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Nonfrequency-Shifted Phase  Conjugation  by 
Brillouin-Enhanced  Four-Wave Mixing 

PAUL  NARUM AND 

Abstract-We present a theoretical treatment of four-wave mixing 
(FWM) in a Brillouin-active medium for the case in which the pump 
waves differ in frequency by approximately twice the Brillouin fre- 
quency shift of the medium and in which the probe-wave frequency is 
approximately the arithmetic mean of the frequencies of the two pump 
waves. Under these conditions, the conjugate wave produced by the 
FWM process has the desirable property of being at the same fre- 
quency as the probe. We derive the coupled amplitude equations de- 
scribing this interaction. We solve these equations analytically in  the 
limit of negligible pump depletion and  find that large phase conjugate 
reflectivities are readily achievable. The coupled amplitude equations 
are solved numerically for the general case, and it is found that large 
power transfer from the pumps to the output wave is possible. The 
output wave  is shown to be a nearly perfect phase conjugate of the 
probe wave, even far into the regime where pump depletion effects are 
important. Our formalism predicts the existence of a parametric insta- 
bility in the propagation of the pump waves, but good performance is 
predicted before the onset of this instability. 

T HE two  principal  methods for producing  the  phase 
conjugate of an  optical  wave  are  degenerate  FWM [ 11 

and  stimulated  Brillouin  scattering (SBS) [2].  Although 
each of these  processes is known to produce  high-quality 
phase  conjugation  under  certain  conditions,  each  has  cer- 
tain  drawbacks  that  limit  its  usefulness.  Degenerate  FWM 
leads  to  high-quality  phase  conjugation  only if the  two 
pump  waves are accurately  aligned to  be counterpropa- 
gating  and to have  wavefronts  that  are  phase  conjugates 
of each  other.  Furthermore,  the  efficiency  of  the  phase 
conjugation  process is typically  rather  low  unless the  fre- 
quency of the  waves is chosen so that  they  can  resonantly 
excite  the  nonlinear  medium. On the  other  hand,  stimu- 
lated  Brillouin  scattering is easy to implement  and  has 
high  efficiency,  but  leads  to  phase  conjugation  that is im- 
perfect  both  in  that  the  output is shifted  in  frequency  with 
respect to the  input  and  in  that the  output  wavefront  is 
only  approximately  the  conjugate  of  that  of  the  input  [3]. 
Furthermore,  since  the SBS process  is  pumped by the  sig- 
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nal wave,  this  process  can  never  lead  to  reflectivities 
greater  than 100 percent. 

In  this paper, we describe  theoretically  a  new  method 
for  producing  a  phase  conjugate  wave.  This  method  com- 
bines  the  desirable  features  of  phase  conjugation by de- 
generate  FWM  with  the  desirable  features of phase  con- 
jugation by SBS, yet has  none of the  disadvantages 
mentioned  above  of  either. The geometry for  this  inter- 
action is shown  in Fig. 1. The  two pump  waves of am- 
plitudes E ,  and E2 are  counterpropagating  and  differ  in 
frequency by 28  where 8 is the  Brillouin  frequency  of  the 
FWM  medium.  The  probe  wave  of  amplitude E3 is  at  a 
frequency  midway  between  those of the  two  pump  waves. 
In Fig.  l(a)  the probe  wave  enters the medium  from  the 
same  side  as  the  high-frequency  pump  wave;  in  Fig. l(b) 
the  probe  enters  from  the  same  side as the  low-frequency 
pump  wave. In either  case,  the  interaction of these  three 
waves  leads to  the  generation  of the phase  conjugate  out- 
put wave E4, whose  frequency  is  equal to that of the  probe. 
These  four  interacting  waves  are  very  strongly  coupled 
because  the  nonlinear  interaction is mediated by an  in- 
tense  acoustic  wave of frequency 8 that  is  resonantly  ex- 
cited by the  beating  between  the  probe  wave  and  the  pump 
wave  that  propagates  nearly  antiparallel to it and by the 
beating  between  the  conjugate  wave  and  the  other  pump 
wave. We show  below  that  this  interaction  can  lead  to  the 
generation of the  output  wave  with  reflectivities  in  excess 
of 100 percent.  Brillouin-enhanced FWM using  equal-fre- 
quency  pump  waves  has  been  observed  by  Andreev et al. 
[4] and has  been  discussed  theoretically by Scott  [5]; 
however,  their  geometry  has  the  undesirable  property  that 
the  conjugate  wave is produced  at  a  frequency other than 
that of the  probe wave. 

An important  feature of the  geometry  considered  here 
is that it is  possible  to  create  the  low-frequency  pump 
wave by focusing  the  transmitted  high-frequency  pump 
wave  into  a  cell in which  the  normal SBS process occurs, 
as illustrated  in Fig.  2.  The  Brillouin-active  material  used 
in  the SBS generator  is  selected so that  its  Brillouin  fre- 
quency  is  twice  that  of  the  material  used  in  the  Brillouin- 
enhanced  FWM  region.  The  frequency  difference  be- 
tween the  two  pump  waves  thus has the  proper  value of 
28. Furthermore,  since  the  backward-going  pump  wave 
is  created by the SBS process,  it  is  to  good  approximation 
a  phase  conjugate of the  forward-going  pump  wave,  and 
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where ye = p ( a t  / ap),, is the  electrostrictive  constant, u 
is the  speed of sound in the  medium, Ti j  is :he Brillouin 
linewidth, QG = w i  - wj, and 2jij = k j  - k j .  Equation 
(2) predicts  that the  amplitude  of  the density  wave will be 
particularly large when the condition 

E1.o - 1  1% 
(b) 

e 4, 4 

Fig. 1. The  four-wave  mixing  (FWM)  geometries  considered  here.  The 
two  counterpropagating  pump  waves E ,  and Ez differ in frequency by 
twice  the  Brillouin  frequency  shift fl of the  medium.  The  frequencies  of 
the  probe  wave Ei and  the  signal  wave E4 are  halfway  between  those  of 
the  pump  waves. Both geometries  lead to large  reflectivities for weak 
probe  waves,  but  the  geometry of (a)  leads  to  higher  energy  transfer 
when  the  probe is not weak. 

E,, o - 2Q 

Fig. 2. Experimental  setup to generate  the  low-frequency  pump  wave  from 
the transmitted  pump  wave  using  stimulated  Brillouin  scattering.  The 
SBS medium  has  a  Brillouin  frequency  twice that of  the FWM medium. 
Note  that  the  two  pump  waves  are  automatically  phase  conjugates of one 
another. 

hence  the  requirement  that  the  two  pump  waves be phase 
conjugates of one  another is automatically  satisfied. 

We describe  Brillouin-enhanced FWM by generalizing 
the formalism  used to describe  the SBS process [6], [7] to 
the  FWM geometry [ 5 ] .  We assume  for  definiteness  the 
geometry of Fig.  l(a), although as  shown below our re- 
sults  can readily be modified to pertain to  the geometry 
of Fig.  l(b).  We assume  that  the  various  optical fields are 
linearly  polarized  in  the  same  direction  and  can be rep- 
resented  within the nonlinear  medium as 

- 
Fj  (7 ,  t )  = $Ei (7 )  ~ ~ ( ~ 1 .  i - w i i )  + C.C. 

( i  = 1, 2,  3 ,  4) (1) 

where k' is the  wave  vector  of  wave i in the medium  and 
wi  is its frequency.  The interference  between  each pair of 
waves  leads to a  density  variation  within the Brillouin- 
active  medium  through the process of electrostriction. We 
next make  the  usual  assumptions  that  are used to  describe 
the SBS process,  namely,  that  the hydrodynamic  equa- 
tions may be used  in their linearized form, that the pho- 
nons are strongly damped, and that  the slowly  varying 
amplitude approximation  is valid.  We then find that  the 
deviation of the  material  density  from its equilibrium  value 
po due  to the  interference  between  wave i and  wave j is 
given by 

( 1  GG I u)? = Q; (3) 

is satisfied. This condition  holds  when  the  interference 
pattern between  waves i a n d j  moves at  the speed of sound 
in the  medium.  The density  wave  is  resonantly  enhanced 
under this condition  because the electrostrictive  driving 
term can  couple effectively to a  freely  propagating  acous- 
tic  wave.  The frequency of this  acoustic  wave is 1 ; l j  I v ,  
which  is the Brillouin  frequency for  the interaction of 
waves i and j .  For  the geometry of Fig.  l(a), only  the 
interference of waves 1 and 4 and of waves 2 and 3 sat- 
isfies the  Brillouin  resonance  condition (3). We therefore 
will not consider the acoustic disturbance resulting from 
the  interaction of any  other pairs of waves. Since  the 
acoustic  wave  vectors  satisfy the  condition G L 4  = G23, the 
Brillouin frequency Q = I $14 I Y = \ @23 j zj is the  same  for 
both resonant  contributions to the  density  grating. For 
generality,  we  allow the possibility that  the incident waves 
do not exactly meet the Brillouin resonance  condition, and 
hence  that the  frequencies of the incident  waves are re- 
lated by 

~2 = W I  - 2Q + A2 (4) 

~3 = W ,  - Q + A3 ( 5 )  

where  the  detunings A 2  and A3 are  assumed  to  be small 
compared to Q .  The frequency w4 = w l  + w 2  - w 3  of the 
output  wave is hence  given by 

~4 = W I  - Q + A2 - A,. (6 )  

The  density  variation  given by (2) leads to a  variation 
in the  dielectric  constant of the  medium.  The  scattering 
of the  incident field from  this  inhomogeneity  can be  de- 
scribed in terms of a nonlinear  contribution to the polar- 
ization of the medium  that  is given by 

( 7 )  
where F( 7, t )  = F,( 7, t )  + F2(  7, t )  + F3( 3, t )  + 
F4( 7, t )  is the total electric field, which is required to 
obey the driven wave equation 

where n is the refractive index.  We next  derive  the  cou- 
pled amplitude  equations  obeyed by the slowly  varying 
field amplitudes by dropping  from  the right-hand side of 
(8) those  terms that are not at  least  approximately  phase 
matched.  For simplicity,  we also  assume  that  the  angle 
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between  the  forward-going  pump  wave  and  the  probe 
wave  is  small,  and  thereby  obtain 

aE T 
az 
- -  - -E: ( QI4 + Q2, e i A k z )  

and 

aE: 
az - = -El ( Q14 + Q23 e i A k z )  

where  the  coupling  coefficients 

and 

are  proportional  to  the  amplitudes  of  the  density  waves 
driven by the  beating  of  waves  1  and 4 and  of  waves  2 
and 3, respectively.  The  coefficient 

reduces  to  the  line-center  amplitude  gain  coefficient  for 
the  normal SBS process [7] for  the  case A3 = A*. The 
wave  vector  mismatch A k = 2n8 / c is  the  intrinsic  phase 
mismatch of Brillouin-enhanced FWM in the geometry of 
Fig.  1. 

In the  limit  in  which  the  complex field amplitudes  of 
the  pump waves  can  be  assumed to be constant,  the  cou- 
pled  amplitude  equations  (9c)  and  (9d)  for  the  probe  and 
conjugate  wave  amplitudes  can  be  solved  analytically.  We 
find that  the  amplitude  reflectivity r = E: ( 0 )  / E3 ( 0 )  for 
the  boundary  condition E4 ( L )  = 0 is given by 

a+a- exp [(a' - u - ) L / ~ ]  - 1 E ~ E ;  
r = -  

2 G a -  - a+ exp [(a' - a - )L /2 ]  IElE2( 

( 1 2 4  

ai = -gzi ( i  = 1, 2) (12b) 

(12c). 

where 

a' = a1 - a2 + iAk  &- [ ( a ]  - a2 -I- i A k )  + 4a,a2] 2 ' /2 

and 

For  the  case  in  which  the  probe  wave is nearly  copropa- 
gating  with  the  low-frequency  pump  wave  [as  in  Fig.  1  (b)] 
the  appropriate  boundary  condition  is E, ( 0 )  = 0 ,  and  the 
reflectivity now defined as E: ( L )  / E 3  (I,) is  still  given by 
the set  of  equations  (12).  We  shall  show  later  that  this 
symmetry no longer  holds  for  the  case  in  which  pump 
depletion  occurs. In this  more  general case,  the geometry 
of Fig.  l(a)  yields  the  higher  transfer of  energy  from  the 
pump  waves  into  the  output wave, and  for  this  reason,  the 
formulas (9)-( 11)  have  been  written  to  apply  explicitly  to 
the  geometry  shown  in Fig.  l(a). 

The analytic  results  of  (12) are formally  identical  to 
those  obtained by Scott [5] for his  different  choice  of  input 
frequencies. As in  that case,  our  expression  for  the  pre- 
dicted  reflectivity  simplifies  dramatically  under  certain 
limits. In the  limit  in  which  the  phase  mismatch  can be 
neglected,  that  is,  the  limit I A k  I << I a ,  - a2 I, the  am- 
plitude  reflectivity  approaches  the  value 

for  either  the  geometry  of  Fig. 1 (a) or of Fig.  l(b). If  in 
addition we consider  the  case  in  which  the  Brillouin  res- 
onance  condition A2 = A, is  satisfied so that  the  param- 
eter g of (1  1) is  a  real  positive  number and  in  which  the 
input  intensities  are  sufficiently  large  that g ( I ,  + Z2)L 
>> 1, the  amplitude  reflectivity r is seen to  approach  the 
value ( I ,  /Z2)1/2 [ 5 ] .  Hence,  for  the  geometry  of  Fig. l(a), 
the reflectivity is  greater  than  unity if the  pump  wave  that 
copropagates  with  the  probe  is  stronger  than  the  other 
pump wave,  whereas  for  the  geometry of Fig.  l(b),  the 
reflectivity  is  greater  than  unity if the  counterpropagating 
pump  wave is the  stronger. 

In Fig.  3,  we display  graphically  the  nature  of the so- 
lution  given by (12)  for  three  different  values of the  cell 
length L and  under  the  assumption  that  the  Brillouin  res- 
onance  condition A, = A3 is  satisfied.  The  power reflec- 
tivity I r l 2  is plotted  as  a  function  of the normalized  in- 
tensity Zl  L of the  forward-going  pump  wave  for  several 
different  values  of  the  ratio R = I ,   / I 2  of  the  pump  inten- 
sities.  For  definiteness,  we  use  those  values of the mate- 
rial  parameters  that  are  appropriate  for  the  case of Bril- 
louin-enhanced FWM  in  carbon  disulfide at  a  wavelength 
of 0.53  pm, that is, A k  = 5.25  cm-I and g = 0.075 
cm/MW. It is seen  from  these  plots  that  large  reflectivi- 
ties are readily  obtained.  We  note  that  for  large  intensi- 
ties,  the  reflectivity  approaches the  value I ,  / I 2 ,  as  ex- 
pected [5] .  For  the  shortest  cell  length  shown,  wave  vec- 
tor  mismatch  effects are  unimportant  and the reflectivity 
increases  monotonically  with  increasing  pump  intensity, 
whereas for  longer  cell  lengths  phase  mismatch  effects  be- 
come  important  and  the  behavior  becomes  more  compli- 
cated. 

It might  be  difficult  experimentally to control  the  input 
frequencies  well  enough  that  the  Brillouin  resonance  con- 
dition  is  exactly  met.  In Fig. 4 we show  the  dependence 



1214 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-23. NO. 7. JULY 1987 

lo5 

10' 

lo-' 

R = 10000 
L = 0 . 1  cm 

105 

104 

t 103 - 
2 
t- ; 10' 
Y 
Y 

CL 

10' 

100 

lo-' 

0 100 200 
NORMALIZED PUMP INTENSITY I,L [MWkm]  

Fig. 3. Reflectivity of the  Brillouin-enhanced FWM process  plotted as a 
function  of  the  normalized  pump  intensity for  several  different  values  of 
the  cell  length L and  the  ratio R = I ,  / Z 2  of the  intensities of the  two 
pump  waves.  We  assume  the  case of exact  Brillouin  resonance (A, - 
A2),  and  we use the  values of the  gain  coefficient  and  wave  vector  mis- 
match for  the  case of CS2 as the  nonlinear  medium  and a wavelength of 
0.53 pm. The small  dots  mark  the  intensity  at  which an instability in the 
propagation  of  the  pump  waves  occurs. 

of the  power reflectivity on  the  detuning A2 - A3 from 
the  exact Brillouin resonance,  for a cell  length of 2.5 cm 
and a pump  intensity  ratio of R = 40. For  the  case of low 
input intensities,  the tuning curve has the  same  shape as 
the  Lorentzian-shape  Brillouin  resonance of (1 1). As the 
pump  intensities  are  increased  gradually,  the  tuning  curve 

NORMALIZED  DETUNING 

. Reflectivity  plotted as a function  of  the  normalized  detuning ( A 2  _ .  
- A,) / r  from  the  Brillouin  resonance  end of the  pump  intensity I, in 
megawatts  per  centimeter  for  a  cell  length  of 2.5 cm  and a pump  beam 
intensity  ratio of R = 40, for  the  case of CS2 as the  nonlinear  medium 
and  wavelength of 0.53 pm. 

L .. 

broadens  and develops a secondary  peak  that  moves  ini- 
tially to negative  detunings  and later  to positive  detun- 
ings. At the peaks of Fig. 4, the reflectivity formally be- 
comes infinite. This  divergence  is the origin of a 
parametric  instability in the  FWM  process.  The maximum 
value of the  pump  intensity  is  limited by the onset of this 
instability,  which  occurs  when  the  complex  denominator 
in (12a) first becomes zero [8]. In  the  limit of an inter- 
action  region sufficiently short  that A kL << 1, A k can be 
neglected  in (12), and the  instability  is seen to occur for 
a forward  pump intensity given by 

and at a detuning  from the Brillouin  resonance of A3 - 
A2 = f .?rr /In ( R ) .  More  generally,  the onset of this  in- 
stability is  determined  numerically by finding the lowest 
value of the intensity Z, for which (12) becomes infinite 
for  some value of the  detuning A3 - A, from  the Brillouin 
resonance. We allow the detuning to  be arbitrary  because 
when the reflectivity is  infinite,  an  instability can develop 
even in the absence  of an input field. The location of this 
instability is marked by a small dot on each  curve shown 
in Fig. 3. Note  that  very  large reflectivities can be ob- 
tained before  this instability is reached.  The threshold for 
SBS (taken as the  condition  that the exponential  gain  be 
equal to 30) due  to  the E, pump  wave in the  absence of 
the E2 pump  wave  occurs  in  all  cases at the value 200 
MW/cm2 of the  normalized  pump  intensity. The thresh- 
old for instability is  seen  to  be significantly lowered by 
the  presence of the counterpropagating  pump  wave under 
most circumstances. Of the  cases  illustrated,  only  for L 
= 0.1 cm  and R = 1  is  the threshold  raised. 

Since  the reflectivities in  Brillouin-enhanced FWM can 
be very large,  it is easy to  operate  in a regime  where  sig- 
nificant pump  depletion occurs.  Pump depletion effects 
are important both because they  limit the fraction of the 
pump  energy  that  can be transferred to the signal  wave 
and  because they can limit the extent to which the signal 
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wave is the  phase  conjugate of the  probe  wave.  In order 
to  treat  pump  depletion  effects,  it  is  necessary  to  solve  the 
entire  set  of  coupled  equations (9). Analytic  solutions  to 
the  complete  set  of  coupled  equations  describing  FWM  in 
photorefractive  materials  [9]  and in Kerr  media [lo] have 
recently  been  presented.  However, we  have  been  unable 
to find an  analytic  solution  to  our  set  of  equations  because 
the  nature of the  coupling is different  in  our case.  We  have 
thus  solved  the  set  of  equations  numerically.  Since  the 
boundary  conditions  for  two of the  waves  are  imposed  at 
z = 0, whereas  the  boundary  conditions  for  the  other  two 
waves are imposed at z = L ,  the  equations  constitute  a 
two-point  boundary  value  problem. We have  solved  these 
equations  using a shooting  and  matching  method [ 111. To 
ensure  the  numerical  accuracy  of  our  solution,  we  have 
verified  that  the  relevant  constants of the  motion 

and 

give,n by the Manley-Rowe  relations are conserved  at  all 
points  within  the  interaction  volume  to  better  than 0.3 
percent.  Sets  of  equations  describing  FWM  are  known to 
lead to multivalued  solutions [9],  [lo].  We  have not  stud- 
ied  the  possibility  of  multivalued  solutions  to  our  set of 
equations.  Instead, we have  determined  only  that  solution 
which  connects  adiabatically  to  the  low-probe-intensity 
solution as the  probe  intensity  is  increased  gradually. 
However, we believe  that  our  solutions  are  stable  because 
small  changes  in  our  input  parameters  lead to only  small 
changes  in  the  output. We  have  performed  such  calcula- 
tions  using  a  variety  of  cell  lengths. We find that  the  best 
results are obtained  when  the  input  intensities are as  large 
as  possible  while  avoiding  the  threshold  for  instability, 
when  the  cell  is sufficyently short  that  wave  vector  mis- 
match  effects  are  nearly  negligible,  and  when  using  the 
geometry of Fig.  l(a) instead of that of Fig.  l(b).  The 
geometry  of Fig.  l(a)  leads to  a  larger  energy  transfer 
than  that of Fig.  l(b)  because  for  Fig.  l(a)  the output 
wave  experiences  Brillouin  gain  through  its  interaction 
with the  forward-going  pump  wave,  whereas  for  Fig. l(b) 
the  output  wave is  attenuated by its  interaction  with  the 
backward,-going pump  wave.  Typical results  are  shown  in 
Fig. 5 for  a  cell  length  of  0.1 cm and  pump  beam  intensity 
ratios of 10, 30, 100, and  300.  The pump  intensities  are 
chosen  to be  just below  the  onset  of  instability,  and are 
given by I ,  = 720, 766,  860,  and 967  MW * cm-,,  re- 
spectively.  Fig.  5(a)  shows  the  fraction  of  the  total  pump 
wave  energy  that is  transferred  to  the  signal  wave  plotted 
as a function  of  the  probe  intensity  normalized  in  such  a 
manner  that all of  the  curves  initially  have  the  same  slope. 
The  curves  are  hence  normalized  in  terms of the  unsatu- 
rated  reflectivities,  which are given  for  the  four  cases by 
9.56,  26.36,  78.82, and 217.4, respectively.  Note  that 
the  reflectivity  saturates  less  rapidly  through the  use  of  a 
lower  pump  intensity  ratio  and  that  more  than 40 percent 

0 0.5 1 
NORMALIZED PROBE INTENSITY I3(O) lrl*/ Ip 

Fig. 5 .  (a)  Energy  transfer  characteristics  in  the  pump  depletion  regime. 
The fraction  of  the  total  input  pump  intensity I ,  that is transferred  to  the 
signal  wave  is  plotted as a  function  of  the  probe  intensity,  normalized in 
such  a  way  that  all of the  curves  have  the  same  slope  for  low  intensities. 
In  each of the  illustrated  cases,  the  pump  intensity  is just below  the 
threshold  for  instability.  (b)  Variation  of  the  phase of the  signal  wave 
plotted  as  a  function of the  probe  intensity, for the  same  cases  as  illus- 
trated  in  (a). 

energy  transfer  is  possible.  In  order  for  the  signal  wave 
to be the true  phase  conjugate  of  the  probe  wave, it is 
necessary  that  the  signal  intensity  depend  linearly  on  the 
probe  intensity  and  that  the  phase  shift  upon  reflection  not 
depend  upon  the  probe  intensity. We  see  from  Fig.  5(a) 
that  the  transfer  characteristics are more  nearly  linear for 
low pump  intensity  ratios,  implying  that  high-quality 
phase  conjugation  consistent  with  high  energy  transfer  is 
best  achieved  through  the  use of a  low pump intensity 
ratio. Of course,  this  enhanced  performance in  terms of 
the  linearity of the  transfer  characteristics  and  the  energy 
transfer  efficiency is accompanied by a  decrease  in  the 
unsaturated  reflectivity. Fig. 5(b)  shows  the  variation  in 
the  phase of the  signal  wave as the  probe  intensity  is  in- 
creased.  Note  that  even in the  worst  case  shown  this  vari- 
ation  corresponds  to  less  than 1 /50 of a  wave  of  aberra- 
tion  of  the  phase  front  of  the  signal  wave,  and  that  the 
performance  is  improved  through  the  use  of  a  lower  pump 
intensity  ratio. 

In conclusion,  we  have  presented a theoretical  descrip- 
tion of Brillouin-enhanced FWM  in  a new geometry  for 
which the  probe  and  signal waves  have the  same  fre- 
quency.  We find that  high  reflectivity,  large  energy  trans- 
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fer from the pump waves, and  high-quality  phase conju- [SI B. Ya.  Zel’dovich  and  V.  V.  Shkunov.  “Characteristics  of  stimulated 

gation are  possible,  even  in the  pump  depletion regime. scattering  in  opposite  pump  beams,” Sov. J .  Quantum Electron., vol. 
1 2 . ~ ~ .  223-225.  1982. 

Note  added in proof: We  have recently completed an [9] M.  Cronin-Golomb, J .  0. White, B. Fischer.  and  A.  Yariv.  “Exact 
experimental  investigation that verifies many of  the pre- solution  of a nonlinear  model of four-wave  mixing  and  phase  conju- 

entitled  “Non-frequency-shifted, high-fidelity phase con- mixing in Kerr  media,” J .  Opt. Soc. Amer. B,  to be published. 
jugation with aberrated pump by ~ ~ i l l ~ ~ i ~ - ~ ~ -  [ I  11 W.  H.  Press, B. P.  Flannery, S. A.  Teukolsky,  and W. T. Vetterling, 

hanced  four-wave mixing,” by M. D. Skeldon, P. Na- 
Numerical  Recipes:  The  Art of Scientific  Compfiting. Cambridge, 

rum, and R. W. Boyd, is scheduled for publication in the 
England:  Cambridge  Univ.  Press,  1986. 
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dictions presented here. An account Of this investigation, [lo]  R.  Lytel,  “Pump  depletion  effects  in  nonlinear  degenerate  four-wave 
gation,” Opt. Lett., vol.  5,  pp.  313-315,  1982. 
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