

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Robert W. Boyd

Department of Physics and Max-Planck Centre for Extreme and Quantum Photonics University of Ottawa

> The Institute of Optics and Department of Physics and Astronomy University of Rochester

Department of Physics and Astronomy University of Glasgow

The visuals of this talk will be posted at boydnlo.ca/presentations

Presented at Hunan University, Changsha, P.R. China, May 28-29, 2018.

Canada Excellence Research Chair (CERC) in Nonlinear Quantum Optics

Research interest: Nonlinear optics, quantum optics, integrated photonics, meta-materials, etc.

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Outlook: NLO is a superb platform from which to explore new physical processes and to develop photonics applications.

Prospectus

- 1. Introduction to Nonlinear Optics and Quantum NLO
- 2. New Applications of "Slow Light"
- 3. Möbius Strips of Polarization
- 4. Huge Optical Nonlinearity in Epsilon-Near-Zero Materials
- 5. Quantum Communication with Multiple Bits per Photon

It is good fundamental physics.

It leads to important applications.

It is a lot of fun.

Demonstrate these features with examples in remainder of talk.

Nonlinear Optics and Light-by-Light Scattering

The elementary process of light-by-light scattering has never been observed in vacuum, but is readily observed using the nonlinear response of material systems.

Nonlinear material is fluorescein-doped boric acid glass (FBAG) $n_2(FBAG) \approx 10^{14} n_2(silica)$ [But very slow response!]

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, Phys. Rev. A, 34, 2026, 1986. W. R. Tompkin, M. S. Malcuit, and R. W. Boyd, Applied Optics 29, 3921, 1990.

Simple Formulation of the Theory of Nonlinear Optics

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Here P is the induced dipole moment per unit volume and E is the field amplitude

 $\chi^{(1)}$ describes linear optics, e.g., how lenses work: ()

 $\chi^{(2)}$ describes second-order effects, e.g., second-harmonic generation (SHG)

 $\chi^{(3)}$ describes third-order effects such as third-harmonic generation, four-wave mixing, and the intensity dependence of the index of refraction.

Second-Harmonic Generation: The Prototypical Nonlinear Optical Process

VOLUME 7, NUMBER 4

PHYSICAL REVIEW LETTERS

AUGUST 15, 1961

GENERATION OF OPTICAL HARMONICS"

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich The Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan (Received July 21, 1961)

Some Fundamental Nonlinear Optical Processes: II

Difference-Frequency Generation and Optical Parametric Amplification

Optical Parametric Oscillator (very broadly tunable)

Optical Parametric Amplication Can Amplify Extremely Broadband Pulses

Can amplify extremely short laser pulses or broadband chirped pulses.

Goal: Design laser source capable of reaching focused intensities as large as 10^{24} W/cm².

Work of Jake Bromage and others at U. Rochester LLE.

See also Lozhkarev et al. Laser Phys. Lett. 4, 421 (2007) and Y. Tang et al. Opt. Lett. 33, 2386 (2008).

Explore the relation between traditional nonlinear optics (NLO) and phenomena in quantum information science (QIS).

QIS holds great promise for secure communication, quantum logic, quantum computing, etc.

Many processes in QIS rely on nonlinear optical interactions.

Parametric Downconversion: A Source of Entangled Photons

W

- (a) polarization
 - (b) time and energy
 - (c) position and transverse momentum
 - (d) angular position and orbital angular momentum

Entanglement is important for:

- (a) Fundamental tests of QM (e.g., nonlocality, Bell tests)
- (a) Quantum technologies (e.g., secure communications, Q teleportation)

Single-Photon Coincidence Imaging

• We discriminate among four orthogonal images using single-photon interogation in a coincidence imaging configuration.

• Note that a single photon can carry more than one bit of information.

Malik, Shin, O'Sullivan. Zerom, and Boyd, Phys. Rev. Lett. 104, 163602 (2010).

Optical Phase Conjugation: A Nonlinear Optics Success Story

• A phase conjugate mirror (a nonlinear optical device) can remove the influence of aberrations in double pass.

(Zeldovich, Pilipetsky, Shkunov, Yariv, Hellwarth, Fisher, 1980s).

• Phase conjugation is extremely useful in high power laser systems

2-kW average power phase-conjugate master oscillator power amplifier

Zakharenkov, Clatterbuck, Shkunov, Betin, Filgas, Ostby, Strohkendl, Rockwell, and Baltimore, IEEE JSTQE (2007).

Theory of nonlinear optics

PHYSICAL REVIEW

VOLUME 127, NUMBER 6

SEPTEMBER 15, 1962

Interactions between Light Waves in a Nonlinear Dielectric*

J. A. ARMSTRONG, N. BLOEMBERGEN, J. DUCUING,[†] AND P. S. PERSHAN Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts (Received April 16, 1962)

HE interaction between electromagnetic waves and atomic matter was carried out to higher orders of perturbation theory in the early years of modem quantum mechanics.¹⁻³ The interest in the absorpton of two or more light quanta and scattering processes, in which three or more light quanta are involved, has recently been revived,⁴⁻⁷ because intense light fluxes available from laser sources have made possible the experimental observation of such higher order processes in the laboratory.

The Nobel Prize in Physics 1981 Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn Bloembergen (1962, 1965) showed that

$$\chi^{(3)}(\omega = \omega + \omega - \omega) = N\gamma^{(3)}|L(\omega)|^2[L(\omega)]^2.$$

where $\gamma^{(3)}$ is the second hyperpolarizability and where

$$L(\omega) = \frac{\epsilon(\omega) + 2}{3}$$

For the typical value n = 2, L = 2, and $L^4 = 16$. Local field effects can be very large in nonlinear optics! But can we tailor them for our benefit?

We have been developing new photonic materials with enhanced NLO response by using composite structures that exploit local field effects.

Metamaterials and Nanocomposite Materials for Nonlinear Optics

- In each case, scale size of inhomogeneity << optical wavelength
- Thus all optical properties, such as *n* and $\chi^{(3)}$, can be described by effective (volume averaged) values

V. M. Shalaev and M. I. Stockman, Z. Phys. D 10, 71 (1988); J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).

Enhanced NLO Response from Layered Composite Materials

A composite material can display a larger NL response than its constituents!

Alternating layers of TiO₂ and the conjugated polymer PBZT.

 $\nabla \cdot \mathbf{D} = 0$ implies that $(\varepsilon \mathbf{E})_{\perp}$ is continuous.

Measure NL phase shift as a function of angle of incidence.

35% enhancement in $\chi^{(3)}$

Fischer, Boyd, Gehr, Jenekhe, Osaheni, Sipe, and Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995).

Quadratic EO effect

3.2 times enhancement!

Nelson and Boyd, APL 74 2417 (1999)

Intense Field and Attosecond Physics

High-harmonic generation

Measuring the molecular nitrogen wavefunction

Attosecond pulses to sample a visible E-field; F. Krausz

atomic core

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Outlook: NLO is a superb platform from which to explore new physical processes and to develop photonics applications.

Prospectus

- 1. Introduction to Nonlinear Optics and Quantum NLO
- 2. New Applications of "Slow Light"
- 3. Möbius Strips of Polarization
- 4. Huge Optical Nonlinearity in Epsilon-Near-Zero Materials
- 5. Quantum Communication with Multiple Bits per Photon

Controlling the Velocity of Light

"Slow," "Fast" and "Backwards" Light

- Light can be made to go: slow: $v_g \ll c$ (as much as 10⁶ times slower!) fast: $v_g > c$ backwards: v_g negative Here v_g is the group velocity: $v_g = c/n_g$ $n_g = n + \omega (dn/d\omega)$
- Velocity controlled by structural or material resonances

Review article: Boyd and Gauthier, Science 326, 1074 (2009).

Slow and Fast Light Using Isolated Gain or Absorption Resonances

Observation of Superluminal and "Backwards" Pulse Propagation

- A strongly counterintuitive phenomenon
- But entirely consistent with established physics
- Predicted by Garrett and McCumber (1970) and Chiao (1993).
- Observed by Gehring, Schweinsberg, Barsi, Kostinski, and Boyd Science 312, 985 2006.

SILO

Development of Miniaturized, Chip-Scale Spectrometers

Can We Beat the 1/L Resolution Limit of Standard Spectrometers?

• The limiting resolution of a broad class of spectrometers is given (in wavenumbers) by the inverse of a characteristic dimension *L* of the spectrometer

Fourier-transform spectrometer

Grating spectrometer

 $\Delta \nu (\mathrm{res}) \approx 1/L$

- We use slow-light methods to design spectrometers with resolution that exceeds this conventional limit by a factor as large as the group index.
- This ability allows us to miniaturize spectrometers with no loss of resolution, for "lab-on-a-chip" applications.

Our Goal

Replace this:

with this:

Our Approach: Chip-Scale Slow-Light Spectrometer

- The spectral sensitivity of an interferometer is increased by a factor as large as the group index of a material placed within the interferometer.
- We want to exploit this effect to build chip-scale spectrometers with the same resoluation as large laboratory spectrometers

• We use line-defect waveguides in photonic crystals as our slow light mechanism

Slow-down factors of greater than 100 have been observed in such structures.

Shi, Boyd, Gauthier, and Dudley, Opt. Lett. 32, 915 (2007) Shi, Boyd, Camacho, Vudyasetu, and Howell, PRL. 99, 240801 (2007) Shi and Boyd, J. Opt. Soc. Am. B 25, C136 (2008).

Laboratory Characterization of the Slow-Light Mach-Zehnder Interferometer

Interference fringes

- Resolution (quarter wave) is 17 pm or 2.1 GHz or 0.071 cm⁻¹
- (Slow-light waveguide is only 1 mm long!)

Magaña-Loaiza, Gao, Schulz, Awan, Upham, Dolgaleva, and Boyd, in review.

Challenge: Fabricate a chip-scale spectrometer that can discriminate acetylene (H_2C_2) from hydrogen cyanide (HCN)?

(data from our own lab)

On-chip spectrometer based on high-Q photonic crystal cavities

Cavity design

Spectroscopy results

Liapis, Gao, Siddiqui, Shi, Boyd, Appl. Phys. Lett. 108, 021105 (2016).

The Velocity of Light in Moving Matter: Fresnel Drag (or Ether Drag) Effects

• Fizeau (1859): Longitudinal photon drag:

Velocity of light in flowing water.

V = 700 cm/sec; L = 150 cm; displacement of 0.5 fringe.

• Modern theory: relativistic addition of velocities

$$v = \frac{c/n + V}{1 + (V/c)(1/n)} \approx \frac{c}{n} + V\left(1 - \frac{1}{n^2}\right)$$
 Freshel "drag" coefficient

• But what about slow-light media?

Fresnel Drag in a Highly Dispersive Medium

Light Drag in a Slow Light Medium (Lorentz)

$$u \simeq \frac{c}{n} \pm v \left(1 - \frac{1}{n^2} + \frac{n_g - n}{n^2} \right)$$

We Use Rubidium as Our Slow Light Medium

• Transmission spectrum of Rb around D₂ transition:

• Group index of Rb around D_2 line at T=130

Safari, De Leon, Mirhosseini, Magana-Loaiza, and Boyd Phys. Rev. Lett. 116, 013601 (2016)

• Change in phase velocity is much larger than velocity of rubidium cell. Implications for new velocimeters?

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Outlook: NLO is a superb platform from which to explore new physical processes and to develop photonics applications.

Prospectus

- 1. Introduction to Nonlinear Optics and Quantum NLO
- 2. New Applications of "Slow Light"
- 3. Möbius Strips of Polarization
- 4. Huge Optical Nonlinearity in Epsilon-Near-Zero Materials
- 5. Quantum Communication with Multiple Bits per Photon

Observation of Optical Polarization Möbius Strips

- Möbius strips are familiar geometrical structures, but their occurrence in nature is extremely rare.
- We generate such structures in the nanoscale in tightly focused vector light beams and confirm experimentally their Möbius topology.

Bauer, Banzer, Karimi, Orlov, Rubano, Marrucci, Santamato, Boyd and Leuchs, Science, 347, 964 (2015)

Prediction of Optical Möbius Strips

An "ordinary" Möbius strip

A polarization Möbius strip (introduced by Isaac Freund)

- Isaac Freund discovered, described, and investigated these unusual structures
- To observe these structures, one needs to create a very special field distribution (e.g., a Poincaré beam)
- One also needs to observe the field distribution in a very special way (measure polarization as a function of position around a very tightly focused light beam)

¹ Wikipedia

² Isaac Freund, Bar-Ilan Univ., Talk: Optical Moebius Strips and Twisted Ribbons, Conf. on Singular Optics, ICTP Trieste, Part II, 30 May 2011
Isaac Freund, Opt. Commun. 242, 65-78 (2004)
Isaac Freund, Opt. Commun. 249, 7-22 (2005)
Isaac Freund, Opt. Commun. 283, 1-15 (2010)
Isaac Freund, Opt. Commun. 283, 16-28 (2010)
Isaac Freund, Opt. Commun. 284, 3816-3845 (2011)

Full vectorial beam measurement on the nanoscale

Nanoparticle-based probing technique for vector beam reconstruction

- 1. A dipole-like spherical nanoparticle (90 nm diameter) is scanned through the beam
- 2. The forward- and backward-scattered light for each position of the nanoparticle relative to the beam in the focal plane is measured

measured intensity (can also measure polarization and phase)

Full ampitude and phase reconstruction scheme:

T. Bauer, S. Orlov, U. Peschel, P. B. and G. Leuchs, "Nanointerferometric Amplitude and Phase Reconstruction of Tightly Focused Vector Beams", Nat. Photon 8, 23 - 27 (2014).

Lab Setup to Observe a Polarization Möbius Strip

- q-plate: waveplate with a spatially varying orientation (q is the topological charge)
- output beam has a spatially varying state of polarization (vector beam, Poincaré beam, etc.)

Tight focusing enhances the Möbius effect, which depends on the z component of the field

Observation of Polarization Möbius Strips

Remarks

- First observation of a polarization Möbius strip
- Light fields can possess rich spatial structure on subwavelength scales
- Current technology is capable of controllably creating beams with such structures and measuring it at subwavelength distances.

Bauer T, Banzer P, Karimi E, Orlovas S, Rubano A, Marrucci L, Santamato E, Boyd RW, and Leuchs G. Science, 2015.

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Outlook: NLO is a superb platform from which to explore new physical processes and to develop photonics applications.

Prospectus

- 1. Introduction to Nonlinear Optics and Quantum NLO
- 2. New Applications of "Slow Light"
- 3. Möbius Strips of Polarization
- 4. Huge Optical Nonlinearity in Epsilon-Near-Zero Materials
- 5. Quantum Communication with Multiple Bits per Photon

Use of Quantum States for Secure Optical Communication

- The celebrated BB84 protocol for quantum key distribution (QKD) transmits one bit of information per received photon
- We have built a QKD system that can carry more than one bit per photon.
 - Note that in traditional telecom, one uses many photons per bit!
- Our procedure is to encode using beams that carry orbital angular momentum (OAM), such as the Laguerre-Gauss states, which reside in an infinite dimensional Hilbert space.

QKD System Carrying Many Bits Per Photon

We are constructing a QKD system in which each photon carries many bits of information We encode in states that carry OAM such as the Laguerre-Gauss states We also need a second basis composed of linear combinations of these states

Single Photon States

Laguerre-Gaussian Basis
$$\ell = -1$$

"Angular" Basis (mutually unbiased with respect to LG)

Our Laboratory Setup

Laboratory Results - OAM-Based QKD

• error bounds for security

We use a 7-letter alphabet, and achieve a channel capacity of 2.1 bits per sifted photon.

We do not reach the full 2.8 bits per photon for a variety of reasons, including dark counts in our detectors and cross-talk among channels resulting from imperfections in our sorter.

Nonetheless, our error rate is adequately low to provide full security,

Quantum Nonlinear Optics: Nonlinear Optics Meets the Quantum World

Summary: NLO is a superb platform from which to explore new physical processes and to develop photonics applications.

Prospectus

- 1. Introduction to Nonlinear Optics and Quantum NLO
- 2. New Applications of "Slow Light"
- 3. Möbius Strips of Polarization
- 4. Quantum Communication with Multiple Bits per Photon

Thank you for your attention!

