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Propagation of modulated optical fields through
saturable-absorbing media:

a general theory of modulation spectroscopy
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The propagation of a weakly modulated light beam through a nonlinear material is treated. The optical field rep-
resenting such a beam consists of a strong carrier-frequency component and two weak, symmetrically displaced
sidebands that combine to form a field, which may be purely amplitude modulated (AM), frequency modulated
(FM), or some combination of these two modulation forms. It is shown that, for any optical nonlinearity, two mod-
ulation forms exist that have the property that the form of modulation is invariant under propagation of the beam.
If a modulation form other than one of these natural modes is injected into the nonlinear medium, the modulation
form will change as the beam propagates, asymptotically approaching the natural mode that experiences the lower
attenuation. Explicit expressions for these natural modes are presented for the case in which the nonlinear medi-
um can be modeled as a collection of two-level atoms. For the special case of an on-resonance pump beam, the nat-
ural modes correspond to pure amplitude modulation and pure frequency modulation. This formalism provides
a general description of saturation spectroscopy for both AM and FM fields. Formulas are derived for the rate at
which a pure FM beam is converted to an AM beam owing to its interaction with a two-level atomic medium. We
also consider the variation that is due to propagation of the depth of modulation of an AM wave interacting reson-
antly with two-level atoms. The formalism predicts the existence of spectral features whose shape depends sensi-
tively on the internal relaxation processes of the material. Experimental spectra are presented for ruby, alexan-
drite, and fluorescein in glass and are interpreted.

1. INTRODUCTION

A standard technique in nonlinear optical spectroscopy is to
measure the modification of the transmission of a weak probe
beam through a sample that is saturated by a strong pump
beam.'- 5 The results of such measurements have been used
to obtain an understanding of the electronic and structural
properties of materials and to probe the dynamics of relaxa-
tion processes.6 These measurements are often made with
pump and probe beams derived from separate laser sources.
An alternative procedure is to use only a single laser and to
create the probe beam by passing the monochromatic laser
beam through an optical modulator.7 -15 The unmodulated
portion of the laser beam then acts as the pump beam, while
the modulation sidebands form the probe.'6 -'9 When such
a modulated beam interacts with a nonlinear material, the
form of modulation changes. The detection and determina-
tion of this change are the basis of modulation spectroscopy.
An advantage of modulation spectroscopy over the use of
separate laser sources is that at most one stabilized laser is
required. In fact, under certain circumstances, the results
of such an experiment depend much more strongly on the
modulation frequency than on the laser frequency, and under
these conditions the frequency stability of the laser is of only
minor importance.

In this paper we present an analysis of the propagation of
a weakly modulated beam through a saturable-absorbing
medium. It provides a unified treatment of the various forms
of modulation spectroscopy. We begin by showing in Section
2 that such a beam can always be represented as the super-
position of a pump component at frequency wo and two weak
components at frequencies wo i 6o, where bw represents the

modulation frequency. One special case involves a mono-
chromatic (or single-sideband) probe beam of frequency wo
+ A6. Because of the nonlinearity of the material response,
this sideband is strongly coupled to the symmetrically dis-
placed sideband at frequency coo - b&.20-22 As the beam
propagates, the amplitude of this sideband grows from its
initially zero value, and the beam develops some complex form
of modulation. Similarly, an arbitrarily modulated input
beam changes its type of modulation as it propagates, since
the two single-sideband components will in general experience
different attenuations and dispersive phase shifts. However,
we show in Section 3 that for any arbitrary nonlinear medium,
for any pump beam, and for any modulation frequency, there
always exist two modulation forms that are left invariant as
the beam propagates. We refer to these modulation forms
as the natural modes of propagation of the modulated optical
field. These natural modes can be usefully represented by
either of two basis sets. In Section 3 we represent these modes
as a linear combination of single-sideband (i.e., monochro-
matic) fields, whereas in Section 4 we represent them as a
linear combination of amplitude-modulated (AM) and fre-
quency-modulated (FM) fields. The treatment of Section
3 deals with an arbitrary nonlinear optical medium and
demonstrates that natural modes of modulation exist for any
such medium. Section 4 illustrates the use of the AM-FM
basis set for the important special case of a medium that can
be modeled as a collection of two level atoms. 2 3 For such a
medium, it is particularly useful to represent the natural
modes in the AM-FM basis set, since the Bloch vector for-
malism for calculating the atomic response naturally treats
the AM and FM components separately. In Section 5 we
consider representative examples of the natural-mode solu-
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tions. The application of this natural-mode formalism to
saturation spectroscopy is presented in Sections 6 and 7. In
Section 6 we calculate the rate at which the FM component
is converted to an AM component as the beam propagates.
This conversion provides the basis of FM saturation spec-
troscopy. In Section 7 we consider a spectroscopic technique
that we call AM saturation spectroscopy in which the change
in the depth of modulation of an AM beam is measured.
Since only the AM component of the light beam is of rele-
vance, this technique is largely insensitive to the presence of
FM noise from the laser. This technique provides a sensitive
probe for measuring the population relaxation processes of
a saturable medium

2. DEFINITION OF THE MODULATED FIELD

The theory developed in this paper makes use of several dif-
ferent electric-field decompositions, each of which is appro-
priate for describing some particular aspect of the propagation
of modulated optical fields. The most common decomposi-
tion in nonlinear optics is in terms of the Fourier amplitudes
of the field. Using this notation, a weakly modulated optical
field E(z, t) can be represented as the sum of three mono-
chromatic field components by

E(z, t) = Eo(z, t) + E+&.,(z, t) + E6.(z, t), (2.1)

where

Eo(z, t) = Fo(z)exp(iwot) + c.c

used to denote complex quantities.) Here b6j(z, t) and 60(z)
represent the weak modulated component and the unmodu-
lated (i.e., carrier-wave) component of the total field, re-
spectively. ko(z) represents the phase of the carrier wave and
is selected so that 60(z) is everywhere real. It is convenient
to decompose the weak field 6J(z, t) into its real and imagi-
nary parts as

6j(z, t) = 5&AM(Z, t) + i65FM(Z,t). (2.6)

This notation has been adopted because, as shown in Fig. 1,
the real and the imaginary parts of b6j(z, t) give rise, respec-
tively, to amplitude and to phase modulation of the total field.
In fact, the intensity associated with the field given by Eqs.
(2.4)-(2.6) is given by

I(z) = (E(z, t)2 )t = I i(z, t)l2
4 r 2wr

= 2 [o(Z) 2 + 2&o(z)6 6dAM(Z, t)]- (2.7)

Hence only the real part of b6(z, t) contributes to the temporal
modulation of the total intensity.

For the case under consideration in which the modulation
is due to two symmetrically displaced sidebands [Eq. (2.1)],
the probe field can be represented as

b6(z, t) = 6e(z)(cos 4' expli[6cot - 6kz + 01(z)]j

+ sin ' expl-i[6cot-bkz + kl(z) + 011), (2.8a)
(2.2a) or equivalently as

= Ao(z)exp[i(wot - koz)] + c.c., (2.2b)

with ko = co/c, and where

EL.(z, t) = Fb.(z)exp[i(wo + b6)t] + c.c

= A+b.,,(z)expji[(wo b)t - (ko ± bk)z]} + c.c.,

(2.3a)

(2.3b)

with 6k = 6w/c. Here the quantities Fo(z) and F±,,(z) are the
temporal Fourier amplitudes of the field, which show a rapid
spatial variation, whereas the quantities Ao(z) and A+6,,(z)
are the slowly varying amplitudes from which this rapid spa-
tial variation has been factored out. The quantities E+6w
represent the weak sidebands, symmetrically detuned by
frequency ±cw (6w << w0 ) from the strong pump wave E0 at
frequency w0 . These sidebands are assumed weak in the sense
that the material response is a linear function of F+B,,. This
decomposition of the field into its frequency components is
most usefully employed when the pump-sideband detuning
bw is sufficiently large that conventional spectrometers can
be used to separate the total field into its spectral compo-
nents.

Conversely, when the pump-sideband detuning is small
(typically < 1 GHz), it is often possible to measure directly the
beat frequency between the various spectral components of
the total field. In this case it is convenient to express the
electric field in a manner that displays the resulting temporal
modulation of the total field:

E(z, t) = 2 Re(j(z, t)expli[cwot - koz + 0o(z)11), (2.4)

where

6(Z, t) = 6o(z) + 6(z, t). (2.5)

(Wherever the possibility of ambiguity exists, tildes will be

56(z, t) = 6&(z)exp(-i0/2)
X (cos 4 expli[6ct - 6kz + 01(z) + 0/2]1

+ sin 4 expl-i[6cO - 6kz + 01(z) + 0/2]1),
(2.8b)

where 01(z) denotes the spatial variation of the phase of the
sidebands that is due to dispersion. Equations (2.4), (2.5),
and (2.8) represent an arbitrary form of modulation of the
total electric field. The actual form of modulation is specified
by the parameters 4' and 0, with tan 4 denoting the amplitude
ratio of the two sidebands and 0 denoting the relative phase
of the sidebands in a reference frame rotating at the carrier
frequency w0. Equivalently, as shown mathematically in Eq.
(2.8b) and graphically in Fig. 2, 0/2 gives the azimuth of the
semimajor axis of the modulation ellipse generated by the
superposition of the two sidebands. The eccentricity of this
ellipse is given by

2(sin 4' cos 4)112

(cos 4' + sin 4')
0 _ 4 _ r/2. (2.9)

.

e o(Z) le ' - E Zt)

_

I complex E plane

Fig. 1. The complex amplitude of the total electric field decomposed
into the pump amplitude 6o(z) and the probe amplitude 6(z, t). In
the complex plane, 6o(z) lies along the real axis, while b6(z, t) re-
volves periodically around an ellipse. For a pure AM probe field, the
ellipse degenerates into a straight line along the 6' axis, while for a
pure FM probe field the ellipse degenerates into a straight line parallel
to the P" axis.
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quency Wo 4: w, whereas X(3)[wo : 6; Wo, wo, -(coo 6)]

represents the response at frequency (o + 6w) due to the wave
at frequency (wo OF 6w). Explicit formulas for X(1) and X(3) for
a two-level system have been given elsewhere 4 ; formulas for
a three-level system are included in Appendix A.

Through introduction of the slowly varying amplitude ap-
proximation

la2Aia= << (ko + k)|aAi6E|,

the Helmholtz equations reduce to the coupled amplitude
equations

c) superposition 8E

Fig. 2. Complex -plane decomposition at fixed z of the probe field
as defined in Eq. (2.8). a) +6w sideband corresponds to big per-
forming a counterclockwise circular rotation at angular frequency
+6w. b) the -6w sideband. c) In general, the total probe field con-
sists of a superposition of +6w and -6w sidebands, forming an ellipse
of eccentricity given by Eq. (2.9) and azimuthal angle 0/2.

For the limiting case of a single-sideband probe field, is
equal to 0 or 7r/2, and in either case the eccentricity e is equal
to 0, implying that the modulation ellipses are in fact circles.
For the case of equal-amplitude sidebands, 4' is equal to 7r/4,
and e is equal to 1, implying that the modulation ellipse is in
fact a straight line. The important special cases of pure am-
plitude and pure frequency modulation are given by

amplitude modulation: 4 = 7r/4, 0 = 0, (2.10a)

frequency modulation: 4= r/4, 0 = 7r. (2.10b)

In general, the parameters 4' and 0 depend on the coordinate
z, but we have suppressed this dependence because in certain
important special cases (the natural modes) these parameters
are independent of z.

Consistency between the expansions of the total electric
field in terms of its Fourier components Eqs. (2.1)-(2.3)] and
in terms of its modulated and carrier-wave components [Eqs.
(2.4), (2.5), and (2.8)] is ensured if the field amplitudes are
related according to

Ao(z) = 6O(z)exp[i0O(z)], (2.11a)

A-6,(z) = 66(z)sin 4' expli[4o(z) -,01(z) - 0]), (2.11b)

A+s,,,(z) = 66(z)cosV1 expti[co(z) + 01(Z)]}. (2.11c)

3. NATURAL MODES OF MODULATED
BEAMS

The nonlinear interaction of the optical field with the material
system manifests itself as a coupling among the various
components of the total electric field. The coupling between
the two weak waves at frequencies wo + 6w is described by the
Helmholtz equationsa 2F- h 6 ) 2. 47r(wo ±6w)2 x 1 ( o ± w) & ,

dz2 + (ko + bk)2Fa, = -°26@ x(l)(coo + bw,)F.

+ X(
3
)[wo ± 6wo; wo, wo, -( 0 =F 6)]Fo 2Fa*j. (3.1)

Here X(1) and X(3) represent first- and third-order suscepti-
bilities generalized to include the possibility of saturation due
to the pump field Fo. Hence x(w)(wo + 6w) gives the effects
of saturated absorption and dispersion on the wave at fre-

a *
A4-a = -a_46A~a + K~.~a*

az
(3.2)

These two equations can be written conveniently in matrix
form as

a [A+6.*l I-a+a. K+5S 1[A+B 1
az A(, OK aB* -cYa,*A A-*|

Here afar, and KB, represent nonlinear absorption and cou-
pling coefficients, respectively, which are given by

2 ri(wo ± 6w) (1)(wo ± 6w),
c+b. =- X( A (o+a) (3.4)

-2iri(wo ± 6w) X(3)O + 6w; w, wo,

- (wo F 6w)]Ao(z) 2 . (3.5)

We note that the linear contribution to the refractive index
has been included in a and that phase-matching effects
manifest themselves through the phases of a and K.

We now seek solutions of Eq. (3.3) with the special property
that the relative amplitudes and phases of A+a, and A&B, re-
main unchanged as the wave propagates. These modes hence
experience at most an overall complex attenuation X defined
by

a A+a. 1 =_XjA+aW 1.
az A-a6* I [A-a.,*I

(3.6)

We call these solutions natural modes of propagation of the
weak field E+a,(z, t) + Ea-(z, t). By combining Eqs. (3.3)
and (3.6), we find that the natural modes are the eigenvectors
of the equation

[X _ a+a. K+S. ][A+aX 1 = O

lK-6 X - ala * JA-s.-tw
(3.7)

The complex attenuation experienced by one of these modes
is given by the eigenvalue X, which is given by the solution of
the secular equation associated with Eq. (3.7) as

a: = 1/(a+ + a-a.*)
± '/2[(a+s. - a._b*)2 + 4K+awK_6.*]/.2 (3.8)

The associated eigenvectors, that is, the natural modes, are
given by

[A+ * + = N+ 1'[A -s I [B + j

and

A - [=:+:I| = N4 [j-

(3.9a)

(3.9b)

;
0
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where

B+ K-s.

B- K+6.

and

N, = (1 + B4 l 2 )-1/2.

The significance of Eqs. (3.8) and (3.9) is as follows: If a
single-sideband probe field (say, A+a,) is introduced into the
partially saturated medium, this wave will be parametrically
coupled to the other sideband (Als). Two linear combina-
tions of these sidebands, which are the natural modes (As),
have the property that they propagate with constant relative
amplitude and phase but with overall complex attenuation
given by X+. An arbitrary probe-wave input can be decom-
posed into a linear combination of these two natural modes
according to

[A+6 . = c+A+ + c-A-, (3.10)

where

[C+

c = N+N-(1 -B+*B)

X [N- -N-B-j[A+& 1 (3.11)
[-N+B+* N+][A6(w*J

As the probe beam propagates through the saturable absorber
it will gradually turn into the natural mode with the lower
loss.

4. NATURAL MODES FOR THE CASE OF AN
ISOLATED ATOMIC RESONANCE

An important special case of the natural modes occurs when
the optical nonlinearity is due to the response of a saturable
absorber, such as that shown in Fig. 3. For tis system, the
nonlinear susceptibilities XMl) and X() generalized to include
the effects of saturation, are derived in Appendix A. It follows
from inspection of Eqs. (A12)-(A19) and Eqs. (3.4) and (3.5)
that, for the case of the carrier frequency tuned to exact res-
onance, the absorption and coupling coefficients are related
according to

ep+[ z = aK6x[

K+bw exp[-2ifo(z)] = KB,,* exp(2ioo(z)].

Note that, according to Eq. (2.11a), AO = IAdexp[ipo(z)].
coupled attenuation coefficients are hence given by

= a+b. + (K+SzKi_6*)1/2,

and the natural modes are given by

A+= Iexp[-i,0(z)J

That these modes are AM and FM is easily seen by Eqs. (2.10)
and (2.11). Hence, for an on-resonant carrier wave, the nat-
ural modes of propagation of a modulated beam correspond
to pure amplitude and pure frequency modulation.23 ' 24 The
modulated component of a FM wave will always experience
attenuation, whereas an AM wave can (if Re X < 0) experience
amplification.

For the case of an off-resonance pump wave, the natural
modes do not in general correspond to pure amplitude and
pure frequency modulation. However, amplitude and fre-
quency modulation constitute an appropriate basis set for the
natural modes even in this case, since many spectroscopic
applications involve the measurement of the AM component
of a light wave whose state of modulation has been modified
by its interaction with a nonlinear medium. In terms of this
basis set, we can derive [analogously to Eq. (3.3)] a coupled
amplitude equation for thee AM and FM components of the
probe field of the form

d [6AM(Z) = _[bAA bAF[6WAM(z) (

Oz l
6 FM(Z) bFA bFFI 16FM(Z) (

where the 6
6AM and the 6 GFM of Eq. (2.6) are related to the

6jAM and 6FM of Eq. (4.1) as
6

GAM(Z, t) = Ret6&AM(z)exp[i(6wt - kz)]),
66'FM(Z, t) = Re6&FM(z)exp[i(6cot - kz - r/2)11.

(4.2)

The significance of the matrix elements AA and FF is that
they give the attenuation experienced by the AM or the FM
component, respectively. Similarly, bAF gives the rate at
which frequency modulation is converted to amplitude
modulation by means of the nonlinearity of the atomic re-
sponse, whereas FA gives the rate at which amplitude mod-
ulation is converted to frequency modulation. These coeffi-
cients are determined most conveniently by using the
Bloch-equation formalism,2 5 since this formalism naturally
decomposes the atomic polarization into its components in
phase with and in quadrature with the driving field. A deri-
vation of these coefficients using this formalism is presented
in Appendix B.

In analogy to the case of the single-sideband basis set of
Section 3, we define the natural modes to be solutions of Eq.
(4.1) having the property that the relative amplitude and
phase of the AM and FM sidebands remain fixed as the beam
propagates, that is, we require that

a [6JAM] = [ AM].

W6FM WPFM 

The

exp[i'o(z)] 1 AFM

1-exp[-iWo(z)]
and

A- Iexp [iko(z)I exP[i0o(z)] } AAM-
,/2 exp[-i0oW]

(4.3)

IC>

Fig. 3. The energy-level depiction of the three-level system is shown.
Levels la) and lb), separated by energy hWba, are coupled by the
strong pump fieloI at wo. The probe field is at frequency co ± 6w.
Relaxation rates between the levels are represented by the y's.
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The natural modes hence obey the eigenvalue equation

rbAA-X bAF 1r 6&AM] =0. (4.4)

[bFA bFF- 6FMI

The eigenvalues, which represent the attenuation of the
coupled solution, are given explicity as

= 1/2(bAA + bFF) ± 1/2[(AA - FF)2 + 46AF6FA]/,
(4.5)

and the eigenvectors are given by

- [6
AMl = D+]

M+ = F[1 + M+ [ I
M=1+ 6 FF-X+ 1 112

= 6 FF - (4.6a)

6FA

and
[66AM]=M L

= 6JFMI- [ 

M =1 I 6 I ,
M L I 6 AF 12I1I

carrier-wave detuning. We note that when the pump fre-
quency is equal to that of the atomic resonance (i.e., A = 0),
the natural modes are pure AM and FM fields. This is true
whenever A = 0 irrespective of pump intensity, probe de-
tuning, or the presence of collisional dephasing. It is also seen
from Fig. 4 that for small modulation frequencies [I 6col - (02

+ A2)1/2] the AM field always experiences less absorption than
the FM field. The AM component of any general modulation
form will under these conditions dominate the output after
propagation through sufficient length of a noninverted me-
dium. For larger modulation frequencies, a FM wave can
experience less attenuation than an AM wave,2 4 and the FM
component will hence dominate. When the pump is detuned
from the atomic resonance (see the second column of Fig. 4),
the natural modes are no longer pure amplitude and frequency
modulation forms but some linear combination of the two.
The minus mode (which has the larger AM component) still
experiences less absorption for small modulation frequencies
than the plus mode.

I.=0.2
ATp - 0.0

T/T 2u 0.5

I. ' 0.2
AT2 = 1.0

T/T.z 0.5

AA-X-
bAF

Any arbitrary input 6& can be decomposed
combination of these natural modes as

6j [ AM] = C+b+ + C_6J_,
~64MI

where the decomposition coefficients are given by

[c-l 1 [M-D- -M_ 19AM1[C+I M+M-(1- D+D-) L-M+ M+D+] 6[M]
(4.8)

5. EXAMPLES OF NATURAL-MODE
SOLUTIONS FOR AN ISOLATED ATOMIC
RESONANCE

In order to give insight into the nature of the natural modes,
we present in this section graphical depictions of the natu-
ral-mode solution for several representative cases. These
cases are identified by the ratio (T 1/T2 ) of the population to
dipole relaxation times, by the detuning (A = cO - cOba) of the
carrier frequency co from the atomic-resonance frequency
cba, of the Rabi frequency Q introduced in Eq. (All), and of
the dimensionless intensity Io = Q2TjT2. Graphical depic-
tions of the natural-mode solutions [Eqs. (4.5) and (4.6)] to
the eigenvalue equation [Eq. (4.4)] are shown in Figs. 4-6. In
each of Figs. 4-6, the upper two rows show the natural modes
given by Eq. (4.6) in terms of the parameters 0 and sin ' as
defined in Eqs. (2.8). The lower two rows show the field-
absorption and -dispersion coefficients for the natural modes
obtained from the complex eigenvalue given in Eq. (4.5).
These curves are normalized such that the on-resonance un-
saturated field-absorption coefficient is unity. Figure 4 il-
lustrates the weak-field (Io << 1) limit for the case of radiative
broadening (i.e., T 1 /T2 = 0.5) for two different values of the
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Fig. 4. The natural-mode solution is illustrated for the case of
radiative broadening (T 1 /T 2 = 0.5) for IO = 0.2. The solid lines rep-
resent the minus mode, while the dashed lines represent the plus
mode. The two cases illustrated are (left) AT2 = 0 and (right) AT2
= 1.
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I.0.2
AT2 0.0

T,/TZ=50

-0.4 0 0.4

-, 1.0 i

-a a:5

C1 _5

0.0,. .
-0.4 0 0.4

I. = 0.2

AT2 1.0

T,/T2 50

1.0 - - -1 0

0.5 0.5-

0 0 0.0 -

-10. Q 10. -0.4 0 0.4

7 r. . . . . . . . . .0 0 -

-7r -7rT 

-10. 0 1 0 -0.4 0 0.4

-0.4 0. 0.4

4-6 by plotting the relative sideband amplitude sin 4 and
sideband phase difference 0 [see Eqs. (2.8)] as functions of the
modulation frequency. Alternatively, the form of the natural
modes can be illustrated by displaying the form of the mod-
ulation ellipse, as introduced in the phase-plane diagram of
Fig. 2. The modulation forms for the specific cases discussed
above are shown in Fig. 7..' For the case of a resonant carrier
wave (i.e., AT2 = 0), the ellipses collapse into horizontal and
vertical straight lines (corresponding to amplitude and fre-
quency modulation, respectively) for any value of T1/T2, of
Io, and of Ac. In the remainder of the examples, AT2 is not
equal to 0, and the form of the natural modes depends on the
modulation frequency. In'all such cases, the modulation el-
lipses approach circles for large modulation frequencies, be-
cause at large modulation- frequencies the two sidebands are
only weakly coupled and hence propagate essentially inde-
pendently. At low modulation frequencies, the ellipses ap-
proach straight lines, because the two sidebands are strongly
coupled in this case, and the natural modes consist of roughly

T a 8.0

ATM 3.0

T 1/T2 0.5

nTu8.0
ATOM 3.0

T 1/T 2 '50

BwT2 modulation frequency
Fig. 5. The natural-mode solution is illustrated for the case of rapid
collisional dephasing (T1/T2 = 50) for IO = 0.2. The solid lines rep-
resent the minus mode, while the dashed lines represent the plus
mode. Illustrated are (left) AT2 = 0, (center and right) AT2 = 1. The
right-hand column illustrates the solution for small modulation
frequencies.

Figure 5 illustrates the weak-field limit for the case of rapid
collisional dephasing (T1/T2 = 50). The leftmost column
refers to an on-resonance carrier frequency, whereas the other
two columns refer to a carrier wave that is detuned by one
atomic linewidth. These columns differ in that the rightmost
column shows the abscissa with a much expanded scale. For
both detunings, a narrow spectral hole of width 1/T1 is present
in the absorption profile of the minus mode. Experimental
observations of this feature have been made and are discussed
in Section 7.

Figure 6 shows the natural-mode solution for the case in
which the Rabi frequency i associated with the atomic re-
sponse is greater than both the detuning A and the atomic
linewidth 1/T1. The absorptive response for the plus mode
shows a resonance near the generalized Rabi frequency (Q2

+ A2)1/2. For the minus mode, a broad region of negative
absorption occurs, extending from zero modulation frequency
to approximately the generalized Rabi frequency. As a result,
radiation near the Rabi sidebands can be generated sponta-
neously by growing from noise within the nonlinear medium,
as was recently observed experimentally. 26 This effect can
also lead to instabilities in homogeneously broadened lasers,
as was also observed recently.2 7

The form of the natural modes has been illustrated in Figs.
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Fig. 7. The modulation forms for the complex electric field of the
natural modes are shown. The vertical axis corresponds to the FM
component, and the horizontal axis corresponds to the AM component
as shown in Figs. 1 and 2.

equal amounts of the two sidebands. These figures show that
the details of how the modes evolve with increasing modula-
tion frequency depend on the carrier-wave intensity and de-
tuning and on the ratio T1/T2 .

P. MODULATION SPECTROSCOPY

Conventional FM saturation spectroscopy is accomplished
by sending a weakly modulated FM wave through a nonlinear
medium and measuring the in-phase and in-quadrature
components of the AM output. A spectrum of the material
can be obtained by scanning the frequency of the laser at
constant modulation frequency or by scanning the modulation
frequency at constant laser frequency. The spectral line
shapes obtained with FM saturation spectroscopy are easily
found from the natural-mode formalism. Since a square-law
detector is sensitive only to amplitude modulation, the signal
S(t) from such a detector is proportional (for 3E << Eo) to

S(t) c 6o2 + 2oRe[bjAM exp(i&.t)]. (6.1)

If a purely FM probe field given by

6&FM(Z = 0) = Mo(z = 0)

(where the modulation index M is assumed to be much less
than unity) is sent through qn optically thin medium of length
1, the complex amplitude of the emerging AM component is

6AM(z) = -16AFbFM(O)- (6.2)

The expression [relation (6.1)] for the signal produced by the

square-law detector is then given by

S(t) Eo2- 21M,0 2(Im LAF COS 6Cwt + Re 6AF sin fot).

(6.3)

A lock-in amplifier may then be used to separate the in-phase

and in-quadrature components of the signal. In Figs. 8 and
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Fig. 8. The in-phase (top) and in-quadrature (bottom) FM satura-
tion-spectroscopy spectrum as a function of the laser detuning AT2.
The modulation frequency is fixed at 5wT2 = 8, and Ti/T 2 = 0.5. The
three curves correspond to Rabi frequencies of KT 2 60 = 0, 4, and 8,
which correspond to intensities of Io = 0, 8, and 32, respectively.
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9, examples of possible outputs from such a modulation-
spectroscopy experiment are shown. These results are general
in that they include both the linear response and the nonlinear
response of the media. The signal-to-noise merits of such
techniques are well established. 8 20

7. EXPERIMENTAL EXAMPLES OF
AMPLITUDE-MODULATION SATURATION
SPECTROSCOPY

In this section, we describe the results of several spectroscopic
studies conducted using AM saturation spectroscopy, a
spectroscopic technique in which the change in the depth of
modulation of an AM, beam is measured. These experiments
are typically carried out at or near resonance, for which case
amplitude modulation is a natural mode of propagation. The
relation between the output and input fields is thus given by
the AA matrix element of Eq. (4.1) or (4.4).

AM saturation spectroscopy provides a sensitive tool for
determining population-relaxation processes in nonlinear
optical materials. It was pointed out by Schwartz and Tan2 8

in 1967 that a spectral hole of width T,-' (where T here
represents the ground-state recovery time) occurs in the probe
absorption profile of a homogeneously broadened saturable
absorber in the presence of a saturating pump wave. Just as
in spectral hole burning in inhomogeneously broadened
media, this hole occurs at the pump frequency. The origin
of this spectral feature can be traced to the oscillation in the
ground-state population at the beat frequency between the
pump and probe waves.29 The population is able to respond
only if the beat frequency is comparable to or less than 1/T1.
The material therefore becomes a temporally modulated ab-
sorber, and this effect increases the degree of modulation of
the transmitted beam. A simple rate-equation treatment of
the phenomenon is presented in Appendix C. Of course, this
effect is also properly described by the more general theory
developed in Sections 2 and 3 of this paper (see Fig. 5).

Figure 10 shows a series of AM spectra for ruby30 for several
different pump intensities. At low intensities, a spectral hole
of half-width 43 Hz (1/T,) is observed. At higher pump
intensities, the spectral hole is broader, because the strong
pump field actively increases the rate of relaxation of the
system. The data are in good agreement with the solid the-
oretical curves that are calculated using the natural-mode
formalism.

Qualitatively different behavior is observed when AM
spectroscopy is performed on alexandrite. In this material,
excited-state absorption plays an important role in deter-
mining the nature of the atomic saturation. For wavelengths
between 450 and 500 nm, the absorption cross section of the
excited state is larger than that of the ground state. At these
wavelengths alexandrite acts as an inverse saturable absorber
in that the absorption coefficient of the material increases
(rather than decreases) with increasing laser intensity. As
a result, a spectral antihole rather than a hole is observed when
AM spectroscopy is performed at these wavelengths. 3' Figure
11 shows the AM spectrum of alexandrite at a wavelength of
457 nm where such an antihole appears.

For ruby and alexandrite, the spectral hole is found to have
a Lorentzian line shape at low laser intensities. Non-Lo-
rentzian line shapes are observed for the case of fluorescein
in boric acid glass. For this material, following optical exci-

tation from the singlet ground state to the singlet excited state,
an intersystem crossing can occur, leading to the trapping of
population in the long-lived triplet excited state.32 At room
temperature, the dominant decay route out of this state is a
thermally activated transfer back to the singlet excited state
followed by a radiative decay to the ground state. This pro-
cess is known as delayed fluorescence. For fluorescein in boric
acid glass, this process leads to a nonexponential luminescent
decay in times of the order of 1 sec. It is believed that the
reason why this decay is nonexponential is that the thermally
activated transfer out of the triplet state occurs at different
rates for different sites within the glass matrix.3 3 Owing to
the nonexponential character of the population decay, the
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Fig. 10. AM-spectroscopy results for ruby. The attenuation of the
AM component is shown as a function of modulation frequency for
several different degrees of saturation. Note the existance of a
spectral hole at low modulation frequencies, as discussed in the
text.
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Fig. 12. AM spectrum for fluorescein in glass. This material shows
nonexponential population decay, leading to the observed markedly
non-Lorentzian spectrum. Also shown for component is the upper
curve, which is a Lorentzian that is constrained to fit well in the
wings.

spectral hole observed by AM spectroscopy has the markedly
cusped, non-Lorentzian shape shown in Fig. 12. The width
of this feature is 750 mHz (HWHM). These examples show
that a wealth of information regarding population-decay dy-
namics is contained in the AM spectrum.

CONCLUSIONS

We have shown that there exist two natural modes of propa-
gation of a weakly modulated beam propagating through any
nonlinear optical medium. These natural modes have the
property that the form of modulation remains invariant as the
beam propagates. If a modulation form other than one of
these natural modes is injected into the medium, the type of
modulation is transformed on propagation into the natural
mode having the lower attenuation. Formulas for these
natural modes have been presented both for the case of a
general optical nonlinearity and for the special case-of a me-
dium that can be modeled as a collection of two-level atoms.
The natural-mode formalism provides a basis for treating all
types of modulation spectroscopy involving weakly modulated
beams. This theory permits the treatment of both frequency-
and amplitude-modulation spectroscopy. These two spec-
troscopies are complementary in their regimes of usefulness.
FM saturation spectroscopy has been used to locate spectral
lines and measure dipole dephasing rates with great accuracy.
Conversely, AM saturation spectroscopy is rather insensitive
to the location of the line center but provides a sensitive probe
of population-relaxation processes.

Pbb = -YbaPbb - YbcPbb + (PbailabE - AbaEPab),
ih

kcc = YbcPbb - YcaPcc,

Pba =-(iWba + )Pba + ih baE(Pbb - Paa)- (A4)

Here T2 represents the dipole relaxation time and yij repre-
sents the relaxation rate between levels i and j.

We assume for simplicity that the total applied field can be
represented as the sum of two Fourier components by

E = Fo exp(iwot) + F_.,,, exp[i(wo i bw)t], (A5)
where Fo and FJ,6(, represent the amplitudes of the pump and
probe fields, respectively. The probe field is considered to
be sufficiently weak that we require solutions to Eqs. (Al)-
(A4) that are correct only to lowest order in F±,,. The
steady-state solutions to these equations can be obtained in
the rotating-wave approximation in terms of the Fourier
amplitudes of the density-matrix elements as

i6WPaa(-6W) = YbaPbb(-6C) + YcaPcc'(-O)

1^+ 1[Pakb'OO - W)bF

- Pba ((WO)I.abF+s.*

- Pba(CO - &/; COO, COO, c0o - )abFOi*],

(A6)
i3 0.Pbb(-6C) =-(Yba + Ybc)Pbb(-O)

[Pab (OO - 6CO)AbaFOih

+ Pba(WO)1AabF+6,*

-Pba(COO - 6°; Wo, Co, -wo -6W)AabFo*I,

(A7)

PccO(-a) = YPbb(-6C0)
(i5co + Yca)

I.LbaFO(Pbb - Paa)dC
ca (@ h(co - COba + i/T2 )

-iW3pba((COO + 6CO) = -(jCba + 1/T2)Pba(COO + aCO)

1+ (Pbb - paa)dc/-baF + bwc

1^+ - Ab.LbFo[Pbb(3 CO) - P..0(&1,)ih
(A1O)

and

(Pbb - P.)dc =

APPENDIX A

In this appendix, we calculate the response of the three-level
system shown in Fig. 3 to an applied optical field E. We as-
sume that this field can interact with levels a and b and that
relaxation through level c is a possible decay route. The
equations describing the time evolution of the density matrix
for this system are

1^#aa =` YbaPbb + YcaPcc + - (PabI.baE - A.abE~ba),ih
(Al)

[ (+ (+oY-bb)2T22 + 2 + ca) T2Q2
L ~~~~~2(Yj + Ybc)

(All)

where 92 = 41 12 11F12/h2 and (Pbb - Paa )eq is the equilibrium
value of the population inversion. Equations (A5) and (A6)
may be related to yield

Paa( bw) = -[1 + Ybc Pbb(-bw)

= -f*Pbb(-6W)- (A12)

Kramer et al.

(A2)

(A3)

(A8)

(A9)

[1 + (o - Wba)2 T2 2](Pbb - P)eq



Vol. 2, No. 9/September 1985/J. Opt. Soc. Am. B. 1453

Algebraic manipulation then gives the following solutions:

1 (co + 2i/T 2)(COO - CO - COba - i/T2)(Pbb - Paa)dI Al 2F*F+S.
h (COO - COba + i/T2 )D(co + a@)

(A13)

Pba (COO + 6co) =
AbaF+bw(Pbb - Paa)dc f

D(coo + aco) I[(C + i(Yba + Ybc)](6C -C + Cba + uT2 )-

Q2(1 + f)6c I

4(wo - Cba - i/T 2 )J 

Pab(bC - CoO; -CO0 , -Coo + 6CO) =
Fo* 2F+a6.YLabMl (Pbb - Paa )dC (I + f)(bco + 2i/T 2)

3(oo - COba - i/T 2 )D(coo + co)

with
D(co + co)= [co + i(Yba + b)]CO - COo + Cba + i/T2)

X (OCO + COO - COba + i/T2 )

(A16)-2

This solution reduces to that obtained for a pure two-level4

atom by taking the limit Ybc = 0, in which case f = 1.
We can now obtain explicit formulas for the nonlinear po-

larization in terms of these density-matrix solutions. The
nonlinear polarization at frequency coo ± bc can be written
as

P"0+6W(z, t) = P.O±6. exp[i(co ± bw)t] + c.c.,

where the polarization amplitudes are given by

Pwo+b = X()(coo ± co)F,6.

+ X(
3
)(coo ± 6co; co, coo, -wo0 + co)Fo2

Fowa0=.

(A17)

Neglecting local-field contributions, the generalized first- and
third-order susceptibilities are hence given by

x(')(o ± bco) =-N/abPba(COO ± bco)/F|.0o±&., (A18)

X(3)(Coo ± 6c; Coo, Coo, -Coo 1 6CO) = -N~abPba (COO ± 6w; "0 , o0,

-o 0 ± 6w)1Fo2Foi6*. (A19)

plitude 6(z, t) can be decomposed into a pump component
So(z) and a weak probe component bj(z, t), the Bloch vector
can also be decomposed as

I uO [ru1

v = vo + 6V ,

[w][woJ [.wJ
(B3)

where the first term is the response that is due to the pump
field alone and the second term gives the change in the re-
sponse that is linear in the amplitude of the probe field. For
a continuous-wave pump field eo(z), the steady-state response
of Eq. (4.4) is25

(AT 2 )KT 260 (Z)
uo(Z) = -Weq [1 + (AT 2)2 + Io(z)]

KT 2&0 (Z)
vo(z) = Weq [1 + (AT2 )2 + Io(z)]

and

1 + (AT2 )2

wo(z) = Weq [1 + (AT2 )2 + Io(Z)]I

where we have introduced the dimensionless intensity

Io(z) = K2 TjT 26o 2(Z).

(B4a)

(B4b)

(B4c)

(B5)

APPENDIX B

In this appendix, we derive explicit forms for the coefficients
that appear in Eq. (4.1). These coefficients are the absorption
and gain coefficients for the AM and FM portions of the
modulated field. We describe the atomic response in terms
of the Bloch vector (u, v, w), whose components are related
to the elements of the density matrix by

The equation of motion for the change in the Bloch vector
that is due to the perturbing field b is

d bu -1/T 2
d 5V = A
dt I I

6W~ [0

-A 0 bu

-1/T 2 Ke 0 6v

~~~-Kdo -11T1 - bw-

u + iv = 2 Pba exp(-icoot),

W = Pbb - Paa-

We write the Block equations in matrix form as

(Bla)

(Blb)

u 1 -l/T 2 - ' -Ks" U 0
d V = - /T2 Ke' v + O .
dt w K" -K ' -1/T1] W weq/T

(B2)

where 6' and ," denote the real and imaginary parts of j(z,
t) of Eq. (2.4), K = 

21/.abI/ h, A = CWab - co, T, and T2 denote
the longitudinal and transverse decay times, and Weq denotes
the equilibrium population difference in the absence of the
applied fields. For the case in which the electric-field am-

-KWO6 FM 1
+ KWO66AM I

KUO66FM - KVO6AMJ

(B6)

This equation is solved to obtain bu and v in terms of MAM

and 5 6 FM. Since bu and ev represent the contributions to the
induced dipole moment, they act as source terms to the in-
homogeneous wave equation, which can be written in the
slowly varying amplitude approximation as

09+ 1 d1[9 AM1 dko(z) [0 1l [AM + a [6v 1

\dz c L6'FM dz [-1 01L6 6FM] 2KT -3u 

(B7)

where a is the weak-field line-center absorption coefficient
given by

(A14)

(A15)

UCeU

e

CD
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0e+.-
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10
M
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a = 4irNI Aabl 2 coT2 /hc. (B8)

By means of a straightforward but lengthy calculation, the
Block-vector components bu and v can be eliminated through
use of Eq. (B6), yielding an equation of the form of Eq. (41),
with matrix elements given by

6AA = a (1 + ibcoT2)L1 + (AT2)2 (1 + ioT)J

6AF = ao AT2
2 6Co(2 + icoT 2),

2IF

6FA = ao AT2 (2 + icoT 2 ) coT2 - O 1
2F ~ ~ ~ [ (1+ icoT)J1

6FF = - (1 + icT 2)[1 + (AT2 )2 ] + IO(z)
21' (1 + icoTj)1

where

F = (1 + icoT2)2 + (AT2)2 + [1 + icoT 2 1Io(z),
[(1 + icoT,)j 

and where the saturated pump absorption coefficient is given
by

ao = -Weq 1 + (AT2 )2 + Io(Z)

APPENDIX C

(B9a)

(B9b)

(Bll)

In this appendix, it is shown using the rate-equation ap-
proximation that a spectral hole that is due to population
oscillations having a width 1/T, is present in the probe ab-
sorption profile. In the rate-equation limit, the equation of
motion for the ground-state population n is

dn(t) noI(t) j - n(t)
+ (Cl)

dt hco T(

where a is the absorption cross section, nT is the total popula-
tion, and I is the total intensity, which may be time varying.
For the case of a beam of constant intensity Io, the ground-
state population is given by the steady-state solution of Eq.
(Cl) as

n = n/(1 + Jo/Is), (C2)

where the saturation intensity is defined by

I = hwl/oTl. (C3)

Note that IO in this appendix is a true intensity, not a di-
mensionless intensity as in Eq. (B5). For the case of a weakly
intensity modulated beam, I(t) is given by

I = Io + [I(63)exp(-iocot) + c.c], (C4)

with II(bw)l << Io. We seek solutions of the form

n = no + [n(6co)exp(-icot) + c.c.], (C5)

with In(co) <<«no. On substitution of Eq. (C4) and (C5) into
Eq. (C1) we obtain

n(6wo) = - 7i (1 + Io/Is + iccoTj)I(co)/JI
(1 + Io/Is) [(1 + Io/Is) 2 + (coT,) 2]

(C6)

The attenuation of the intensity that is due to propagation
through the medium is given by

(C7)d(t)- z I(tz).
dz

Separating the Four components of this equation gives

d I(co) = -crnoI(co) - an(bco)Io
dz

= - U T ) I(3CO)

+ iF(l + Io/IA + icoTj)I(5co)/1I }Io
I(1 + Jo/Is)[(J + Io/Is) 2 + (coTj) 2] °

(C8)

(B9c) The first term is seen to be the normal saturated absorption
acting on the modulated component of the intensity. The

(B9d) second term is a gain term for the modulated intensity caused
by the temporally modulated absorption acting on the dc
portion of the intensity. The origin of the spectral hole is the
second term of Eq. (C8). An absorption coefficient for the

(B10) modulated component of the intensity may be defined as

aGC(O) =-1 d Nd

__ n_____ (1 + Io/Is + ihwTi)Io/I, (
-- ii~~1- i W(9)
(1 + Io/Is) I (1 + o/Is) 2 + (wT,) 2 I

showing explicitly the spectral hole of half-width lT, at low
values of IO.
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