÞ þ nðn2 � 1Þ
� �

jEj2

¼ �0

2c
nðnng � 1ÞjEj2 ð28Þ
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in the approximation in which the field is sufficiently uniform that
we can ignore the dipole force r 1

4 ajEj2
h i

.
The complete momentum density for the field and the medium

is obtained by adding to (28) the Abraham momentum density PA

of the field. According to (1), PA ¼ ð�0=2cÞnjEj2, and so the total
momentum density is

PA þ PD þ PA ¼ �0

2c
nþ nðnng � 1Þ
� �

jEj2 ¼ �0

2c
n2ng jEj2 ð29Þ

if the dipole force is negligible. To express these results in terms of
single photons, we again replace jE0j2 by 2�hx=ð�0nngVÞ; then (29)
takes the form

pA þ pD þ pA ¼ n
�hx
c

1
V
; ð30Þ

consistent with the discussion in the preceding section. This is the
total momentum density per photon, assuming that the dipole force
is negligible. The momentum density of the medium per photon fol-
lows from (28):

pmed ¼ pD þ pA ¼ �0

2c
nðnng � 1Þ 2�hx

nng�0V
¼ ðn� 1

ng
Þ �hx

c
1
V
; ð31Þ

as stated earlier (Eq. (15)).
Consider the example of spontaneous emission by a guest atom

in a host dielectric medium. The atom loses energy �hx0, and the
quantum (photon in the medium) of excitation carries away from
the atom not only this energy but also a linear momentum
n�hx=c (Eq. (30)). The atom therefore recoils with momentum
n�hx=c [11].

The momentum density (25) was obtained by Nelson [8] in a
rigorous treatment of a deformable dielectric based on a Lagrang-
ian formulation; in the present paper a dielectric medium is trea-
ted as an idealized rigid body. From a microscopic perspective,
this part of the momentum density of the medium is attributable
directly to the second term on the right-hand side of (21), i.e., to
the part of the induced dipole moment that arises from dispersion.
In the Appendix the relation of this term to the formula (5) for the
total energy density is reviewed; the term is obviously a general
property of induced dipole moments in applied fields. Consider,
for example, a two-level atom driven by a quasi-monochromatic
field with frequency x far-detuned from the atom’s resonance fre-
quency x0. In the standard u;v notation for the off-diagonal com-
ponents of the density matrix in the rotating-wave approximation
[12],

uðtÞ � ivðtÞ ffi 1
D

vðtÞ þ i
D2

@v
@t
þ � � � ; ð32Þ

where vðtÞ is the Rabi frequency and D is the detuning. The polariz-
ability is proportional to 1=D in this approximation, and therefore
(32) is just a special case of (21).

4. Momentum exchange between a light pulse and an induced
dipole

We next consider the momentum exchange between a plane-
wave pulse and a single polarizable particle. We will assume again
that the particle is characterized by a real polarizability aðxÞ and
that it is surrounded by a host medium with refractive index
nbðxÞ. The electric field is assumed to be

Eðz; tÞ ¼ Eðt � z=vbgÞ cosðxt � kzÞ; ð33Þ

with k ¼ nbðxÞx=c and group velocity vbg ¼ c=nbg , nbg ¼
ðd=dxÞðxnbÞ.

The force acting on the particle is FE þ FB. FB reduces to
1
2 aðxÞðk=xÞð@=@tÞjEj2, obtained by multiplying (27) by a volume
V describing the pulse, replacing n2 � 1 by Na=�0 with NV ¼ 1 for
the single particle, and differentiation with respect to time. FE fol-
lows from (22). Then the force acting on the particle is in the z
direction and has the (cycle-averaged) magnitude

F ¼ 1
4
aðxÞ @

@z
E2 þ 1

4
a0ðxÞnbðxÞ

x
c
@

@t
E2 þ 1

2c
aðxÞnbðxÞ

� @

@t
E2; ð34Þ

where now we retain the dipole force, given by the first term on the
right-hand side. The momentum of the particle at z at time T is

p ¼
Z T

�1
Fdt

¼ 1
4
a
Z T

�1

@

@z
E2ðt � z=vbgÞdt þ 1

4c
a0nbx

Z T

�1

@

@t
E2ðt

� z=vbgÞdt þ 1
2c

anb

Z T

�1

@

@t
E2ðt � z=vbgÞdt

¼ �1
4
a

1
vbg

E2 þ nb

4c
a0xE2 þ 1

2
a

nb

c
E2

¼ 1
4c
ð2nb � nbgÞaþ nbxa0
� �

E2ðT � z=vbgÞ: ð35Þ

Hinds and Barnett [1] have considered the force on a two-level
atom due to a pulse of light in free space. In this case nb ¼ nbg ¼ 1
and (35) reduces to

p ¼ 1
4c

aþxa0½ �E2: ð36Þ

Following Hinds and Barnett, we argue that a pulse occupying the
volume V in the neighborhood of the atom in free space corresponds
to a number q ¼ 1

2 �0E
2V=�hx of photons, so that

p ¼ 1
2c

aþxa0½ � �hx
�0V

q: ð37Þ

a ¼ �0ðn2 � 1Þ=N, where n is the refractive index in the case of N
polarizable particles per unit volume. Then

p ¼ 1
2c

�0ðn2 � 1Þ
N

þ 2�0n
N

x
dn
dx

� �
�hx
c

q

ffi n� 1þx
dn
dx

� �
�hx
c

q � K
�hx
c

q: ð38Þ

This is the momentum imparted to the particle, which implies a
change in field momentum per photon equal to

�hx
c
½1� K� ffi �hx

c
1

1þ K
¼ �hx

ngc
ð39Þ

if jKj � 1, where ng ¼ ðd=dxÞðnxÞ. As in the case of a two-level
atom considered by Hinds and Barnett, this corresponds to the
Abraham momentum; our result simply generalizes theirs in
replacing n by ng in the expression for the change in photon
momentum.

In the case of a polarizable particle in a host dielectric rather
than in free space we obtain, from (35),

p ¼ I
2�0c2 ð2�

nbg

nb
Þaþxa0

� �
; ð40Þ

where the intensity I ¼ ð1=2Þc�0nbE
2. If dispersion in the medium

and in the polarizability of the guest particle are negligible, we
can set nbg ¼ n and a0 ¼ 0, and then (40) reduces to a well-known
expression [13]. However, this momentum can be large in a slow-
light medium (nbg large), for example, because the gradient of the
field (33) responsible for the dipole force on the particle is large
[14]; this is a consequence of the spatial compression of a pulse
in a slow-light medium. We discuss this case further in Section 6.
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But first we return to some other well-known results that are rele-
vant there.

5. Electric dipole radiation rate and Rayleigh scattering [15]

A Hertz vector Pðr;xÞ can be defined for a dielectric medium,
analogous to the case of free space [16], by writing the electric
and magnetic field components at frequency x as

Eðr;xÞ ¼ k2
0 �bðxÞ=�0½ �Pðr;xÞ þ r r �Pðr;xÞ½ �; ð41Þ

Hðr;xÞ ¼ �ix�bðxÞr �Pðr;xÞ: ð42Þ

Here k0 ¼ x=c and we denote by �bðxÞ the (real) permittivity of the
dielectric. We will be interested here in a dipole source inside the
‘‘background” dielectric medium. The identifications (41) and (42)
are consistent with the propagation of a wave of frequency x with
the phase velocity c=nbðxÞ in the medium nbðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bðxÞ=�0

p� �
, as

will be clear in the following.
The curl of Eðr;xÞ in (41) is simply

r� Eðr;xÞ ¼ k2
0 �bðxÞ=�0½ �r �Pðr;xÞ; ð43Þ

since the curl of a gradient is zero. Now apply the curl operation to
this equation, assuming no free currents and therefore
r�Hðr;xÞ ¼ �ixDðr;xÞ:

r� ðr� EÞ ¼ ixl0r�H ¼ x2l0D

¼ k2
0 �bðxÞ=�0½ �r � ðr�PÞ

¼ k2
0 �bðxÞ=�0½ � rðr �PÞ � r2P

h i
; ð44Þ

implying

r2P ¼ �0

�b

x2

k2
0

l0Dþrðr �PÞ ¼ � 1
�b

Dþ E� �b

�0
k2

0P

� �
; ð45Þ

r2Pþ k2P ¼ E� 1
�b

D; k2 ¼ k2
0�bðxÞ=�0 ¼ n2

bðxÞx2=c2: ð46Þ

If Dðr;xÞ ¼ �bðxÞEðr;xÞ, the right-hand side is zero, and all we have
done is rederived what we already know: the field propagates with
phase velocity x=kðxÞ ¼ c=nbðxÞ. Suppose, however, that within
the medium there is a localized source characterized by a dipole
moment density Psðr;xÞ ¼ p0ðxÞd3ðrÞ. Then D ¼ �bEþ Ps and

r2Pþ k2P ¼ � 1
�b

p0ðxÞd3ðrÞ: ð47Þ

The solution of this equation for Pðr;xÞ is simply

Pðr;xÞ ¼ 1
4p�bðxÞ

p0ðxÞ
eikr

r
; ð48Þ

and from this one obtains the electric and magnetic fields due to the
source in the medium. In the far field, assuming p0 ¼ pẑ and letting
h be the angle between the z axis and the observation point,

Eh ¼
k2

0p
4p�0

sin h
eikr

r
; ð49Þ

H/ ¼
nbk2

0p
4p�0

ffiffiffiffiffiffi
�0

l0

s
sin h

eikr

r
; ð50Þ

in spherical coordinates. The Poynting vector S ¼ E�H implies the
radiation rate

P ¼ nbp2x4

12p�0c3 ; ð51Þ

analogous to the fact that the spontaneous emission rate of an atom
in a dielectric without local field corrections is proportional to the
(real) refractive index at the emission frequency.
5.1. Polarizability of a dielectric sphere

Suppose, somewhat more generally, that the source within the
medium occupies a volume V and is characterized by a permittivity
�sðxÞ. Then Dðr;xÞ ¼ �ðr;xÞEðr;xÞ, where � ¼ �sðxÞ within the
volume V occupied by the source and �ðr;xÞ ¼ �bðxÞ outside this
volume, and

r2Pþ k2P ¼ ½1� �ðr;xÞ=�bðxÞ�E: ð52Þ

The solution of this equation is

Pðr;xÞ ¼ � 1
4p

1� �sðxÞ
�bðxÞ

� � Z
V

d3r0Eðr0;xÞ eikjr�r0 j

jr� r0j : ð53Þ

Suppose further that the extent of the volume V is sufficiently small
compared to a wavelength that we can approximate (53) by

Pðr;xÞ ¼ � 1
4p

1� �sðxÞ
�bðxÞ

� �
VEinsðxÞ

eikr

r
; ð54Þ

with r the distance from the center of the source (at r ¼ 0) to the
observation point and EinsðxÞ the (approximately constant) electric
field in the source volume V. This has the same form as (48) with
p0ðxÞ ¼ �bðxÞ½�sðxÞ=�bðxÞ � 1�VEinsðxÞ. In other words, Pðr;xÞ
has the same form as the Hertz vector for an electric dipole moment

p0ðxÞ ¼ �sðxÞ � �bðxÞ½ �VEinsðxÞ: ð55Þ

Consider, for example, a small dielectric sphere of radius a:
V ¼ 4pa3=3. The field inside such a sphere is E insðxÞ ¼ 3�b=½
ð�s þ 2�bÞ�EbðxÞ, where EbðxÞ is the (uniform) electric field in the
medium in the absence of the source. The dipole moment (55) in
this case is therefore related to the external field EoutðxÞ by
p0ðxÞ ¼ aðxÞEoutðxÞ, where the polarizability

aðxÞ ¼ 4p�b
�s � �b

�s þ 2�b

� �
a3: ð56Þ
5.2. Rayleigh attenuation coefficient

The cross-section for Rayleigh scattering for an ideal gas of
refractive index nðxÞ can be deduced as follows [17]. An electric
field E0 cosxt induces an electric dipole moment pðtÞ ¼
aðxÞE0 cos xt in each of N isotropic, polarizable particles per unit
volume, each particle having a spatial extent small compared to
a wavelength. The power radiated by this dipole is, from Eq. (51),

dWrad

dt
¼ nðxÞ x4

12p�0c3 a2ðxÞE2
0 � rRðxÞI; ð57Þ

where W rad denotes energy of the radiated field, I ¼ 1
2 nðxÞc�0E2

0 is
the intensity of the field incident on the dipole, and

rRðxÞ ¼
1

6pN2

x
c

	 
4
n2ðxÞ � 1
� �2 ð58Þ

is the (Rayleigh) scattering cross-section. We have assumed that lo-
cal field corrections are negligible and used the formula
n2ðxÞ � 1 ¼ NaðxÞ=�0 to express r RðxÞ in terms of the refractive
index nðxÞ. The attenuation coefficient is then

aR ¼ NrR ¼
1

6pN
x
c

	 
4
n2ðxÞ � 1
� �2

: ð59Þ

Rosenfeld [18] obtains instead

aR ¼ NrR ¼
1

6pnðxÞN
x
c

	 
4
n2ðxÞ � 1
� �2 ð60Þ

because he does not account for the factor nðxÞ in the dipole radi-
ation rate (57). Rayleigh’s derivation of (59) follows essentially the
one just given, but the factor nðxÞ appears in neither the dipole
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radiation rate nor the expression for the intensity (or actually, in his
derivation, the energy density) [19]. In practice the difference be-
tween (59) and (60) is negligible for the case assumed here of a di-
lute medium [20].

6. Force on a dielectric sphere

The expression (34) for the force on a polarizable particle in a
field (33) may be generalized to allow for absorption by the parti-
cle simply by taking the polarizability aðxÞ in (21) to be complex.
Assuming again that E is slowly varying in time compared to
expð�ixtÞ, and slowly varying in space compared to expðikzÞ, we
obtain

F ¼ 1
4c
ð2nb � nbgÞaR þ nbxa0R
� � @

@s
jEj2 þ 1

2
nb

x
c

aIjEj2; ð61Þ

where s ¼ t � nbgz=c and aR and aI are the real and imaginary parts,
respectively, of aðxÞ. If we replace nbg by nb and take aR0 ffi 0, we re-
cover results that may be found in many previous works when
absorption is assumed to be negligible [13]. The last term in (61)
is the absorptive contribution to Eq. (7) of a paper by Chaumet
and Nieto-Vesperinas [21] when the field is assumed to have the
form (33).

The polarizability in the case of a dielectric sphere of radius a
much smaller than the wavelength of the field is given by (56). Dis-
persion affects the force (61) both through the group index (nbg) of
the host dielectric medium and the variation of the real part of the
sphere’s polarizability with frequency (aR0). The latter depends on
both the intrinsic frequency dependence of the permittivity of the
material of the sphere and the frequency dependence of the
refractive index of the host medium. If these dispersive contribu-
tions to the force exceed the remaining two contributions to the
force (56),

F ffi 1
4c
�aRnbg þ nbxa0R
� � @

@s jEj
2
: ð62Þ

Using (56) for this case, we obtain

F ffi �3p�0a3

c
nbg

n2
s n4

b

ðn2
s þ 2n2

bÞ
2

@

@s
jEj2 ð63Þ

if the dispersion of the dielectric material constituting the sphere is
much smaller than that of the host dielectric medium, i.e., if
d�s=dx� d�b=dx. (Here ns is the refractive index at frequency x
of the material of the sphere.) This result implies that, in the case
of a slow-light host medium (nbg 	 1), the force on the sphere
can be much larger than would be the case in a ‘‘normally disper-
sive” medium, and is in the direction opposite to that in which
the field propagates.

The simple formula (63), and similar expressions obtained in
other limiting cases of (61), obviously allow for a wide range of
forces when a pulse of radiation is incident on a dielectric sphere
in a host dielectric medium. Here we make only a few remarks con-
cerning the last term in (61). Although we have associated this
contribution to the force with absorption, such a force appears
even if the sphere does not absorb any radiation of frequency x.
This is because there must be an imaginary part of the polarizabil-
ity simply because the sphere scatters radiation and thereby takes
energy out of the incident field. According to the optical theorem in
this case of scattering by a non-absorbing polarizable particle that
is small compared to the wavelength of the field, the imaginary
part of the polarizability is related to the complete (complex)
polarizability as follows [22]:

aIðxÞ ¼
1

4p�0

2x3

3c3 nbjaðxÞj2: ð64Þ
Then the force proportional to aIðxÞ in (61) is

Fscat �
1
2

n5
b
x
c

aIjEj2 ¼
8p
3

x
c

	 
4 n5
bI
c

�s � �b

�s þ 2�b

� �2

a6; ð65Þ

which is just the well-known ‘‘scattering force” [23] on a dielectric
sphere in a medium with refractive index nb, which may be taken to
be real in the approximation in which the field is far from any
absorption resonances of the sphere.

7. Conclusions

In this attempt to better understand the different electromag-
netic momenta and the forces on electrically polarizable particles
in dispersive dielectric media, we have made several simplifica-
tions, including the neglect of any surface effects, the treatment
of the medium as a non-deformable body, and the approximation
of plane-wave fields. We have shown that conservation of momen-
tum, even in seemingly simple examples such as the Doppler ef-
fect, generally requires consideration not only of the Abraham
momentum and the Abraham force, but also of a contribution to
the momentum of the medium due specifically to the dispersive
nature of the medium. We have generalized some well-known
expressions for the forces on particles immersed in a dielectric
medium to include dispersion. While we have presented argu-
ments in favor of the interpretation of the Abraham momentum
as the momentum of the field, our simplified analyses lead us to
the conclusion that neither the Abraham nor the Minkowski
expressions for momentum give the recoil momentum of a particle
in a dispersive dielectric medium. Finally we have shown that the
force exerted on a particle in a strongly dispersive medium is
approximately proportional to the group index nbg , and can there-
fore become very large in a slow-light medium.
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Appendix A. Consistency of Eqs. (5) and (21)

Since the term involving a0 in Eq. (21) is essential to our analy-
sis, and in particular to the derivation of Nelson’s dispersive contri-
bution (Eq. (25)) to the momentum density, we review here the
fact that the expression (5) for the total energy density may be re-
garded as a consequence of Eq. (21) and Poynting’s theorem. We
begin by writing Poynting’s theorem in its integral form:I

S � n̂da ¼ �
Z

E � @D
@t
þ l0H � @H

@t

� �
dV

¼ �
Z

1
2
@

@t
ð�0E2 þ l0H2Þ þ E � @P

@t

� �
dV

¼ �
Z

_udV : ðA:1Þ

The integral of the normal component of S ¼ E�H on the left-hand
side is, as usual, over a surface enclosing a volume V, and

_u ¼ 1
2
@

@t
�0E2 þ l0H2
h i

þ E � @P
@t
; ðA:2Þ

where u is the density of total energy, that in the field plus that in
the medium. Using P ¼ Nd, together with
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E � @P
@t
¼ @

@t
ðE � PÞ � @E

@t
� P; ðA:3Þ

Eq. (21), and E ¼ E0 expð�ixtÞ, we obtain

E � @P
@t
¼ 1

4
Nðaþxa0Þ @

@t
jE0j2 ðA:4Þ

when we take the cycle average and use the assumption made in
obtaining (21) that _E0 is negligible compared to xE0. Then, from
�ðxÞ ¼ �0 þ NaðxÞ, it follows that

1
2
@

@t
ð�0E2Þ þ E � @P

@t
¼ 1

4
�þx

d�
dx

� �
@

@t
jE0j2; ðA:5Þ

from which (5) follows.

A.1. Comments added after original submission

A dispersive contribution to the momentum such as appears in
Eq. (25), for example, appears also in earlier work by H. Washimi
(see H. Washimi and V.I. Karpman, Sov. Phys. JETP 44 (1976) 528
(1976) and references therein).

When the force (61) is applied to the case of a guest two-level
atom in a host medium it reduces to the expression given in Eq.
(3) of S.E. Harris, Phys. Rev. Lett. 85 (2000) 4032 if it is assumed
that (i) the plane-wave field acting on the atom propagates at
the group velocity of the host medium; (ii) the field frequency is
sufficiently different from the atom’s transition frequency that
the term proportional to aR0 is negligible; (iii) the medium is suffi-
ciently dispersive that nbg 	 nb; and (iv) absorption is negligible,
so that the term proportional to aI may be ignored.

We thank Dr. P.D. Lett for bringing the work of Washimi and
Harris to our attention.
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