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Exact theory of pump-wave propagation and its effect on
degenerate four-wave mixing in saturable-absorbing media
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An analytic solution for the intensity distribution of two counterpropagating pump waves within a saturable ab-
sorber is derived. From this distribution, the spatial variation of the nonlinear absorption and coupling constants
that appear in the coupled-amplitude equations for the probe and the signal (i.e., conjugate) waves are determined.
These coupled-amplitude equations are solved numerically in a noniterative manner, leading to a prediction for
the phase-conjugate reflectivity. The results of the exact theory are compared with those of previously published
theories. It is found that at large values of the input-pump intensities, the predicted phase-conjugate reflectivity
is larger when pump-absorption effects are included in the theory.

INTRODUCTION

Degenerate four-wave mixing (DFWM) is a process that can
generate the phase conjugate of an aberrated optical wave
front. The highest reported phase-conjugate reflectivities
have been achieved by means of DFWM using the nonlinear
response of a two-level atom.1 The first theoretical account
of DFWM in such a system was that of Abrams and Lind, in
which the simplifying assumption was made that pump-beam
attenuation that was due to absorption could be neglected.
Their theory predicts that for line-center operation the re-
flectivity can be maximized by using a medium with a large
absorption-path length and a large value of the laser intensity.
However, for large absorption-path lengths, pump absorption

cannot necessarily be neglected. More recently, Caro and
Gower3 have presented a treatment that includes in an ap-
proximate sense the effects of pump absorption. However,
their treatment neglects the fact that the relative intensities
of the two pump waves vary with position within the nonlinear
medium. It is known from the work of Dunning and Steel4

that the phase-conjugate reflectivity depends sensitively on
the relative intensities of the two pump waves. While these
theories have shed considerable light on the nature of DFWM
in saturable absorbers, they are all somewhat inadequate in
treating the case in which pump-wave absorption cannot be
neglected.

In this paper we present a theory of DFWM in absorbing
media that treats exactly the effects of pump-wave absorption.
We derive an analytic expression for the intensity distribution

of the two counterpropagating pump waves. The spatial
dependence of the absorption and coupling constants that
appear in the coupled-amplitude equations of the probe and
signal waves is thereby determined. The coupled-amplitude
equations for the probe and signal waves are then integrated
numerically in a straightforward manner, and the phase-
conjugate reflectivity is determined. Our results are in good
agreement with those obtained by Brown5 by a purely nu-
merical method.

THEORY

The geometry that we consider in this paper is shown in Fig.
1. Forward- and backward-going pump waves of amplitudes
Af and Ab interact in a nonlinear medium with a weak probe
wave of amplitude Ap to form a phase-conjugate-signal wave
of amplitude A. The electric field within the nonlinear
medium can be represented as

0(r, t) = E(r)exp(-ict) + c.c., (1)

where the field amplitude E(r) is assumed to be composed of
a strong- (pump) field contribution Eo(r) and a weak- (probe
and signal) field contribution AE(r) as

(2)E(r) = E(r) + AE(r).

This field must satisfy Maxwell's wave equation

1 a26 4X8 a 2 9
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where P is the polarization, which can be represented as

P(r, t) = P(r)exp(-iwt) + c.c. (4)

We assume that the nonlinear medium can be modeled as a
collection of homogeneously broadened two-level atoms. By
solving the Bloch equations in steady state, we obtain the
following expression for the amplitude of the polarization:

P(r) = x(E)E, (5)

where X(E) is the intensity-dependent susceptibility given
by2

(6)x(E) = (-ao/k)(i - wT2)
1 + ( Eol 2/Es 2)

where ao = 47rNwog2 T2{hc[1 + (OcT 2 )2]1-1 is the weak-field
frequency-dependent intensity-absorption coefficient, E8

2

= [1 + (OcT 2) 2 ]h 2 /(4,u2 T1T 2 ), N is the atomic density, A is the
dipole-matrix element, T1 is the population-relaxation time,

(3)
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Fig. 1. Geometry of the degenerate four-wave mixing process.

T 2 is the dipole-dephasing time, k = co/c, and 5co = co - W is
the detuning of the laser from the atomic-resonance frequency
co. In the weak-probe limit, we can expand x(E) in a Taylor
series about E0 , and express the polarization amplitude as

P(r) = oEo + XoAE

Xo (Eol\E* + Eo*AE)(Eo + E)
Es 2 1 + (Ed 2/Es 2) (7)

where Xo = X(Eo). We now assume that the strong compo-
nent E0 is composed of forward- and backward-going pump
waves, counterpropagating along the zo axis, and that the weak
component AE is composed of probe and conjugate compo-
nents counterpropagating along the z'-axis:

Eo(zo) = Af(zo)exp(ikzo)

+ Ab(zo)exp(-ikzo) (8a)

and

AE(z') = AP(z')exp(ikz')
+ Ac(z')exp(-ikz'). (8b)

We now express Xo and Xo[l + (Eo 2/E8
2 )]-1 as complex

Fourier series in z, and we retain only those terms in P(r) that
are phase matched to terms on the left-hand side of the wave
equation (3):

P(r) = -2i [fAf exp(ikzo)
k

+ bAb exp(-ikzo) + (aA + KAc*)exp(ikz')
+ (aA + KAp*)exp(-ikz')], (9)

where we have introduced the following definitions:

, ;7 Z mation, which leads to the following equations for the field
amplitudes:

aAf = _afAf, (la)
az

aAb---> Z ~ ~ 77= _abAb,, (11b)
OP =-aAp - KA,*, (11c)
az

and

d= A + KAp*, (lid)

where z = Z/cos(0/2).
It can be seen from Eqs. (10) that, under the assumption of

weak probe and conjugate fields, the nonlinear-absorption
coefficients a, af, and ab and coupling coefficient K depend
only on the amplitudes of the pump waves. We thus proceed
to solve Eqs. (la) and (lib) for the spatial evolution of the
intensities of the pump waves within the nonlinear medium.
These solutions are then used to determine the spatial de-
pendence of the parameters a and K that appear in the cou-
pled-amplitude Eqs. (11c) and (ld) for the probe and signal
waves. Explicitly, we find that the forward and backward
intensities obey the equations

If = -o 1 1-(If-Ib -b1
dz 2 { [ + If + Ib]2 -4IfN}121 (12a)

and

dlb a
dz -2

1+ (If-Ib) 1
[1 + If + Ib]2

- 4IfIb~l/2]
(12b)

In order to solve these equations, we divide Eq. (12a) by Eq.
(12b) to obtain an equation for If in terms of Ib. This equa-
tion is an exact differential equation, which, when solved,
yields the relation

K = S(z) - [D2 (z) + 2S(z) + 1]11/2, (13)

where the constant of integration K is independent of z and
where

S(Z) If(Z) + Ib(Z) (14a)

and

D(z) If (Z) - Ib(Z).

affb = /2 ao(1 + iT 2) C (1 +

a = /2ao(1 + icT 2)[B/C3],

(1 + iT 2) AfAb
C 3 ES2 

B = 1 + If + Ib,

C = [1 + If + b]2 4IfIb 1/
2,

(14b)

(lOa) We next form the sum and difference of Eqs. (12a) and

(10b) (12b) to obtain differential equations for S(z) and D(z).
Equation (13) is then used to decouple these equations, which

(100 ) we then solve. In particular, when D(z) and D(0) have the
(hc) same sign, D(z) obeys the equation

(hOd)

(1Oe)

If,b = Af,b 2 /E 2 . (lOf)

[F(z) 1
ID(z)l - D(O)I + log i-I = Fz, (15a)

and when D(z) and D(O) have opposite signs, D(z) obeys the
equation

We now substitute our expression for & and P into the wave
equation (3) and make the slowly varying envelope approxi-

[- (z)F(O) 1D W - D () log[ 2( =) _ az,

and

(15b)
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where in either case

F(z) = ID(z)I + [D(Z)2 + 2(1 + K)]1/2 . (16)

In these equations, we take the minus when D(O) > 0 and the

positive sign when D(O) < 0.
Using Eqs. (13) and (14), and evaluating Eqs. (15) at z = L,

we obtain a transcendental equation for Ib(O). We then em-
ploy a simple root-finding algorithm to solve for Ib(O) and thus

for D(O), S(0), and K. This information allows us to solve

Eqs. (15) for D(z) for arbitrary values of z. Once D(z) is

known, Eqs. (13) and (14) are used to calculate If(z) and Ib(z).

Equations (12a) and (12b) have also been solved by Agrawal

and Lax6 and by Hermann7 for the case of a Fabry-Perot
resonator with plane-parallel mirrors. Our solution differs

slightly from theirs in that we treat the case in which the two

counterpropagating waves have arbitrary input intensities.

RESULTS

In this section, we graphically display the results of the ana-

lytic theory for several experimentally interesting cases. For

simplicity, we assume the case of line-center operation (5W =

0) in all our examples. For this case, there is no variation in

the phase of K that is due to the refractive index experienced
by the pump waves, and hence the correction for pump-wave
dispersion that appears in the constant-pump theory of

Grynberg et al. 8 vanishes. Our theory can be expanded to
include pump-wave dispersion for the case of off-line-center
operation.

The intensities of the forward- and backward-traveling
pump waves are plotted as a function of position within the

saturable absorber for a representative case in Fig. 2. In ad-

dition, the product of the two intensities is plotted. If

standing-wave effects are ignored, this product can be shown

to be constant. 4 Figure 2 shows that neither the pump-wave

intensities nor their product can be assumed constant for cases

of interest.
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Fig. 2. Spatial distribution of the forward and backward pump waves

and of their product for the case of unequal input-pump-beam in-
tensities, with If(O)/Ib(L) = 5.0, I(O) + Ib(L) = 5.0, aoL' =

aoL/cos(0/2) = 2.0, and bw = 0.
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Fig. 3. Phase-conjugate reflectivity versus forward input-pump

intensity for the case of equal-input-pump intensities for 6W = 0. The

results of the present theory are compared with those of the con-
stant-pump-intensity theory of Abrams and Lind.2

Once the distribution of pump intensities is known, it is
possible to calculate the absorption and coupling constants
along the path of the probe and signal waves. By taking the
conjugate-field amplitude at z = L to be A, (L) = 0 and

choosing an arbitrary value for the amplitude Ap (L) of the

probe field at z = L, it is possible to integrate numerically the
coupled-amplitude equations (11c) and (hhd) from z = L to

z = 0. We then calculate the phase-conjugate power reflec-

tivity as
R IA, (0)12

IAp(O)12 (17)

Reflectivity results are shown for several pumping geome-
tries in Figs. 3-6. The solid lines are plotted according to the

theory presented in this paper. The broken lines refer to
previous theories that ignore pump-wave absorption. The
individual cases are labeled according to the length, L' =
L/cos(O/2), of the medium measured along either of the
propagation directions. The case of balanced pumping, i.e.,
equal-input pump-wave amplitudes [Af(O) = Ab(L)], is
treated in Fig. 3. The phase-conjugate reflectivity is plotted
as a function of pumping intensity normalized to the satura-
tion intensity of the medium. The dashed lines represent
predictions from the theory of Abrams and Lind,2 in which
the pump waves are assumed to have constant intensity.. The
peaked curves show the saturation nature of the process. At
low intensities, our theory predicts a lower reflectivity than
the constant-pump-wave theory as a result of our inclusion
of absorption losses. At higher intensities, the medium sat-

urates, becoming transparent to the pumping waves, and the
two theories nearly agree. Close inspection shows that at
these intensities (I/Is > 1) our theory predicts slightly higher

reflectivities than those predicted in the absence of pump-

exact theory

-~ exact the ory
- - constant pump theory

aoL = 10.0
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wave absorption. The effect of absorption is to attenuate the
pump waves so that the pump intensities within the medium
are closer to the saturation intensity, and under these condi-
tions mixing occurs more efficiently. This effect is more
pronounced for the case of unequal pumping shown in Fig. 4.

0.1

._

c. 0.01

a)
L_

I- I

0
cL. A

0.1

C,

0.1 1.0 10.0
normalized total- input pump intensity, If(O) + Ib(L)

Fig. 4. Phase-conjugate reflectivity versus total pump intensity for
the case of unequal pump intensities and bw = 0. The results of the
present theory are compared with those of the constant-but-unequal
pump-intensity theory of Dunning and Steel.4
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Fig. 5. Phase-conjugate reflectivity versus the input-pump-intensity
imbalance, If (O)/Ib(L), for the case If(0) + Ib(L) = 5.0 and w = 0.
The results of the present theory are compared with those of the
constant-but-unequal pump-intensity theory of Dunning and
Steel. 4
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Fig. 6. Phase-conjugate reflectivity versus input-pump intensity
for the case in which the backward pump wave is obtained by the re-
troreflection of the transmitted forward-going pump wave (c = 0).
The results of the present theory are compared with the constant-
pump-intensity theory of Abrams and Lind and with the theory of
Caro and Gower, which treats pump absorption in an approximate
manner.

In this figure, our results are compared with those of Dunning
and Steel,4 who treated pump imbalance in the absence of
pump-wave absorption.

Figure 5 shows the effect of varying the pumping ratio while
keeping the total pump intensity constant. The optimum
value of the ratio If (0)/lb (L) is seen to be approximately equal
to one for all cases. Close examination of these curves reveals
that the optimum ratio shifts slightly to lower values as ao-L'
is increased. A special case of the unequal-pumping geometry
occurs when the second pump wave, Ib, is introduced by
retroreflecting the forward wave after it passes through the
absorber. Caro and Gower3 introduced pump-wave absorp-
tion approximately to treat this geometry. In Fig. 6 we
compare their theoretical results with those of Abrams and
Lind2 and with our own.

Brown5 has also treated the effects of pump-wave absorp-
tion on the DFWM process in a system of two-level saturable
absorbers for several cases, including the weak-probe limit
treated here. An important difference between his and our
treatments is the manner in which the two interfering pump
waves are treated. Brown derived coupled-amplitude equa-
tions, identical to our Eqs. (11), and solved them numerically
using an iterative procedure. For the cases that he treats, his
results are in agreement with those of the theory presented
here.

CONCLUSIONS

We have treated theoretically the case of two counterpropa-
gating pump waves in a saturable absorber. Our analytic
solutions for the forward and backward pump intensities show
that, in general, the assumption that the product IfIb is con-
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-- constant pump theory
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stant is not valid. Furthermore, we have used these results
to extend the theory of DFWM to include the effects of sat-
urable absorption on the pump waves. The theory is valid for
arbitrary pump intensities in the weak-probe limit.

Theoretical values for the phase-conjugate reflectivity have
been presented and are compared with the results of previous
theories for several pumping geometries. We find that at
large values of the input-pump intensities, the phase-conju-
gate reflectivity can be larger than that predicted by theories
that ignore pump absorption. We also find that the optimum
ratio of the forward-to-backward input-pump-wave intensities
decreases from unity as the length of the absorbing medium
is increased.

ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with L. W.
Hillman, R. A. Fisher, J. F. Lam, and R. Lytel. This research

was supported by the National Science Foundation under
grant ECS-8408370 and the New York State Center for Ad-
vanced Optical Technology.

REFERENCES

1. D. M. Bloom, P. F. Liao, and N. P. Economou, Opt. Lett. 2, 58
(1978).

2. R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978); 3, 205
(1978).

3. R. G. Caro and M. C. Gower, IEEE J. Quantum Electron. QE-18,
1376 (1982).

4. G. J. Dunning and D. G. Steel, IEEE J. Quantum Electron. QE-18,
3 (1982).

5. W. P. Brown, J. Opt. Soc. Am. 73, 629 (1983).
6. G. P. Agrawal and M. Lax, J. Opt. Soc. Am. 71 (1981).
7. J. A. Hermann, Opt. Acta 27, 159 (1980).
8. G. Gryntbrg, B. Kleinmann, M. Pinard, and P. Verkerk, Opt. Lett.

8, 614 (1983).

Gruneisen et al.


