

Epsilon-Near-Zero Materials: How Light Behaves When the Refractive Index Vanishes

Robert W. Boyd

Institute of Optics and Department of Physics and Astronomy University of Rochester

and

Department of Physics and Max-Planck Centre for Extreme and Quantum Photonics University of Ottawa

The visuals of this talk are posted at boydnlo.ca/presentations

Presented at the Emil Wolf Memorial Workshop, University of Rochester, August 14, 2018

In Memoriam: Emil Wolf – July 30, 1922 to June 2, 2018

Friend, Gentleman, Scientist, Educator

Physics of Epsilon-Near-Zero (ENZ) Materials

- ENZ materials possess exotic electromagnetic properties Silveirinha, Engheta, Phys. Rev. Lett. 97, 157403, 2006.
- If the dielectric permittivity ε is nearly zero, then refractive index $n = \operatorname{sqrt}(\varepsilon)$ is nearly zero.

Thus $v_{\text{phase}} = c / n$ is nearly infinite

 $\lambda = \lambda_{vac} / n$ is nearly infinite

Light oscillates in time but not in space; everyhing is in phase Light "oscillates" but does not "propagate."

• Radiative processes are modified in ENZ materials

Einstein A coefficient (spontaneous emission lifetime = 1/A)

 $A = n A_{vac}$

We can control (inhibit!) spontaneous emission!

Einstein *B* coefficient

Stimulated emission rate = *B* times EM field energy density

 $B = B_{\rm vac} / n^2$

Optical gain is very large!

Einstein, Physikalische Zeitschrift 18, 121 (1917). Milonni, Journal of Modern Optics 42, 1991 (1995).

Physics of Epsilon-Near-Zero (ENZ) Materials -- More

Snell's law leads to intriguing predictions

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

• Light always leaves perpendicular to surface of ENZ material!

Y. Li, et al., Nat. Photonics 9, 738, 2015; D. I. Vulis, et al., Opt. Express 25, 12381, 2017.

• Thus light can enter an ENZ material only at normal incidence!

Y. Li, et al., Nat. Photonics 9, 738, 2015.

Maxwell Equations Prediction

light enters slab at normal incidence

Some Consequences of ENZ Behaviour - 1

• Funny lenses

A. Alù et al., Phys. Rev. B 75, 155410, 2007; X.-T. He, ACS Photonics, 3, 2262, 2016.

• Large-area single-transverse-mode surface-emitting lasers

J. Bravo-Abad et al., Proc. Natl. Acad. Sci. USA 109, 976, 2012.

• No Fabry-Perot interference

O. Reshef et al., ACS Photonics 4, 2385, 2017.

Some Consequences of ENZ Behaviour - 2

• Super-coupling (of waveguides)

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109, 2007; B. Edwards et al., Phys. Rev. Lett. 100, 033903, 2008.

• Large evanescent tails for waveguide coupling

transverse profile of upper waveguide extends to lower waveguide for any distance

[•] dielectric waveguide

Automatic phase matching of NLO processes

Recall that $k = n \omega / c$ vanishes in an ENZ medium.

For example, the following 4WM proces is allowed

H. Suchowski et al., Science 342, 1223, 2013.

Some Consequences of ENZ Behaviour - 3

- How is the theory of self-focusing modified?
- Does the theory of Z-scan need to be modified?
- How is the theory of blackbody radiation modified?
- Do we expect very strong superradiance effects?
- More generally, how is any NLO process modified when $n_0 = 0$?

- Metamaterials
 Materials tailor-made to display ENZ behaviour
- Homogeneous materials

All materials display ENZ behaviour at their (reduced) plasma frequency

Recall the Drude formula

$$\epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

Note that $\operatorname{Re} \epsilon = 0$ for $\omega = \omega_p / \sqrt{\epsilon_\infty} \equiv \omega_0$.

- Challenge: Obtain low-loss ENZ materials Want Im ϵ as small as possible at the frequency where Re $\epsilon = 0$.
- We are examining a several materials ITO: indium tin oxide AZO: aluminum zinc oxide FTO: fluorine tin oxide

Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ condition is of interest in NLO Recall the standard relation between n_2 and $\chi^{(3)}$

$$n_2 = \frac{3\chi^{(3)}}{4\epsilon_0 c \, n_0 \operatorname{Re}(n_0)}$$

Note that under ENZ conditions the denominator becomes very small, leading to a very large value of n_2

Footnote:

Standard notation for perturbative NLO

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

P is the induced dipole moment per unit volume and E is the field amplitude.

Also, the refractive index changes according to

$$n = n_0 + n_2 I + n_4 I^2 + \dots$$

M. Z. Alam et al, Science 352, 795–797 (2016)

Giant Nonlinear Response of ENZ Metastructures Boyd (Rochester), Engheta (UPenn), Mazur (Harvard), Willner (USC)

Special Thanks To My Students and Postdocs!

Ottawa Group

Rochester Group

