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A theory of generation-recombination noise is presented and applied to the analysis of the performance limitations
of extrinsic photoconductive detectors. The theory takes account both of the photoinduced generation of carriers
and of thermal generation that is due to the finite temperature of the detector. Explicit formulas are derived that
relate the detector response time, responsivity, and noise equivalent power to the material properties of the photo-
conductor (such as the presence of compensating impurities) and to the detector's operating conditions, such as
its temperature and the presence of background radiation. The detector's performance is shown to degrade at high
background levels because of saturation effects.

1. INTRODUCTION

There is currently great interest in extrinsic photoconductivity
as a means of detecting far-infrared radiation for spectroscopic
and astronomical applications. The dominant noise mech-
anism in photoconductive detectors is generation-recombi-
nation noise, which arises from the statistical fluctuations in
the number of free carriers that are available to conduct cur-
rent.1-3 The simplest theories of generation-recombination
noise assume that the detector responsivity and response time
(i.e., excess carrier lifetime) are independent of the back-
ground radiation level to which the detector is exposed. In
this case, it is well known that the background-limited
noise-equivalent power (NEP) of the detector is 21/2 times
larger than that of an ideal photon detector, that is, a detector
for which the only noise source is the fluctuations in the arrival
times of the incident photons. The factor of 21/2 arises from
the independent fluctuations in the generation and recom-
bination rates of the free carriers within the detector. The
theory of generation-recombination noise as applied to ex-
trinsic photoconductors can be far more complicated. In the
far infrared, background photon fluxes can be large, even for
backgrounds of relatively low temperature. At impurity
concentrations normally employed, this background level can
alter the carrier concentrations significantly from their
thermal-equilibrium values. As a result, the detector re-
sponsivity, response time, and carrier fluctuations can differ
greatly from their equilibrium values, leading to a NEP quite
different from that predicted by the simple theories.

In this paper, we present a general theory of generation-
recombination noise in extrinsic photoconductive detection
systems. The calculation is based on a statistical method
introduced by Burgess4 in his treatment of generation-re-
combination noise in doped semiconductors. This approach
applies detailed balancing to the carrier generation and re-
combination rates. The theory is thus capable of including
the effects both of photogeneration of carriers and of thermal

generation that is due to the finite temperature of the detector.
The somewhat simpler thermodynamic treatment of gener-
ation-recombination noise cannot be applied to photocon-
ductors because in the presence of the radiation background
the detector will not in general be in equilibrium. The effects
of photon bunching5 on the photogeneration rate are not in-
cluded in the present theory; such effects can often be ne-
glected under realistic operating conditions.6

Section 2 presents a treatment of the statistical properties
of the photoconductive material. Impurity compensation of
the majority carrier is addressed in this treatment and is
shown to affect the noise properties of the detector. In Sec-
tion 3, the results of this treatment are applied to analyze the
performance limitations of an extrinsic photoconductive de-
tector. Explicit formulas that relate the responsivity and the
NEP to the detector's material parameters and to its operating
conditions are derived. Our treatment goes beyond that of
other recent workers1-3 in that (1) the effects of compensating
impurities are taken into account, (2) both thermal excitation
and photoexcitation are included, and (3) our treatment can
be used even in the presence of a large radiation background
for which the fractional ionization of the impurity level is not
small.

2. STATISTICS OF EXTRINSIC
PHOTOCONDUCTIVITY

Let us consider the impurity photoconductor whose energy-
level diagram is shown in Fig. 1. The photoconductor is as-
sumed to contain Nd donor impurities and N0 acceptor im-
purities lying within the band gap. We assume that Nd > Na,
in which case the detector is known as an n-type extrinsic
photoconductor. We assume that the temperature of the
material is significantly low that band-to-band transitions can
be ignored. Even in the absence of thermal generation or
photogeneration, however, N of the donor levels will be
ionized (i.e., vacant), since electrons can fall spontaneously
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A master equation is now used to describe the time evolu-
tion of the probability p(N) that the conduction band contains
N free electrons:

compensation

(a) (b)
Fig. 1. (a) Energy-level diagram of an n-type (Nd > Na) extrinsic
photoconductor; (b) of the Nd donor electrons, a number Na fall into
the vacant acceptor levels. The remaining (Nd -Na) electrons are
available for excitation to the conduction band.

- p(N) = r(N + )p(N + 1)
dt

+ g(N - )p(N - 1) - p(N)[g(N) + r(N)]. (4)

In steady state, dp(N)/dt = 0, aid this equation can be solved
iteratively to obtain

p(N) N-11 Nf = g(v)/ I r (v).
P(O) v0 =1

(5)

into the available acceptor levels. Hence only Nd - Na of the
Nd donor electrons are available for excitation to the con-
duction band. In effect, Na of the donor impurities are
compensated for by the presence of the acceptors. It is thus
useful to define the impurity-compensation ratio as

X = Na/Nd (1)

We define N(t) to be the total number of electrons occupying
the conduction band at time t. In general, N(t) will be a
fluctuating quantity. These fluctuations result from the
randomness of the electron generation and recombination
processes and are responsible for the noise (known as gener-
ation-recombination or g-r noise) in the photocurrent pro-
duced by the detector. In the present analysis, N(t) is the
only dynamical variable describing the detection system, since
the donor-level population is always equal to Nd - Na - N(t).
The properties of the two-level system composed of the donor
level and conduction band are, however, quite different from
those of the familiar two-level atomic system7 In particular,
we shall show that the rate at which N(t) increases with in-
cident power is quite different from the rate at which the
population inversion of a two-level atomic system saturates
with increasing power. Our calculation makes use of a
method introduced by Burgess4 in which detailed balancing
is applied to the generation and recombination processes. We
let g(N)dt denote the probability that an electron is excited
to the conduction band in a time dt if N electrons are already
there. The generation rate g(N) is assumed to be propor-
tional to the number of un-ionized donors:

g(N) = (Nd -Na -N). (2)

The generation coefficient y is assumed to be the sum of a
thermal contribution that increases rapidly with temperature
and a radiative contribution that increases linearly with
photon flux. Similarly, r(N)dt is defined to be the probability
that one of the N electrons initially in the conduction band
returns to the donor level in time dt. The recombination rate
r(N) is assumed to be proportional to the product of the
number of free electrons and to the number of ionized donors
as follows:

r(N) = pN(Na + N). (3)

An expression for N, the most probable value of N, is obtained
by treating N as a continuous variable and setting dp(N)/dN
equal to zero. For N >> 1, the resulting expression be-
,comes

g(N) = r(N), (6)

showing that in equilibrium the generation and recombination
rates must balance. The form of the probability distribution
p (N) for N close to N can be shown4 to be the Gaussian dis-
tribution

p(N) = (N)exp (iN -) ]) 
2 (AN) 2 I]

where the variance of N is given by

(AN 2 = g(N)T,

where

r = [r'(N) -g'(N)]- 1

(7)

(8a)

(8b)

can be interpreted as the detector response time. Equations
(8) were first derived by Burgess4 and are known as the g-r
theorem.

The material properties of the photoconductor can be ob-
tained from Eqs. (7) and (8). The mean number of electrons
present in the conduction band can be obtained from Eq. (6)
by using the assumed forms [Eqs. (2) and (3)] for g(N) and
r(N), giving

N 2 + Na) + [( + Na) + y (Nd _ N)J 2 (9)

It is convenient to express this result in terms of dimensionless
variables. We define a dimensionless generation coefficient
by

(10)rp= 
pNd

and the fractional ionization of uncompensated impurities
by

d N N I
Nd-Na 1Nd \1-X

By combining Eqs. (1), (9), (10), and (11), we obtain

(11)

The proportionality constant p is known as the recombination
coefficient. Burgess has shown that p may be represented as
(v) (s)/IV, where'(v) is the mean thermal velocity of a con-
duction-band electron, (s) is the electron-capture cross sec-
tion averaged over the electron velocity distribution, and v
denotes the sample volume.

f = (V I) 2 (r + X) + (F + X)2+ (1 - xjl}.
(12)

The functional dependence of f on r is illustrated in Fig. 2 for
the limiting values of X - Na/Nd. Here it can be seen that for
large values of the generation rate the fractional ionization
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Fig. 2. Fractional ionization as a function of the generation rate.

approaches unity. In contrast, the maximum fractional
population difference of a two-level atomic system is one
half.

In general, the generation coefficient has both thermal and
radiative contributions and can be represented as

r = rrad + rth. (13)

An explicit expression for th can be obtained by comparing
N from Eq. (9) with the standard result for the conduction-
band electron density of a doped semiconductor that is in
thermal equilibrium at temperature T.8 This procedure
yields the relation

rth = - N, exp(-Ed/kT),
Nd 2

(14)

where -Ed is the energy of the donor level measured from the
conduction-band edge and where N, is the conduction-band
density of states. For a parabolic band, N, can be represented
as

N = 2(27rmkT/h 2) 3/2, (15)

where k denotes Boltzmann's constant, h denotes Planck's
constant, and m denotes the effective mass of an electron. By
using this result, the dimensionless generation rate can be
expressed as

Fth = r0 (iJexp( X)

be seen that the results do not depend critically on the com-
pensation ratio. Figure 5 shows how the fractional ionization
depends on the dimensionless temperature for a wide range
of values of the material parameter Fo, assuming that X = 0.
These curves illustrate that the rate at which carriers freeze
out depends strongly on the value of ro.
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Equation (16) shows how the thermal generation rate scales
with the dimensionless temperature kT/Ed. This functional
dependence is illustrated in Fig. 3. The proportionality
constant ro depends on details of the material system, such
as the doping level and donor ionization energy. For the sake
of illustration, we consider the value of ro appropriate to a
typical Ge:Ga photoconductor 9 : Ed = 0.01 eV and Na/V =
2.5 X 1014 cm- 3 , implying that o = 1.33 X 104. If one as-
sumes this value of Fo, Eqs. (12) and (17) can be combined to
yield the dependence of the fractional ionization on temper-
ature. This dependence is illustrated in Fig. 4 for several
different values of the compensation ratio X = Na/Nd. It can
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The fluctuation in the total number of carriers can be ob-
tained by using the g-r theorem given by Eqs. (8). Through
differentiation of Eqs. (2) and (3) and use of Eq. (12), the de-
tector-response time of Eq. (8b) can be expressed as

1 (1 - f)XT= -
pNaf(2 -f)(1 - X) + X (18)

This functional dependence is illustrated in Fig. 6. The
mean-square carrier fluctuation can hence be obtained by
using Eqs. (2), (8a), (9), and (18):

(N)2 = Nd f(1 - X)(1 -f)[X+f(1 - X)] (19)
(AN)2 =Nd f(2 -f)(1 -X)+ X

This functional dependence is illustrated in Fig. 7 for several
values of the compensation ratio. Similarly, the dependence
of the carrier fluctuation on the generation rate can be ob-
tained from Eqs. (12) and (19). This dependence is illustrated
in Fig. 8.

From a theoretical point of view, there is some interest in
considering not the total mean-square fluctuation but rather
this quantity divided by the mean number of carriers. From
Eqs. (9) and (19) this ratio can be expressed as

(AN)2 (1-f)[X + f(I-X)]
N f(2-f)(1- ) + 
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Fig. 9. Modified mean-square carrier fluctuation versus fractional
ionization.

This ratio can be interpreted as a measure of the degree to
which the fluctuations are Poissonian in nature. If the elec-
trons obeyed Poisson statistics, the ratio would be unity under
all conditions. The actual functional dependence is illus-
trated in Fig. 9 for several values of the compensation ratio.
In general, the ratio (AN)2/N is less than unity, showing that
the electron fluctuations have become correlated through the
concentration-dependent generation and recombination rates
given by Eqs. (2) and (3).

3. DETECTOR CHARACTERISTICS

In this section we make use of the results derived in Section
2 to calculate the performance characteristics of an extrinsic
photoconductive detector. We consider a slab of semicon-
ductor material v = AL, where L is the distance between the
electrical contacts, as shown in Fig. 10. We assume as in
Section 2 that only the transport of free electrons need be
considered. If a potential V is applied to the detector, the
instantaneous current is given by

fractional ionization
N

Nd-Na

Fig. 7. Mean-square carrier fluctuation versus fractional ioniza-
tion.

i(t) = eV A.N(t),
L 2 (21)

where N(t) denotes the total number of conduction-band
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frequencies of the order of the inverse of the response time T
given by Eq. (18). In most detection systems, the electronics
are designed so that only noise in a bandwidth Af << 1 is
present in the output signal. In this case, the current noise
can be shown to be of the form' 0V J-

'A

L
Fig. 10. Schematic photoconductive detector.

electrons at time t. The mean current passing through the
detector is hence given by

I= M o dn.
The responsivity of a detector is defined to be

(22)

R = di/dP (23)
where P denotes the optical power falling onto the detector.
The treatment presented in Section 2 described the properties
of the detector in terms of a generation coefficient a defined
by Eq. (2). This quantity is related to the power falling onto
the detector by

,y = qP/hv(Nd - Na),

i,2 = 4-(AN) 2 -Af.
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(24) 0 

where X denotes the detector quantum efficiency at low power
levels, that is, in the absence of detector saturation effects.
The detector responsivity can be expressed [using Eqs.
(22)-(24)] as

7e Vun dN
hvL 2(Nd - Na) dy

fractional ionization f=
Nd-Na

Fig. 11. Normalized responsivity versus fractional ionization.

1.0
(25)

The derivative appearing here can be evaluated explicitly by
using Eq. (9). This result can then be simplified by using the
expression for y/p obtained for Eqs. (2), (3), and (6):

= Nd [ + (l - )]
p (1-f)

The responsivity can then be expressed as

= _eVn1 1 [ (1 - f)2

\ hvL2 ) tpNd)[f(2-f)(-X) + X [

C
00.

-0

E
0
C

(26)

(27)

The term in square brackets can be interpreted as a normal-
ized responsivity and is plotted as a function of f in Fig. 11.
The normalized responsivity is plotted [using Eq. (12)] as a
function of generation rate in Fig. 12. This figure illustrates
the rate at which the responsivity decreases because of satu-
ration effects as the total generation rate r is increased either
by increasing the detector temperature or by increasing the
power incident upon the detector. Figure 13 illustrates how
the responsivity at low power levels decreases as the temper-
ature of the detector is increased. These curves were obtained
using Eqs. (12), (16), and (27) and assuming the value ro =
1.33 X 104.

The generation-recombination noise in the photocurrent
can be expressed [using Eq. (21)] as

(Ai)2 = (e V2 2T

=- (AN)2 ,

0
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Fig. 12. Normalized responsivity versus generation rate.
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where the second form results from the use of Eq. (22). This
noise is composed of spectral components ranging from dc to

5
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Fig. 13. Normalized responsivity versus dimensionless tempera-
ture.
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Fig. 16. Normalized NEP versus generation rate.

A convenient descriptor of the noise properties of a detec-
tion system is the NEP, defined as the value of the signal
power for which the signal-to-noise ratio is equal to unity.
The NEP can be obtained generally from the relation

NEP = (igr2 )'1 2/R. (30)

Through use of Eqs. (18), (19), (27), and (29), the NEP can be
expressed as

NEP =-(4pAf)1" 2 (Nd - Na) {
(31)

This functional dependence is illustrated in Fig. 14. It is seen
that the NEP increases with increasing fractional ioniza-
tion.

It is well known that the lowest possible value of the NEP
of a photodetector in the presence of a background power PB
is that imposed by photon shot noise and is given by the ex-
pression'o

0.5
(32)NEPideal = (2PBhvAf /2

"77)
A convenient description of the noise properties of a photo-
conductor is hence given by the ratio of its NEP to that of an
ideal photon detector. The ratio of Eqs. (31) and (32) can be
simplified through use of Eqs. (24) and (26) to obtain

NEP 2 1/2

(NEP)ideal _-f
(33)

This ratio is plotted as a function of the fractional ionization
f in Fig. 15. We see that, for small values of f, the ratio ap-
proaches 21/2. The value 21/2 results from the fact that the
generation and recombination processes are statistically in-
dependent, and each contributes noise to the detection pro-
cess. At larger values of f, the ratio is larger, reflecting the
decreased responsivity caused by a depletion of donor levels.
In Fig. 16, we display the ratio NEP/(NEP)ideal as a function
of the generation rate. These curves show the rate at which
the NEP degrades as the radiation background is in-
creased.

4. SUMMARY

A general theory of the statistical properties of extrinsic
photoconductive detectors has been presented. Explicit
formulas have been derived that show how the mean number
of carriers, the mean-square fluctuation in this number, the
detector response time, responsivity, and noise equivalent
power depend on the temperature of the detector, the radia-
tion background level, and the presence of compensating
impurities. It has further been shown that, when the NEP
is limited primarily by noise induced by the radiation back-
ground, the NEP is at least 21/2 times larger than that of an
ideal photon detector and that this limiting value is reached
only if the fractional ionization of the donor level is small.
The degradation of the NEP at higher background levels re-
sults from a decreased responsivity caused by a large fractional
depletion of the donor impurities.
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