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Theory of self-phase-matching
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A theory of the recently discussed and demonstrated novel phenomenon of self-phase-matching [B.Glushko,
B. Kryzhanovsky, and D. Sarkisyan, Phys. Rev. Lett. 71, 243 (1993)j is given by representing the conical
beam, produced in the experiments, by a Bessel beam and as a superposition of Bessel beams. The predictions
of the theory with the superposition of Bessel beams are in conformity with the observed behavior.

PACS number(s): 42.65.Ky, 32.80.Wr, 33.80.Wz

kTH= k)+ k2+ k3.

Here kTH is the wave vector of a TH wave generated by the
medium and k&, k2, k3 are the three arbitrarily chosen wave
vectors out of the fundamental conical beam. Equation (1)
implies a three-dimensional quadrilateral, which becomes
possible if and only if

1k~i-3lkfl ki k2 k3 kf (2)

Equation (2) requires the medium to be negatively dispersive
in that

X"'( ) —X"'( )«;

Phase matching is crucial in harmonic generation. In
atomic vapors, for example, it influences the operating pres-
sures, and through Kerr susceptibility it influences the inten-
sities of the fundamental radiation that can be used to pro-
duce the third harmonic (TH) radiation [1]. Recently
Glushko, Kryzhanosky, and Sarkisyan [2] discussed and
demonstrated the phenomenon of self-phase-matching
(SPM) for TH generation. Compared to the plane-wave-
phase-matching the SPM provides a high degree of tolerance
in the fluctuations of the vapor pressure, and in the Auctua-
tions of the intensity of the fundamental. In SPM geometry
the fundamental radiation is focused into the nonlinear
atomic vapor in the form of a conical distribution of wave
vectors [2]—henceforth called the fundamental conical
beam. The cone of wave vectors in it makes a semiangle u
with the direction of symmetry that is the principal direction
of propagation. Every generated photon of the TH is made
from three photons of the fundamental. These are picked
from the available wave vectors in the fundamental conical
beam. The generated TH radiation comes out as a conical
beam of semiangle P. The most probable value of P is gov-
erned by the basic conservation law of nonlinear optics, viz. ,

It must now be noted that several combinations of the
azimuths Pi, 912, gs of the vectors kt, kz, ks of the funda-
mental conical beam can subscribe to the same azimuth Pp
of kTH. The answer to the question, How much is the total
subscription of such combinations to the amplitude of the
generated TH? has to be obtained. One has thus to examine
the growth of the TH under the conditions of SPM. Equation
(7) of Ref. [2] does not contain an answer to such a question,
as it is based on the plane-wave approximation. The major
hurdle in analyzing the generation of the TH from SPM
comes from the fact that at the outset one does not have a
suitable description of the fundamental conical beam.

A description of the conical beam in the experiments of
Glushko, Kryzhanovsky, and Sarkisyan has been obtained as
a solution of the suitable diffraction integral by Tewari and
Ashoka [3].The resultant field is described in terms of Lom-
mel functions [4]. The analytical expression, though accu-
rate, is far too complicated for a simplified description of the
conical beams. It shall be published elsewhere. The purpose
of this Rapid Communication is to report our choice of a
simple description of the conical beam. The present analysis
is an improved approximation over Eq. (7) of Ref. [2] and
can answer the question raised above. The important results
of the choice are presented and the details are relegated to a
separate paper [5].

The field in the focal region is represented by a Bessel
beam (Jo) solution of the scalar wave equation. This is an
idealization that suits the purpose. Mainly because, as per the
need, the Bessel beam can be thought of as a superposition
of plane waves with their wave vectors inclined, by constant
angle n, toward the z axis and having all possible values of
the azimuth P [6], so that

I 2m dP
~+ A int&t —ik/cos(tz)z —ik/ sintz[x cosst+y sing]

Jo 2m'

here g(')(co ) is the linear susceptibility of the medium for
the radiation of frequency co (coi is the fundamental, co3 is
the TH). Equation (3) is satisfied in the experiments of Ref.

A eintt te —ik/ cos(tt)zJ (k Sin(Cr) p)

p2 X2+Y2
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A is a constant. Now, using (4), the slowly varying envelope
approximation, and disregarding the nonlinear susceptibili-
ties other than the one for TH generation, one finds from the
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Note that the limits of variation of the angle P, as fixed by
sin8/0, are given by (l1.1 is the wavelength of the fundamen-
tal wave)

COSTI

COSP

cosa
»cosP» +

3L cosp, '

coordinate p is taken in optical units in the numerical work.
From Fig. 1 note that the TPMI is infinite at T=1 and is
nonzero for 0~T~3.

In order to analyze (5) we concentrate on the function

y(P)

FIG. 1.Transverse phase-matching integral I(T) as a function of
variable T=krusinp/kf sinu. The ordinates are normalized to I(0).
The integral is infinite at T= 1.

COSP =
f

Similarly the limits of variation of P, as fixed by the domain
of T for nonzero values of TPMI, are given by

scalar inhomogeneous wave equation of nonlinear optics,
apart from some phase terms, the amplitude of the generated
TH to be

sin(I0» sinP»
COSP

2 3

X( 1 11(+) 3

ikTHc

I sin8)
X tanp~ IJo(kTHsinpp),

L
l9= —(kTHcosP —3k/ cosrl),

2

(5)

(6)

Now, considering 0 & n& m/2 and sinP»1, this gives
0» p, »(m/2 —n) which also implies 0»P» vr/2

However, for experiments [2], l11&&L. One notices then
that the three sides of the inequality (8) are nearly equal.
Thus

COSA
COS

COSP,

For COSP»I, this gives 0» p» n and

p oo

I= 2~ pJ0(kTH»nPp) [Jo(k/sinirp)] dp.
30

(7)

Here L is the length of the medium along the z axis, and for
simplicity the medium is assumed to be extended to infinity
in transverse directions; % is the number of atoms per
unit volume; c is the velocity of light in vacuum;
g( l(co, , cot, ru, ) is the nonlinear atomic susceptibility for
TH generation. Unlike Eq. (7) of Ref. [2], Eq. (5) has sepa-
rate factors for the longitudinal and transverse phase-
matching terms, respectively, as (sin 8/0) and I. The
(sin8/8)~1, as 8~0, asserts only the longitudinal phase-
matching requirement. This is quite different from the usual
plane-wave situation whereas sin8/8 implies the full phase-
matching requirement. The integral I has been shown to rep-
resent, subject to the conditions (1) and (2), the sum of the
subscriptions of all the combinations of azimuths
Ij61 f2 Ij63 towards an azimuth p& of kTH . This sum is de-
termined by the overlap of the Bessel beam of the generated
TH with the cube of the Bessel beam of the fundamental.
The behavior of the integral I—henceforth called the trans-
verse phase-matching integral (TPMI)—as a function of the
ratio T= kTsHi pnk/sIinn is shown in Fig. 1. The transverse

0»P» n.

3 icos p, —cos u
T=

sinn

This determines for a p, , a T, which in turn determines from
Fig. 1 the value of the TPMI. This is used in y(P) and in (5).

The maximum of TPMI occurs at T= 1, which happens at
p, = p, 0 given by

$1+8cos'n
COSP, 0 = (12)

from which, using trigonometric relations, one finds

tanPo = —, tann.—1

Equation (11) agrees well with the range of the angle P
observed in Ref. [2]. The behavior of the amplitude p3 of
TH with pressure (proportional to N) is determined as fol-
lows. For a given N, the p, is determined from (9). Using (9)
and (10) and a well-known trigonometric identity in the defi-
nition of T, one can write
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Finally it may be added that a high tolerance in the fIuc-
tuations of the vapor pressure, in the intensity of the funda-
mental and in the spectral bandwidth acceptance for efficient
TH generation, is a consequence of the broad width of Fig. 3,
and is predicted by the present theory as well as by the dis-

cussion in Ref. [2], for the self-phase-matching geometry.

The visit of S.P.T. to the Institute of Optics, Rochester,
NY, was supported by NSF Grant No. INT 9100 685 to Pro-
fessor G. S. Agarwal.

[1]H. B. Puell, K. Spanner, W. Falkenstein, W. Kaiser, and C. R.
Vidal, Phys. Rev. A 14, 2240 (1976); H. B. Puell and C. R.
Vidal, IEEE J. Quantum Electron. 14, 364 (1978).

[2] B. Glushko, B. Kryzhanovsky, and D. Sarkisyan, Phys. Rev.
Lett. 71, 243 (1993).

[3] Surya P. Tewari and V. S. Ashoka (unpublished).

[4] M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,
Oxford, 1980).

[5] Surya P. Tewari, H. Huang, and R. W. Boyd (unpublished).

[6) J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58,
1499 (1987).


