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Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays
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Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in
metal nanoparticle arrays, can lead to high quality factors (∼100), large local-field enhancements, and strong
light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of
SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear
optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic
generation processes because of their potential for the realization of novel sources of light. We also demonstrate
how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded
nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be
engineered via cascaded second-order responses.

DOI: 10.1103/PhysRevA.97.053817

I. INTRODUCTION

An important application of nonlinear optics is the de-
velopment of the means to create coherent light sources
at frequencies other than the fundamental laser frequency.
Among the specific light sources realized in such a manner
are optical parametric oscillators [1], sources of terahertz
(THz) and extreme ultraviolet radiation [2], as well as single-
and entangled-photon sources [3,4]. A better understanding
of nonlinear optical processes, as well as the search for
new mechanisms of their enhancement, could lead to the
development of new improved light sources, advancing many
subfields of natural science.
Most nonlinear processes are inherently weak. Therefore,

strong excitation fields are often needed to achieve nonlinear
responses using traditional nonlinear crystals. One practical
solution for enhancing higher-order nonlinearities is so-called
cascaded processes, where considerably stronger lower-order
nonlinearities are utilized to mimic higher-order nonlinear
interactions [1,5,6].
Alternatively, more efficient nonlinear processes can be

realized with nonlinear optical fibers, waveguides, or res-
onators with high Q-factor values, such as photonic crystal
cavities or ring resonators [7]. Although the intrinsic material
nonlinearities of fibers and waveguides are often quite weak,
the long interaction lengths can lead to strong nonlinear
responses due to a coherent buildup of the nonlinear optical
signal during the propagation. High Q-factor value resonators
seemingly work in a similar way since the light coupled into
the resonators can make several roundtrips, thereby increasing
the interaction length [7]. But in order to better explain the
nonlinear enhancement mechanisms in resonators, a more
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detailed description based on local density of states is needed
[7,8].
Recently, plasmonics has been recognized as a possible

route for more efficient nonlinear optical processes [9]. This
is mostly due to the fact that typical metals have ∼106
stronger nonlinearities compared to those of typical dielectric
materials [10]. In addition, conduction electron oscillations in
metal nanoparticles can exhibit resonant behavior [11]. These
resonances are called localized surface plasmon resonances
(LSPRs); they can greatly enhance the local fields and the
occurring light-matter interactions near the particle surface.
On the other hand, the LSPRs have quite low intrinsicQ-factor
values (∼5).A potential solution to this problem is to utilize the
collective responses of metal nanoparticle arrays, also known
as surface lattice resonances (SLRs) [12]. SLRs occur when
the optical path length between the neighboring particles is
an integer multiple of the incident wavelength and can exhibit
considerably higherQ-factor values (∼100) compared to those
of LSPRs. Since larger Q-factor values imply higher local
fields, nonlinear light-matter interactions in particular can be
expected to be considerably enhanced near SLRs [13]. But, so
far, very little work has been conducted to systematically study
the possibilities of utilizing periodic arrays of nanoparticles
and SLRs for enhancing nonlinear optical processes [14–17].
In this paper, we systematically study how nanoparticle

arrays and SLRs could be utilized for enhancing nonlinear
optical processes. For this task, we implement a nonlinear
discrete-dipole approximation (DDA) approach to simulate
the linear and nonlinear optical responses of the nanoparticle
arrays [18,19].We study several array configurations and show
how processes such as second-harmonic generation (SHG),
sum-frequency generation (SFG), difference-frequency gen-
eration (DFG), and third-harmonic generation (THG) can be
considerably enhanced in the vicinity of SLRs. In addition,
we show how two consecutive second-order processes of
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SHG and SFG could be utilized to give rise to a strong
cascaded contribution to THG.Our results show the promise of
using metal nanoparticle arrays as a highly versatile nonlinear
material platform.

II. THEORY

A. Discrete-dipole approximation for the
fundamental-frequency field

We use the DDA to study the nonlinear behavior of
nanoparticle arrays since it has been previously found to be
a powerful tool to understand the linear collective responses of
the arrays [13,20–23]. The nanoparticle array is considered to
be illuminated by an incident electromagnetic field oscillating
at the fundamental frequency ω. This field induces a dipole
moment in each of the nanoparticles. Since each of these
dipole moments is also affected by the scattered field due to
the presence of other dipoles, it is convenient to find the self-
consistent dipole moments of the nanoparticles numerically.
Once the self-consistent dipole moment distribution has been
found, it can be used to calculate the associated local field
acting on the nanoparticles. Since it is the local fields that drive
the atomic transitions, thereby influencing the nonlinear optical
interactions [24], we repeat the calculation for each frequency
componentωi of relevance for the nonlinear phenomena under
study. As explained in detail in the next section, we then use
these local-field components to calculate the nonlinear optical
response of the nanoparticle arrays, following the approach
described in Ref. [19].
We start by assuming that the incident field Einc,j (ω1),

oscillating at the frequency ω1 at the location rj of the j th
scattering nanoparticle (or dipole), is a monochromatic plane
wave of the form

Einc,j (ω1) = E0 exp(ik1 · rj − iω1t), (1)

where E0 is the field amplitude, k1 is the wave vector, and t is
time. The incident field interacts with all other dipoles in the
array and gives rise to the total field at the site of dipole j in
the form

Ej (ω1) = Einc,j (ω1)−
∑
k �=j

Ajk(ω1)pk(ω1), (2)

where Ajk(ω1) is a 3× 3 matrix describing the interaction
between the j th and kth dipoles, and pk(ω1) is the dipole
moment of the kth dipole at frequency ω1. When the dipoles
are embedded in a homogeneous medium, their interaction is
governed by a tensorial free-space Green’s function and can
be written as [18]

Ajk(ω1)

= exp(ik1rjk)

ε0rjk

[
k21(r̂jk r̂jk − I)−1− ik1rjk

r2jk

(3r̂jk r̂jk − I)

]
.

(3)

Here, ε0 is the vacuum permittivity, k1 = |k1| = 2πn/λ1 is
the wave number, n is the refractive index of the surrounding
medium, λ1 is the wavelength, rjk is the distance between the
dipoles, and r̂jk is the unit vector pointing in the direction from
rj to rk . The terms I are 3× 3 identity matrices. It is possible

to define 3× 3 diagonal blocks of the interaction matrix as
Ajj (ω1) = α−1

j (ω1), where αj (ω1) is the polarizability of the
j th dipole at the frequency ω1. We can then rewrite Eq. (2) as

Einc,j (ω1) = Ajj (ω1)pj (ω1)+
∑
k �=j

Ajk(ω1)pk(ω1), (4)

which can then be written as a system of 3N linear equations
with 3N unknown dipole moment components as

Einc,j (ω1) =
N∑

k=1
Ajk(ω1)pk(ω1), (5)

once αj (ω1) is known. In our case, we are dealing with small
and identical nanoparticles and therefore we can approximate
the line shape of each polarizability αj as a Lorentzian of the
form [21]

αj (ω1) = A0

(ωres − ω1)+ iγ
, (6)

whereA0 is a constant,ωres = 2πc/λres is the center frequency
of the LSPR, c is the speed of light, and γ is the half width of
the LSPR. After solving Eq. (5) for pk(ω1), the local field can
be calculated using the relationship

E(ω1) = ε−1
0 α−1(ω1)p(ω1). (7)

In the following sections, this local field acts as one of the
fundamental field components driving the nonlinear processes
under study. Other local-field components E(ωi), oscillating
at frequencies ωi , driving the nonlinear optical processes of
interest, can be solved for in a similar manner.

B. Second-order nonlinear processes

First, we consider how the second-order nonlinear optical
processes are enhanced when the nanoparticles are arranged
in periodic arrays. We start by assuming that the undepleted-
pump approximation holds, so that the fundamental field
is unaffected by the nonlinear processes. We then take the
frequency components E(ω1) and E(ω2) of the local field,
solved for as explained above, and use these components to
drive the three second-order nonlinear optical processes (SHG,
SFG, and DFG) occurring at the j th dipole:

pexc,j (2ωi) = ε0
↔
βj (2ωi ;ωi,ωi)

: Ej (ωi)Ej (ωi) , (SHG) (8a)

pexc,j (ω1 + ω2) = ε0
↔
βj (ω1 + ω2;ω1,ω2)

: Ej (ω1)Ej (ω2) , (SFG) (8b)

pexc,j (ω1 − ω2) = ε0
↔
βj (ω1 − ω2;ω1,−ω2)

: Ej (ω1)E∗
j (ω2) . (DFG) (8c)

Here the frequencies 2ωi (i = 1 or 2), ω1 + ω2, and ω1 − ω2
correspond to SHG, SFG, and DFG processes, respectively.
The processes of SFG and DFG are schematically shown in

Figs. 1(a) and 1(b), respectively. The terms
↔
βj in Eqs. (8)

are the associated first-order hyperpolarizabilities, and E∗
j (ω2)

is the complex conjugate of the field Ej (ω2). One can see
by looking at Eqs. (8) that the oscillation spectrum of the
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FIG. 1. Schematic energy-level diagrams of the studied nonlinear
processes. (a) In the process of SFG, an output field oscillating at the
frequency ω′ = ω1 + ω2 is created. (b) An output field oscillating
at the frequency ω′ = ω1 − ω2 is created in the process of DFG.
(c) In the process of direct (noncascaded) THG, the three incident
field components at the frequency ω1 are converted into the output
field oscillating at the tripled frequency 3ω1. (d) Cascaded THG can
occur by sequential SHG and SFG processes.

j th dipole moment contains the new frequency components
obtained through the nonlinear interactions.
Equations (8a)–(8c) do not yet take into account the effect

the other dipoles and their scattered fields have on the j th
dipole moment, and the calculated dipole moment is thus not
yet self-consistent. In order to properly take this effect into
account, and thus to find the self-consistent dipole moment
components oscillating at these new frequencies, a new system
of linear equations needs to be formulated and solved. The
approach is analogous to the case of the linear response
(see Sec. II A). We proceed by defining an excitation field
oscillating at the new frequency ω′ as

Eexc,j (ω′) = ε−1
0 α−1

j (ω
′)pexc,j (ω′). (9)

Then we use Eqs. (8) and (9) to calculate the self-consistent
dipole moment components p(ω′) by solving the linear system
with 3N unknown dipole moment components given by

Eexc,j (ω′) =
N∑

k=1
Ajk(ω

′)pk(ω
′), (10)

where the driving term Eexc(ω′) has the expected quadratic
dependence on the incident fundamental field components.We
note that once p(ω′) has been solved for, it is straightforward to
calculate the output field distributions in the far-field locations
of interest using, for example, the Green’s function formalism
[25].

C. Direct and cascaded third-order nonlinear processes

Next, we calculate how third-order nonlinear optical pro-
cesses, such as THG or four-wave mixing (FWM), are en-
hanced in periodic nanoparticle arrays. In addition, we demon-
strate how cascading of two second-order nonlinear optical
processes can effectively constitute a third-order nonlinear
response of an array of nanoparticles. In particular, we show
how cascading could be utilized to strongly modify the overall
THG efficiency of a given example array. We show this by
designing an array exhibiting a strong SLR near the frequency
2ω1 in order to enhance the sequential SHG and SFG processes
[see Fig. 1(d)], while there is no SLR near the frequencies ω1
or 3ω1 present to enhance the direct THG process.

Again, we start by assuming that the undepleted-pump
approximation holds. Then we take the local-field components
Ej (ωi), where i ∈ {1, 2, 3}, obtained through use of Eq. (7),
and use these components to obtain the following third-order
nonlinear optical processes at the j th dipole with the dipole
moment given by

pexc,j (3ω1) = ε0
↔
γj (3ω1; ω1, ω1, ω1)

...Ej (ω1)Ej (ω1)Ej (ω1) , (THG) (11a)

pexc,j (ω′) = ε0
↔
γj (ω

′; ω1, ω2, ω3)

...Ej (ω1)Ej (ω2)Ej (ω3) , (FWM) (11b)

where
↔
γj (3ω1) and

↔
γj (ω′) are the second-order hyperpolar-

izabilities giving rise to THG and FWM, respectively. As
previously, the associated excitation field is then calculated
using Eqs. (9) and (11). Finally, the self-consistent dipole
moment components oscillating at the frequency ω′ due to the
occurring third-order nonlinear processes p(ω′) are calculated
by solving a system of linear equations similar to the one of
Eq. (10).
As the next step, we proceed to study how cascaded

second-order processes contribute to the overall dipole mo-
ment component oscillating at ω′. For simplicity, we limit
our consideration to the process of THG (ω′ = 3ω1) [see
Fig. 1(d)]. We start by calculating the self-consistent dipole
moment components oscillating at the frequencies ω1 and 2ω1
by solving Eqs. (5) and (10). After this, we calculate the
fundamental and the second-harmonic local-field frequency
components Ej (ω1) and Ej (2ω1), and use these components
to drive the sequential process of SFG as

pCexc,j (3ω1) = ε0
↔
βj (3ω1; 2ω1, ω1) : Ej (2ω1)Ej (ω1), (12)

where the superscript C denotes the cascaded contribution to
the overall dipole moment component ptot,j (3ω1). We can now
insert this correction to the excitation field oscillating at 3ω1
due to a direct THG, resulting in a modified system of linear
equations, given by

Eexc,j + ECexc,j =
N∑

k=1
Ajkptot,k, (13)

which is then solved to find the total self-consistent dipole
moment component ptot(3ω1).

III. RESULTS AND ANALYSIS

We have performed numerical studies with arrays of 201×
201 identical gold nanoparticles arranged in rectangular lat-
tices with lattice periods px and py . The nanoparticles were
assumed to be surrounded by a homogeneous medium with
a refractive index of n = 1.51. The linear optical responses
of individual nanoparticles were assumed to be well approxi-
mated by a Lorentzian line shape [see Eq. (6)]. However, the
nonlinear responses of individual nanoparticles were assumed,
for simplicity, to be instantaneous and, therefore, dispersion-
less. This assumption simplifies the interpretation of our results
since the dispersive behavior of the simulated nonlinear optical
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FIG. 2. Incident plane wave propagating along the z direction
illuminates a nanoparticle array. The particles are assumed to be
equilateral triangular nanoprisms belonging to the symmetry group
D3h. The side width of the nanoprisms is w and their height is h.
The particles are arranged into rectangular arrays in the xy plane with
array periods px and py .

responses is then solely due to the modified local fields arising
from the periodic arrangement of the nanoparticles.
For simplicity, we assumed that the arrays were illuminated

with plane waves propagating at normal incidence with respect
to the surface of the arrays (along the z direction; see Fig. 2).
The nanoparticles were assumed to belong to the symmetry
group D3h, resembling equilateral triangular nanoprisms (see
Fig. 2). This symmetrywas chosen as it is noncentrosymmetric,
resulting in electric-dipole-allowed second-order responses. In
addition, such high symmetry facilitates the analysis of the
results since the resulting first-order hyperpolarizability tensor
exhibits only one independent nonzero component, yield-
ing the hyperpolarizability tensor βyyy = −βyxx = −βxxy =
−βxyx = 4.6× 10−27 m4/V, where the directions x and y lie
in the plane of the array. The hyperpolarizability estimate was
based on the literature value for an individual gold nanoparticle
of similar size [26]. Similarly, the nonzero second-order hy-
perpolarizability tensor components are γijkl = γxxyyδij δkl +
γxyxyδikδjl + γxyyxδilδjl , where [i, j, k, l] ∈ {x, y}. The com-
ponents related to the z direction were neglected since our
excitation field was purely polarized in the xy plane. Due to
the symmetry of the nanoparticles, we set γxxyy = γxyxy =
γxyyx = 2× 10−36 m5/V2, where the strength estimate was
based on the literature values for bulk gold [27,28]. These
hyperpolarizability values are simple estimates and more
accurate values can be deduced through appropriate numerical
simulations [29–33] or by measurements [26]. We proceed
further with describing the results of our numerical studies of
the three nonlinear optical processes, as outlined in the previous
section.

A. Difference-frequency generation

First, we simulated DFG efficiency from an array with
periods px = py = 526 nm that gives rise to a first diffraction
order (DO) near the wavelength of 794 nm. The nanoparticles
in the array were assumed to have the LSPR center wavelength
at λres = 700 nm. The LSPR center wavelength and the array
periods were chosen to strongly enhance the calculated local-
field components oscillating near the wavelength of 800 nm
due to the occurring SLR. The 6 nm redshift of the SLR with

FIG. 3. Nanoparticle array with periods px = py = 526 nm ex-
hibits enhanced DFG and OR response near 800 nm, resulting in
THz-frequency generation. The results are presented for a single
particle at the center of the array. (a) x-polarized incident fields with
the wavelengths near 800 nm result in an over 2400-fold enhancement
in the dipole moment corresponding to the OR (shown with white
arrow). The DFG response of the array for the incident fields with the
wavelengths near 800 nm is also noticeably enhanced and exhibits
generation of THz radiation (see the area confined by the red dotted
lines). (b) The calculated spectral amplitude of the THz signal field
exhibits a broadband response between 0.1 and 6.0 THz with an
enhancement factor of the order of 30–1000 in comparison with an
individual nanoparticle’s response.

respect to the DO has appeared due to the hybridization of the
LSPR and DO modes [17].
The LSPR was assumed to have a Lorentzian line shape,

described by Eq. (6), with A0 = 0.09 cm3 s−1 and γ = 8.3×
1013 s−1. These values were found by fitting a Lorentzian line
shape to a simulated extinction spectrum for a single gold
nanoprism with the side width w = 60 nm and the height
h = 25 nm. The extinction simulations were performed using
the finite-difference time-domain (FDTD) method (Lumerical
FDTD). The incident plane wave was assumed to be linearly
polarized along the x direction, while the input wavelength
range spanned from 790 to 810 nm.
Using the nonlinear DDA approach, introduced in the

previous section, we calculated the DFG dipole moment
distribution for the array of nanoparticles. In general, the values
of the calculated dipole moments depend on the position of a
particle in the array: the largest values occur for the particles
at the center of the array. For clarity, the DFG dipole moment
components only for the particle at the center of the array are
plotted in Fig. 3 as functions of the wavelengths of the incident
field components. To facilitate the quantitative analysis of the
role of the periodic array on the overall DFG efficiency, the
results are scaled such that a single and isolated nanoparticle
gives a DFG efficiency of unity for any incident wavelength.
Therefore, a calculated dipole moment amplitude of 2400
corresponds to a similar enhancement in the amplitude of the
generated nonlinear signal field from the particle.
Amore than2400-fold enhancement of theDFGprocess has

been demonstrated for the incident fields with the wavelengths
coinciding with the SLR near 800 nm in the vicinity of the
optical rectification (OR) frequency range [see Fig. 3(a)]. The
calculated spectral amplitudes of the THz signal field span
from 0.1 to 6.0 THz [see Fig. 3(b)], with an enhancement
factor of the order of 30–1000 compared to those of individual
nanoparticles. This signal falls inside the well-known terahertz
gap, which is defined as the band of frequencies ranging
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FIG. 4. Nanoparticle array with periods px = 759 and py =
792 nm, giving rise to SLRs near the wavelengths of 1160 and
1205 nm, respectively, exhibits enhanced SFG and SHG responses
when the wavelengths of the incident fields coincide with the SLRs.
Weplot the SFGdipolemoment amplitude for the particle at the center
of the array for the incident fields, linearly polarized along the (a) y,
(b) x, and (c) (x + y) direction. The dipole moment is scaled with
respect to that of a single isolated particle.

from 0.1 to 10 THz, inside which the generation and detec-
tion of radiation is still challenging. Since the earlier works
considering plasmonic nanoparticle arrays for THz generation
have not utilized SLRs [34,35], we believe that the predicted
enhancement factors are very promising.

B. Sum-frequency generation

We next simulated the efficiency of SFG from an array of
nanoparticles with periodspx = 759 andpy = 792 nm, giving
rise to the first two DOs near the wavelengths of 1146 and
1196 nm, respectively. This time, we assumed the particles to
exhibit an LSPR with the center wavelength λres = 1000 nm,
and to be well approximated by a Lorentzian line shape [see
Eq. (6)] with A0 = 0.43 cm3 s−1 and γ = 13.8× 1013 s−1.
These values were found by fitting a Lorentzian line shape to a
simulated extinction spectrum of a single gold nanoprism with
the dimensions w = 210 nm and h = 25 nm (FDTD Lumer-
ical). This array configuration results in two nondegenerate
SLRs formed near 1160 and 1205 nm, associated with the
array periods px and py , respectively.
Linearly polarized incident fields were used for excitation

with the wavelengths ranging from 1100 to 1250 nm. We
considered three different linear polarizations of the incident
field, oriented along the y, x, and (x + y) direction. The latter
polarization orientation corresponds to the linear polarization
rotated at 45 degrees with respect to the x orientation towards
the y direction (see Fig. 2). This analysis allowed us to study
the dependence of the excitation of SLRs on the polarization
of the incident light. We calculated the SFG dipole moment
of the particle at the center of the array and plotted it as the
function of the two incident fields’wavelengths. The results are
displayed in Fig. 4 for the three incident field polarizations, as
described above.When the incident field is polarized along the
y direction (x direction), it is effectively coupled with the SLR
at 1160 nm (1205 nm), as shown in Fig. 4(a) [Fig. 4(b)]. When
the input polarization is oriented along the (x + y) direction,
both SLRs are simultaneously excited [see Fig. 4(c)]. These
findings demonstrate that one can engineer the efficiency of
the nonlinear optical responses and can control it by changing
the incident polarization.

Cascaded THG
Direct THG

(a
.u

.)

5

10

15

20

1500 1525 1550 1575 1600
Fundamental wavelength (nm) 

FIG. 5. Calculated THG dipole moment amplitude for the
nanoparticle at the center of the array with periods px = py =
505 nm, giving rise to a SLR near the wavelength of 770 nm. When
the cascaded contribution is neglected (red dotted line), the THG
response of the array does not markedly depend on the incident
fundamentalwavelength because there are no strong resonances either
near the fundamental wavelength (1500–1600 nm) or near the THG
signal (500–533 nm). When the cascaded nonlinear effects are taken
into account (black solid line), a clear peak near the fundamental
wavelength of 1540 nm (highlighted with the vertical blue line)
appears, demonstrating a 20-fold enhancement of the overall dipole
moment component corresponding to THG.

C. Direct and cascaded third-harmonic generation

Finally, we studied how the third-order nonlinear optical
processes can be enhanced through engineering the nanopar-
ticle arrays. In particular, we determined whether (and how)
the two sequential second-order nonlinear optical processes of
SHG and SFG can contribute to the overall THG efficiency
[see the schematics of the associated processes in Figs. 1(c)
and 1(d)]. We assumed the wavelength of the incident field to
vary between 1500 and 1600 nm. In order to enhance the effect
due to cascading of the two second-order nonlinear optical
processes [see Fig. 1(d)], we designed an array where the local
field is strongly enhanced by an SLR near 770 nm. The LSPR
center wavelength was chosen to be at 700 nm, which was
achieved by using the particles identical to those used for the
DFG studies. Then, as a consequence of arranging the particles
into an array with periods px = py = 505 nm, a DO near the
wavelength of 763 nm appeared, giving rise to the SLR near
770 nm.
For an incident field oscillating near 1540 nm, the SHG pro-

cess is enhanced by the SLR near 770 nm, while no resonance
exists either near the fundamental (1540 nm) or near the THG
(513.3 nm) wavelength. Therefore, the overall enhancement of
the THG efficiency for the fundamental wavelength 1540 nm
can be mostly attributed to the cascaded process. In addition,
since the contribution from the direct THGprocess is spectrally
flat, it would be straightforward to verify these predictions also
experimentally by performing spectral THG measurements.
The results of the THG simulations with the cascaded effects,
both taken into account and neglected, are shown in Fig. 5. In
the simulations, the incident field was assumed to be linearly
polarized along the x direction. The black solid line shows the
normalized dipole moment for the THG process with both the
contributions (direct and cascaded) taken into account, while
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the dashed red line shows the dipole moment for the direct
process only. As expected, the overall efficiency of THG is
resonantly enhanced due to a strong cascaded contribution
arising from the sequential SHG and SFG processes.

IV. DISCUSSIONS AND CONCLUSION

We next discuss the potential of the demonstrated non-
linear DDA approach to be used for better understanding
the nonlinear optical processes in nanoparticle arrays. The
proposed method is based on a recently introduced nonlinear
DDA approach to simulate the optical response of individual
particles [19], where the resulting systems of linear equations
are solved iteratively using a generalized minimal residual
method and custom-writtenMATLAB codes. The block-Toeplitz
nature of the interactionmatrixAjk and fast Fourier transforms
were utilized to reduce the memory constraints and to speed
up the computations [18,36]. The calculations were further
accelerated by performing the most demanding computations
using a graphics processing unit (GeForce GTX TITAN X)
resulting in an additional ∼10-fold speedup. We note that
similar results could be achieved using other computational
approaches, for example, basedonFDTD[37] orfinite-element
methods [31–33].We chose the nonlinear DDA approach since
it also provided an intuitive understanding of the underlying
physics and was straightforward to implement. In addition, the
anisotropic and tensorial optical responses would be straight-
forward to implement using the DDA approach, which are
known to often play a major role in the nonlinear responses of
individual nanoparticles [14]. The DDA approach could also
be a useful tool for studying how fabrication imperfections or
deviations of the array geometry from the designed one could

affect the predictedoptical response of the array.Utilizingmore
commonly used simulation tools, such as the FDTD method,
for such studies would be significantly more computationally
demanding because periodic boundary conditions cannot be
applied to simplify such simulations.
In conclusion, we have studied the nonlinear responses

of plasmonic nanoparticle arrays. In particular, we studied
how the collective responses of nanoparticle arrays known
as surface lattice resonances could be utilized to enhance
and engineer nonlinear processes such as second-harmonic,
sum-frequency, difference-frequency, and third-harmonic gen-
eration. We reported on significant enhancements (20- to
2400-fold) of nonlinear optical responses, which could be use-
ful, for example, to achieve efficient terahertz generation from
nanoparticle arrays. We have also studied how surface lattice
resonances could be utilized to enhance higher-order nonlinear
optical processes through cascaded lower-order processes,
with the implications of the generation of ultraviolet radiation
using nanoparticle arrays. As an example, we have shown,
using a simple array design, that the process of third-harmonic
generation could be enhanced almost 20-fold due to cascaded
second-order nonlinearities. We believe that our results could
be useful for various applications where nonlinear phenomena
are utilized, including novel sources of coherent light.
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