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We use complete spatio-temporal characterization of an ultrashort pulse to study self-
phase modulation and other propagation effects in a sample of SF59 optical glass.
The goal of this work is to perform accurate experimental measurements of the opti-
cal parameters of material samples. From the measured dependence of the self-induced
phase shift on the transverse coordinate, we deduce a value of the coefficient n2 of the
intensity-dependent refractive index that is in good agreement with previous measure-
ments. We also observe that the spectrum of the transmitted pulse can be explained
only approximately in terms of the solution to the nonlinear Schrödinger equation.

Keywords: Full-field characterization; ultrashort pulses; nonlinear refractive index;
glasses.

1. Introduction

The use of ultrashort pulses to measure nonlinear optical constants is attractive:
these techniques make it possible to isolate the contribution of the ultrafast compo-
nent of the nonlinearity under study; furthermore high intensities can be reached at
low average power levels, making it easier to control experimental conditions such
as the temperature rise of the sample.

Two issues merit consideration. One is that in order to interpret the results of
the measurements, and thereby to obtain values of the optical constants from raw
data, it is necessary to consider in a careful way the propagation of the optical
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pulses through the test material. The parameters that describe ultrashort pulses,
such as temporal duration, chirp, spectrum, and more generally the details of their
time dependence, can change so much during the propagation of the pulse through
the material that they cannot be approximated by their values at the input or
by an average. The second issue is that propagation of ultrashort pulses through
a medium with nonlinearities involves two effects: spatial phase modulation and
temporal phase modulation. Most techniques for the measurement of n2 involve
only one of these effects. For example the often-used Z-scan technique1 extracts n2

from a single measurement that involves only spatial phase modulation, whereas
other methods such as spectrally-resolved two-beam coupling2 use only temporal
data. However, a complete characterization of the spatial and temporal variation of
the field allows a simultaneous determination of n2 from both spatial and temporal
phase modulation at the same time, making it possible to use one effect as a check
for the other.

Steps toward complete characterization of optical pulses have been made in the
works by Gallmann and co-authors3 and Diddams and co-authors.4 In both of these
works spatially-resolved measurements on ultrashort pulses were performed by an
array of independent measurements; as a consequence of the fact that measurements
at different positions in space are not related to each other the techniques used in
these works do not allow the measurement of the spatial dependence of the phase. In
this paper we implement spacetime spectral phase interferometry for direct electric
field reconstruction (spacetime SPIDER)5,6 to characterize the propagation of an
ultrashort pulse through a piece of SF59 glass; with this experimental technique we
are able to observe at the same time the spatial and temporal effects of self-phase
modulation. We simulate the propagation of the pulse through the glass using the
nonlinear Schrödinger equation and by concentrating on transverse phase variations
we extract a value of n2 consistent with that of previous measurements.7–9 However,
we observe that the spectrum of the pulse transmitted through the glass cannot
be precisely matched by the solution to the nonlinear Schrödinger equation. This
disagreement is not resolved even when we take into account additional effects
such as the exact dispersion relation for the material and other plausible nonlinear
processes, such as higher-order (n4) nonlinearities, the dependence of the group
velocity on intensity, and Raman scattering. We feel that once these problems are
solved this technique can be usefully exploited for the measurement of material
properties using ultrashort pulses.

2. Experiment

The experimental technique consists of letting an ultrashort, high-intensity pulse
pass through a sample of the glass and characterizing it in a complete way before
and after its passage through the sample (Fig. 1). The characterization is performed
with a method, spacetime SPIDER,5,6 that is a generalization of the SPIDER
technique.10 The pulse becomes modified in passing through the glass sample, and
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Fig. 1. An ultrashort high-energy pulse is completely characterized before and after its passage
through a SF59 glass sample.

it is possible to calculate the parameters of the material in terms of the measured
changes in the pulse.

Conventional SPIDER obtains the complete characterization of the electric field
Ẽ(ω) by measuring the phase φ(ω) of its analytic signal E(ω). A separate measure-
ment of the spectral intensity completes the data. The phase is measured by spectral
shearing. Two replicas of the pulse, separated by a relative delay of τ , generated
for example with a Michelson interferometer, are upconverted in a nonlinear crys-
tal with a highly chirped pulse; the chirp must be high enough so that the chirped
pulse looks like a monochromatic wave on the timescale of the pulse to be measured.
The spectral shear is generated because the two replicas interact each with a differ-
ent portion of the chirped pulse (with respective instantaneous frequencies Ω and
Ω + ∆ω) and are upconverted to two slightly different frequencies. The two upcon-
verted replicas, E1(ω) = E(ω−Ω) and E2(ω) = E(ω−Ω−∆ω) exp(iωτ), are exam-
ined in a spectrometer. The measured spectrum, |E1(ω)+E2(ω)|2 = |E(ω−Ω)|2 +
|E(ω−Ω−∆ω)|2 +2|E(ω−Ω)||E(ω−Ω−∆ω)| cos(φ(ω−Ω)−φ(ω−Ω−∆ω)−ωτ),
contains in the interference term the difference between the phase of the pulse at
neighboring frequencies. For small enough ∆ω the phase difference approximates
the derivative dφ/dω and the phase at every frequency can be reconstructed.

Spacetime SPIDER is illustrated in Figs. 2 and 3, which are adapted from
Ref. 6. In this case the phase φ must be resolved both spatially and spectrally: in
addition to the spectral gradient ∂φ (x, ω)/∂ω it is necessary to obtain the spatial
gradient ∂φ (x, ω)/∂x. These gradients are obtained by applying separately spatial
and spectral shears to the two replicas of the pulse and analyzing the replicas in an
imaging spectrometer.

The spectral shearing (Fig. 2(a)) is realized with the SPIDER technique . In this
case the nonlinear interaction takes place at the Fourier plane of a double-Fourier-
transform setup. After the second lens the upconverted replicas are detected in an
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Fig. 2. (a) Generation of a spectral shear with the SPIDER technique, and (b) spatially-resolved
spectral interferogram.
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Fig. 3. (a) Generation of a spatial shear with a Michelson interferometer, and (b) spectrally-
resolved spatial interferogram.

imaging spectrometer, thus obtaining a SPIDER interferogram for every transverse
location x in the pulse (Fig. 2(b)). This setup preserves the spatial information in
the pulse and allows us to extract the spectral gradient ∂φ/∂ω of the phase of the
pulse as a function of both ω and x.

The spatial shearing is realized by imaging the pulse on the slit of the imaging
spectrometer after passing it through a Michelson interferometer (Fig. 3(a)). The
interferometer provides independent control of the shear X , tilt K and delay T of
the replicas. The detected signal (Fig. 3(a)), shown for the case of zero delay, is
a spectrally-resolved spatial shearing interferogram. The spatial gradient ∂φ/∂x of
the phase of the pulse can be extracted from this interferogram as a function of
ω and x.

The phase of the pulse can be reconstructed from the knowledge of the two
independent gradients.

The complete knowledge of the optical field provides more data than is necessary
to calculate n2. We find that, for our experimental conditions, it is convenient to
consider the transverse phase variation of the pulse at a fixed local time of the
pulse (e.g. at the peak of the pulse). We show that among the various parameters
that could be used to measure n2 this is a convenient one because it is easy to
establish experimental conditions where diffraction is negligible and thus the phase
differences along the transverse direction depend on n2 in a straightforward manner.
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2.1. Experimental data

Our data describe a pulse produced by a Ti:Sapphire laser and amplified by a
regenerative amplifier operating at a 1 kHz repetition rate; the pulse has travelled
through a 1.25 cm thick sample of SF59 glass. The center wavelength of the pulse is
819nm. The pulse has an energy of 21µJ, a transverse size (FWHM) of 0.2 cm and
a duration (FWHM) of 63 fs before entering the sample. At the exit the transverse
size is unchanged; the duration is 200 fs. The pulse shows self-phase modulation at
the exit of the sample (see input and output intensity and phase respectively in
Figs. 4 and 5).
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Fig. 4. Variation of the pulse intensity with time and transverse coordinate at (a) the input, and
(b) the output, of the SF59 glass sample as measured by spacetime SPIDER.
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Fig. 5. Variation of the pulse phase with time and transverse coordinate at (a) the input, and
(b) the output, of the SF59 glass sample as measured by spacetime SPIDER.

3. Analysis of the Data and Calculation of n2

The optical pulse that travels through the glass is subject to modification through
three main processes: diffraction, dispersion, and the dependence of the refractive
index on the intensity. The importance of each of these can be estimated by evalu-
ating the phase shift that it imparts on the pulse. These phases are

∆φdiffr ≈ 1
4π

λz

δ2
≈ 10−3 rad (1)

∆φdisp ≈ 1
2

β2z

τ2
≈ 0.5 rad (2)

∆φNL ≈ 2π

λ
I0n2z ≈ 1.5 rad (3)
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for diffraction, dispersion and nonlinearity, respectively. Here λ is the central wave-
length of the pulse, δ the transverse size, τ the duration; I0, the peak intensity,
for this pulse is equal to 5.5 × 109 W/cm2 and z is the propagation distance; the
second-order dispersion, β2 = 2820 fs2/cm, is calculated from Schott’s tables11 and
we use an estimate of n2 ≈ 5 × 10−15 for the intensity-dependent refractive index,
based on previous measurements.7–9

The dispersive and nonlinear phases are comparable and the diffractive phase
is negligible. This last fact is confirmed also by the observation that the spatial
FWHM of the pulse does not change during propagation; the Rayleigh range for
this pulse is in the order of 10m.

The pulse, therefore, almost does not diffract, and we can consider the propa-
gation of a section of the pulse taken along the time axis at a particular location
at the transverse direction to be independent of all the other parts of the pulse. It
follows that the phase differences between two points that are at the temporal peak
of the pulse but at two different locations in space depend in a straightforward way
on the intensity as

φ(z, x) =
2π

λ
n2

∫ z

0

I(z′, x) dz′ (4)

where I(z′, x) is the intensity at a particular position z′ along the propagation axis
and x across the transverse profile of the pulse.

The intensity variation caused by propagation depends both on the group veloc-
ity dispersion and on the nonlinearity, and this fact makes it necessary to calculate
the pulse propagation using a numerical method.

We next describe the method that we have followed for extracting a value of n2

from the data. The idea is to simulate the propagation of the pulse using a computer
program for solving the (2 + 1)-D nonlinear Schrödinger equation. The nonlinear
Schrödinger equation12,13 includes two parameters, one of which, the group velocity
dispersion, is known, while the other, the intensity-dependent refractive index, is
the one we want to determine. We adjust the intensity-dependent refractive index
in our computer code until we reach the best possible least-squares fit between the
calculated transverse phase of the output pulse and the observed one; the value of
n2 that yields the best agreement is our inferred n2.

Since the phase that we measure is defined within an arbitrary constant, we
choose this constant so that the calculated and observed phases coincide at the
peak of the pulses. Moreover we weight our least-squares fit with the pulse inten-
sity because the experimental value of the phase is more precise where the intensity
is higher.

In order to solve the nonlinear Schrödinger equation we use a Fourier split-
step method.12 We discretize the pulse on a 512 × 512 grid with a temporal step
of 2.9 fs and a transverse step of 23µm, which satisfy amply the requirements of
the Shannon sampling theorem. We include nonlinear absorption in the propagation

J.
 N

on
lin

ea
r 

O
pt

ic
. P

hy
s.

 M
at

. 2
00

5.
14

:9
-2

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

T
T

A
W

A
 o

n 
10

/2
2/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2005 9:6 WSPC/145-JNOPM 00247

16 G. Piredda et al.

equation. The imaginary part of the intensity-dependent refractive index, measured
with the Z-scan technique,1 is Im {n2} = 10 × 10−16 cm2/W.

After performing these calculations we find that the value of the real part
of n2 that allows us to best reproduce the experimental data is Re {n2} =
65 × 10−16 cm2/W; this value is in good agreement with other published
measurements.7–9 The error associated with this measurement can be estimated
as ±10 × 10−16 cm2/W. The comparison of the calculated and measured phases
with this value of n2 is shown in Fig. 6. The agreement with the experimental data
is extremely good for the phase and acceptable for the intensity.

We possess more data than the ones that we have considered so far; in prin-
ciple we have all of the information that can be extracted from both Z-scan and
spectrally-resolved two-beam coupling. This fact prompts us to cross-check our sim-
ulations; if the model we are using takes into account all of the important physical
effects, then the choice of parameters that allows us to reproduce a part of the
data should also reproduce all of the other parts. We therefore look at the temporal
and spectral intensity of the simulated output pulse and we compare them to the
experimental data. The comparison is reported in Fig. 7 for the temporal intensity
and Fig. 8 for the spectral intensity. We see that the agreement between the simu-
lated and observed temporal intensities is good, but the simulated output spectrum
is significantly different from the experimentally-observed one. This disagreement
between the simulated and observed fields suggests that something is not correct
in our model. We consider several possibilities in turn.

One possibility is that approximating the dispersion relation with a parabola is
simply not accurate enough. In this regard we first note that we have low intensity
data, for which nonlinear effects can be completely ruled out, and that these data
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Fig. 6. (a) Input and output transverse phase variations, and (b) output intensity variations.
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Fig. 7. Variation of the pulse temporal intensity with time as measured at the input and output
of the material.
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Fig. 8. Variation of the pulse spectral intensity with time as measured at the input and output
of the material.

confirm that a GVD parameter of 2820 fs2/cm reproduces correctly the pulse dura-
tion after it travels through our sample. In order to test this hypothesis further we
substituted into our code the exact dispersion relation, as calculated from Schott’s
tables,11 for the approximating parabola. The simulations that we performed in this
situation gave no discernible difference from the ones in which we used the GVD
approximation.
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A second possibility is that the slowly varying envelope approximation that one
uses in the derivation of the nonlinear Schrödinger equation is not adequate for this
pulse. In order to obtain an equation valid for pulses for which the slowly vary-
ing envelope approximation does not hold, we added to the nonlinear Schrödinger
equation a term that describes the dependence of the group velocity on intensity
and is responsible for the formation of optical shocks.12,13 Again, there is no effect
on the result of the simulation.

The third possibility is that we are not including some physical effect that is
actually important. While one can never test all possible additional effects, we have
examined a few significant possibilities.

We checked that the inclusion of a higher-order nonlinearity does not modify
the results. In particular we considered the possible presence of a dependence of
the refractive index on the square of the intensity of light; that is, in the cur-
rent notation, we looked for n4 effects. After performing our simulations, using the
transverse phase as we did for our determination of n2, we did not find any justi-
fication for choosing an n4 value different from 0. In particular inserting n4 in the
simulations does not make the agreement of the transverse phases better and it
actually increases the differences between the observed and simulated spectra. We
moreover included the effect of stimulated Raman scattering.12 The retarded non-
linear response has been recently studied with two-beam coupling methods.14,15 We
found, using for the Raman response function parameters that are valid for fused
silica,16 that the inclusion of the Raman response does not improve the agreement
between the theory and the data. No measurements of the Raman response func-
tion of SF59 is available in the literature. Finally we did not include the possible
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Fig. 9. Comparison of the simulated output temporal intensities obtained with the nonlinear
Schrödinger equation (long dash) and with additional terms (short dash). The simulated graphs
for the two different cases almost superpose.
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Fig. 10. Comparison of the simulated output spectral intensities obtained with the nonlinear
Schrödinger equation (long dash) and with additional terms (short dash). The two simulated
graphs for the two different cases almost superpose.

effects of dispersion of n2 because these effects enter the propagation equation at
first order as a correction to the intensity-dependent group velocity term.13

Our work with refinements of the nonlinear Schrödinger equation is illustrated
in Figs. 9 and 10. In this simulation we included all of the refinements and effects
we have mentioned and we compared the output temporal and spectral intensity
(indicated in the graph as “full model”) to the ones predicted by the nonlinear
Schrödinger equation (indicated in the graph as “simplest model”). As an example
we chose a value of n4 such that its contribution to the phase is approximately 5%
of the total nonlinear phase and of opposite sign with respect to the contribution of
n2. An estimate based on Ref. 17 suggests that in our experiment the contribution
of the fifth-order response to the nonlinear phase is smaller than 0.1%; we therefore
are exaggerating the importance of this term. The graphs show that corrections to
the nonlinear Schrödinger have a negligible effect. Simulations including only one
of the additional terms give similar results to the full simulations; in other words
in the full simulation there is no significant mutual cancellation of effects.

4. Conclusions

We collected an extensive set of experimental data on the propagation of an ultra-
short pulse through a nonlinear glass. We find that the transverse phase of the pulse
behaves, to an excellent approximation, as if the pulse were subject just to disper-
sion and the intensity-dependent refractive index; this model for the propagation
is, however, unable to account for other aspects of the data, such as the spectrum
of the pulse.
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We conclude that a complete set of data about propagation of ultrashort pulses
can reveal details of the properties of materials that would be overlooked if one
had access only to limited sets of data. We are continuing our experimental and
theoretical work to determine under what conditions it is reasonable to use a limited
set of data for measurement of nonlinear optical constants with ultrashort pulses.
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