PHYSICAL REVIEW A

VOLUME 51, NUMBER 4

RAPID COMMUNICATIONS

APRIL 1995
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A theory of the recently discussed and demonstrated novel phenomenon of self-phase-matching [B. Glushko,
B. Kryzhanovsky, and D. Sarkisyan, Phys. Rev. Lett. 71, 243 (1993)] is given by representing the conical
beam, produced in the experiments, by a Bessel beam and as a superposition of Bessel beams. The predictions
of the theory with the superposition of Bessel beams are in conformity with the observed behavior.

PACS number(s): 42.65.Ky, 32.80.Wr, 33.80.Wz

Phase matching is crucial in harmonic generation. In
atomic vapors, for example, it influences the operating pres-
sures, and through Kerr susceptibility it influences the inten-
sities of the fundamental radiation that can be used to pro-
duce the third harmonic (TH) radiation [1]. Recently
Glushko, Kryzhanosky, and Sarkisyan [2] discussed and
demonstrated the phenomenon of self-phase-matching
(SPM) for TH generation. Compared to the plane-wave-
phase-matching the SPM provides a high degree of tolerance
in the fluctuations of the vapor pressure, and in the fluctua-
tions of the intensity of the fundamental. In SPM geometry
the fundamental radiation is focused into the nonlinear
atomic vapor in the form of a conical distribution of wave
vectors [2]—henceforth called the fundamental conical
beam. The cone of wave vectors in it makes a semiangle «
with the direction of symmetry that is the principal direction
of propagation. Every generated photon of the TH is made
from three photons of the fundamental. These are picked
from the available wave vectors in the fundamental conical
beam. The generated TH radiation comes out as a conical
beam of semiangle 8. The most probable value of 8 is gov-
erned by the basic conservation law of nonlinear optics, viz.,

Em=il+iz+/;3. (1)

Here ETH is the wave vector of a TH wave generated by the
medium and k,,k,,k3 are the three arbitrarily chosen wave
vectors out of the fundamental conical beam. Equation (1)
implies a three-dimensional quadrilateral, which becomes
possible if and only if
Equation (2) requires the medium to be negatively dispersive
in that

xP(w3) = xP(01)<0; 3

here xV(w,,) is the linear susceptibility of the medium for
the radiation of frequency w,, (w; is the fundamental, ws; is
the TH). Equation (3) is satisfied in the experiments of Ref.
[2].
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It must now be noted that several combinations of the
azimuths ¢, ¢,,d; of the vectors El,kz,E3 of the funda-
mental conical beam can subscribe to the same azimuth ¢g
of kry. The answer to the question, How much is the total
subscription of such combinations to the amplitude of the
generated TH? has to be obtained. One has thus to examine
the growth of the TH under the conditions of SPM. Equation
(7) of Ref. [2] does not contain an answer to such a question,
as it is based on the plane-wave approximation. The major
hurdle in analyzing the generation of the TH from SPM
comes from the fact that at the outset one does not have a
suitable description of the fundamental conical beam.

A description of the conical beam in the experiments of
Glushko, Kryzhanovsky, and Sarkisyan has been obtained as
a solution of the suitable diffraction integral by Tewari and
Ashoka [3]. The resultant field is described in terms of Lom-
mel functions [4]. The analytical expression, though accu-
rate, is far too complicated for a simplified description of the
conical beams. It shall be published elsewhere. The purpose
of this Rapid Communication is to report our choice of a
simple description of the conical beam. The present analysis
is an improved approximation over Eq. (7) of Ref. [2] and
can answer the question raised above. The important results
of the choice are presented and the details are relegated to a
separate paper [5].

The field in the focal region is represented by a Bessel
beam (Jy) solution of the scalar wave equation. This is an
idealization that suits the purpose. Mainly because, as per the
need, the Bessel beam can be thought of as a superposition
of plane waves with their wave vectors inclined, by constant
angle a, toward the z axis and having all possible values of
the azimuth ¢ [6], so that

- jont—ikcos(a)z [ 27— iky sinalx cosg+y sing] TP
'//1 =A @il ikseos(a)z e tfsmaxcos¢ y sin —
0 2
+ iwqt ,—iks cos(a)z .
Yl =A etorte ks s @zy (k sin(a) p), @)
p2=x2+y2.

A is a constant. Now, using (4), the slowly varying envelope
approximation, and disregarding the nonlinear susceptibili-
ties other than the one for TH generation, one finds from the
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FIG. 1. Transverse phase-matching integral I(T') as a function of
variable 7= kysinB/k; sina. The ordinates are normalized to 1(0).
The integral is infinite at 7=1.

scalar inhomogeneous wave equation of nonlinear optics,
apart from some phase terms, the amplitude of the generated
TH to be

243
g+)=2ﬂ- - 2NX(3)(“’1,‘1’1,0’1)
THC
sinf
Xtanﬁ(——a——) 1J y(ktusinBp), (5)
L
6= E(kmcosﬁ—3kf cosa), 6)

I=2m f:pJO(kmsinﬁp)[Jo(kfsinap)]3dp. (7)

Here L is the length of the medium along the z axis, and for
simplicity the medium is assumed to be extended to infinity
in transverse directions; N is the number of atoms per
unit volume; c¢ is the velocity of light in vacuum;
X(3)(w1,w1,w1) is the nonlinear atomic susceptibility for
TH generation. Unlike Eq. (7) of Ref. [2], Eq. (5) has sepa-
rate factors for the longitudinal and transverse phase-
matching terms, respectively, as (sin6/¢) and I. The
(sinf/6)—1, as 6—0, asserts only the longitudinal phase-
matching requirement. This is quite different from the usual
plane-wave situation whereas sin6/68 implies the full phase-
matching requirement. The integral / has been shown to rep-
resent, subject to the conditions (1) and (2), the sum of the
subscriptions of all the combinations of azimuths
¢1, 2,03 towards an azimuth ¢4 of k1. This sum is de-
termined by the overlap of the Bessel beam of the generated
TH with the cube of the Bessel beam of the fundamental.
The behavior of the integral /—henceforth called the trans-
verse phase-matching integral (TPMI)—as a function of the
ratio T=kyysinB/k; sina is shown in Fig. 1. The transverse
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coordinate p is taken in optical units in the numerical work.
From Fig. 1 note that the TPMI is infinite at 7=1 and is
nonzero for 0=T=<3.

In order to analyze (5) we concentrate on the function

y(B),
sinf@
)’(,3)=tanﬁ(—9—>1~

Note that the limits of variation of the angle B, as fixed by
sinf/ 6, are given by (A is the wavelength of the fundamen-
tal wave)

cosa _ _ N N cosa g

cosp Scosp= 3L  cosu’ ®
kty

cosu= Ek_f . 9)

Similarly the limits of variation of B3, as fixed by the domain
of T for nonzero values of TPMI, are given by

. sina
0=sinB=

cosu

Now, considering O0<a<w/2 and sinB<1, this gives
0= pu=<(m/2— a) which also implies 0< B=</2.

However, for experiments [2], A;<<L. One notices then
that the three sides of the inequality (8) are nearly equal.
Thus

Cos«

osB= (10)

cosp

For cosB=1, this gives 0<u<a and
0s=B8<a. (11)

Equation (11) agrees well with the range of the angle B
observed in Ref. [2]. The behavior of the amplitude 3 of
TH with pressure (proportional to N) is determined as fol-
lows. For a given N, the u is determined from (9). Using (9)
and (10) and a well-known trigonometric identity in the defi-
nition of T, one can write

3\cos?u —cos’a
I

sina

This determines for a w, a T, which in turn determines from
Fig. 1 the value of the TPMI. This is used in y(8) and in (5).
The maximum of TPMI occurs at =1, which happens at

M= o given by

V1+8cos?a

Cospg= ) (12)
3
from which, using trigonometric relations, one finds
tanB,= 1 tana. (13)
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FIG. 2. Detected power [Eq. (14)] of the third harmonic gener-
ated by a Bessel beam of angle =45 mrad. L=10 cm, a=5
(k mpsine) ™!, \;=1.064 um. The ordinate is normalized to the
maximum for a given A and susceptibility x(*.

For small values of «, (13) gives the observed relationship
[2] between angles B and a. The behavior of the detected
power

Es2=2 "l dp, (149

as a function of N/N,, (see below for Ny), is shown in Fig. 2.
a is the radius of the detector. The curve in Fig. 2 is remark-
ably similar to that in Fig. 2 of Ref. [2], particularly in the
rise of |E;|? with an increase of N before the peak is reached
and in the nature of the decline of |E;|? after the peak is
passed. The widths of the two peaks are significantly differ-
ent.

The reasons for the difference in widths do not lie in the
Kerr nonlinearity. This may be understood heuristically in
the following way. Let it be assumed that Eq. (5) can, as
assumed in Ref. [2] for Eq. (7) (there), be used even in the
presence of Kerr nonlinearity with the modification of linear
susceptibility to

X D(@3) + xP (@) ]y1 P= ¥V (w3). (15)

x®(ws) is the Kerr susceptibility at frequency w;. Let it
also be assumed that | ¢ |? is constant. Then the peak in Fig.
2 does not change in shape but merely shifts along the x axis,
depending on the change in the value of uy to iy obtained
by using (15) in (9). We therefore ignore the Kerr suscepti-
bility effects in the following.

There are other differences, too. For example, in the de-
tailed variation with pressure of the angle 8 of the TH Bessel
beam. The maximum in Fig. 2 (here) occurs at B, given by
(13), where, in the terminology of Ref. [2], N=§ N,. N, is
given by u=a, where one also has from (10) S=0. The
value N =N, occurs at the right-hand foot of the peak in Fig.
2. Thus B changes from B, to 0 as N changes from & N, to
Ny, along with the right-hand-side sharp fall of |E;|?. This

N/Ng

FIG. 3. Detected power (in normalized units) for the case of 11
Bessel beams representing a distribution of Bessel beams in the
focal region. Observe the wide width compared to that in Fig. 2.
Apin=44.5 mrad; ap,,=54.5 mrad; da=1 mrad. Normalization
used is similar to that for Fig. 2.

is very different from the expectation in Ref. [2], wherein the
flatness of the curve in Fig. 2 (there) is attributed to the
constructive interference between the two ways the SPM is
achieved. In the present calculations the sum of all possible
ways in which the SPM can be achieved leads to a sharp
drop in intensity for N>§ N, .

The flatness of the experimental curve may be explained
in the following way. We may relax the assumption that a
Bessel beam of cone angle a represents the field in the focal
region of the experiments. Instead, assume that the focal field
is a superposition of Bessel beams lying within minimum
@pin and maximum ap,,, values of the cone angle a. Then,
for each @, one has a curve similar to that in Fig. 2. The
curve for ap;, starts the left leg, and the curve for a,,,, gives
the right falling-off edge of the broad peak. The intermediate
region is filled by the coherent superpositions of the apex of

-all peaks. This situation gives a broad top. The result of the

superpositions of 11 different values of « is shown in Fig. 3,
displaying a broader peak compared to Fig. 2, and having the
similar rise and fall behavior of the intensity on the two legs,
as in Fig. 2 of Ref. [2].

We have thus shown that treating the conical beam of Ref.
[2] as a superposition of Bessel beams is useful in develop-
ing a theory of SPM. A major result of the theory is that the
width of tolerance in pressure (proporational to N) observed
in the experiments is due to the spread in the cone angle of
the Bessel beams. This result can be verified experimentally
by changing the annular width of the ring field and the lens
position. These changes can produce different values of
mean «, and a different spread in «, in the setup of Ref. [2].

Note that in obtaining Fig. 3 all 11 beams are coherent
and the generated l/f; field is determined by a coherent sum
of the fields generated by a coherent sum of all incident
Bessel beams. Thus the interference effect of the fundamen-
tal and the generated TH components has been taken into
account in Fig. 3.
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Finally it may be added that a high tolerance in the fluc- cussion in Ref. [2], for the self-phase-matching geometry.

tuations of the vapor pressure, in the intensity of the funda- o ) ]
mental and in the spectral bandwidth acceptance for efficient The visit of S.P.T. to the Institute of Optics, Rochester,
TH generation, is a consequence of the broad width of Fig. 3, ~ NY, was supported by NSF Grant No. INT 9100 685 to Pro-

and is predicted by the present theory as well as by the dis-  fessor G. S. Agarwal.
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