Laser Beam Filamentation: Overview and Recent Results

Robert W. Boyd

The Institute of Optics and
Department of Physics and Astronomy
University of Rochester

Department of Physics and School of Electrical Engineering and Computer Science

Department of Physics and Astronomy
University of Glasgow

The visuals from my talk are available at boydnlo.ca/presentations/

Presented at the SPIE Defense + Security Symposium, 19 April 2018
Orlando, Florida, United States.
Canada Excellence Research Chair (CERC) in Nonlinear Quantum Optics

Research interest:
Nonlinear optics, quantum optics, integrated photonics, meta-materials, etc.
Why Care About Self-Focusing and Filamentation

- Optical switching
- Laser modelocking
- Directed energy
  - prevent filamentation
  - controlled self focusing
Self Action Effects in Nonlinear Optics

Self-action effects: light beam modifies its own propagation

- Self focusing
- Self trapping
- Small-scale filamentation
EFFECTS OF THE GRADIENT OF A STRONG ELECTROMAGNETIC BEAM ON ELECTRONS AND ATOMS

G. A. Askar'yan

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor December 22, 1961


It is shown that the transverse inhomogeneity of a strong electromagnetic beam can exert a strong effect on the electrons and atoms of a medium. Thus, if the frequency exceeds the natural frequency of the electron oscillations (in a plasma or in atoms), then the electrons or atoms will be forced out of the beam field. At subresonance frequencies, the particles will be pulled in, the force being especially large at resonance. It is noted that this effect can create either a rarefaction or a compression in the beam and at the focus of the radiation, maintain a pressure gradient near an opening from an evacuated vessel to the atmosphere, and create a channel for the passage of charged particles in the medium.

It is shown that the strong thermal ionizing and separating effects of the ray on the medium can be used to set up waveguide propagation conditions and to eliminate divergence of the beam (self-focusing). It is noted that hollow beams can give rise to directional flow and ejection of the plasma along the beam axis for plasma transport and creation of plasma current conductors. The possibilities of accelerating and heating plasma electrons by a modulated beam are indicated.
SELF-TRAPPING OF OPTICAL BEAMS

R. Y. Chiao, E. Garmire, and C. H. Townes
Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received 1 September 1964)

\[ n = n_0 + \delta n \]

\[ P_{cr} = \frac{\pi (0.61)^2 \lambda_0^2}{8 n_0 n_2} \]

radial profile of self-trapped beam
Beam Breakup by Small-Scale Filamentation

Predicted by Bespalov and Talanov (1966)

Exponential growth of wavefront imperfections by four-wave mixing processes
Optical Solitons

Field distributions that propagate without change of form

Temporal solitons (nonlinearity balances gvd)

\[
\frac{\partial \tilde{A}_s}{\partial z} + \frac{1}{2} ik_2 \frac{\partial^2 \tilde{A}_s}{\partial \tau^2} = i \gamma |\tilde{A}_s|^2 \tilde{A}_s.
\]

1973: Hasegawa & Tappert
1980: Mollenauer, Stolen, Gordon

Spatial solitons (nonlinearity balances diffraction)

\[
2ik_0 \frac{\partial A}{\partial z} + \frac{\partial^2 A}{\partial x^2} = -3\chi^{(3)} \frac{\omega^2}{c^2} |A|^2 A
\]

1964: Garmire, Chiao, Townes
1974: Ashkin and Bjorkholm (Na)
1985: Barthelemy, Froehly (CS2)
1991: Aitchison et al. (planar glass waveguide)
1992: Segev, (photorefractive)
Self-Focusing Can Produce Unusual Beam Patterns

Pattern depends sensitively upon initial conditions

- **Conical emission**  
  Harter et al., PRL 46, 1192 (1981)

- **Multiple ring patterns**  

- **Honeycomb pattern formation**  
  Bennink et al., PRL 88, 113901 2002.

- **Loss of spatial coherence**  
Self-Focusing of Structured Light: OAM States of Light

- Light can carry spin angular momentum by means of its circular polarization.
- Light can also carry orbital angular momentum by mean of a phase winding of the optical wavefront.
- A well-known example are the Laguerre-Gauss modes. These modes contain a phase factor of $\exp(i\ell\phi)$ and carry angular momentum of $\ell\hbar$ per photon.

- How is self-focusing modified by the structuring of a light beam?
Breakup of Ring Beams Carrying Orbital Angular Momentum (OAM) in Sodium Vapor

- Firth and Skryabin predicted that ring shaped beams in a saturable Kerr medium are unstable to azimuthal instabilities.

- Beams with OAM of $\ell \hbar$ tend to break into $2\ell$ filaments.
  (But aberrated OAM beams tend to break into $2\ell + 1$ filaments.)

Space-Varying Polarized Light Beams

– Vector Vortex Beams

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = -1 \\ \ell = 1 \end{array} \right) + \frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = -1 \\ \ell = 1 \end{array} \right) = \text{Radial}
\]

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = 0 \\ \ell = 1 \end{array} \right) + \frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = 0 \\ \ell = -1 \end{array} \right) = \text{Lemon}
\]

– Poincare Beams

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = -1 \\ \ell = 1 \end{array} \right) + \frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = 1 \\ \ell = 1 \end{array} \right) = \text{Spiral}
\]

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = 0 \\ \ell = 1 \end{array} \right) + \frac{1}{\sqrt{2}} \left( \begin{array}{c} \ell = 0 \\ \ell = -1 \end{array} \right) = \text{Star}
\]

• How do these beams behave under conditions of self-focusing and filamentation?

Experimental Setup

Q-plate: SAM to OAM converter
Results – Vector Beams

(Experimental Results)

Intensity and polarization distributions of vector and LG beams before and after propagating through the Rb atomic vapour.
Numerical Modeling of the Experimental Results

- Coupled nonlinear propagation equations

$$\frac{\partial E_L}{\partial \zeta} - \frac{i}{2} \nabla_\perp^2 E_L = i\gamma \frac{|E_L|^2 + \nu |E_R|^2}{1 + \sigma \left(|E_L|^2 + \nu |E_R|^2\right)} E_L$$

$$\frac{\partial E_R}{\partial \zeta} - \frac{i}{2} \nabla_\perp^2 E_R = i\gamma \frac{|E_R|^2 + \nu |E_L|^2}{1 + \sigma \left(|E_R|^2 + \nu |E_L|^2\right)} E_R$$

- Comparison
Conclusions: stability of vector OAM beams

- Pure OAM beam: beam breakup
- Vector vortex beams: stable propagation
- Poincaré beams: stable propagation

Influence of Nonlinearity on the Development of Rogue Waves

Study rogue-wave behavior in a well-characterized optical system

Is nonlinearity necessary? Required? Or does it inhibit rogue waves?

Oceanic rogue waves

Before 1995

Sailors: we see gigantic waves.
Scientists: it is a fairy tale!

Ocean waves follow Gaussian distribution.

\[ P \propto e^{-A^2} \]
First scientific observation of rogue waves in Draupner oil platform (1995):
Characteristics of rogue waves

- Rogue waves appear from nowhere and disappear without a trace.
- Rogue waves ≠ accidental constructive interference
- They occur much more frequently than expected in ordinary wave statistics.

Probability distribution in rogue systems:

- Not limited to ocean: Observed in many other wave systems including **optics**.
“Nonlinear Schrödinger equation” explains the wave dynamics in the ocean as well as in optics.

Rogue events studied extensively in 1D systems, such as optical fibers.

$$\frac{\partial A}{\partial x} + \frac{1}{2} ik_2 \frac{\partial^2 A}{\partial t^2} = i\gamma |A|^2 A$$


Water waves are not 1D.

$$2ik \frac{\partial A}{\partial x} + \nabla^2 A = i\gamma |A|^2 A$$

**Two focusing effects in 2D systems:**
- **Linear:** Spatial (geometrical) focusing
- **Nonlinear:** Self focusing
Optical caustics

- Caustics are defined as envelope of a family of rays
- Singularities in ray optics
- Catastrophe theory is required to remove singularity

Books:
J.F. Nye, *Natural Focusing and Fine Structure of Light.*
Y.A. Kravtsov, *Caustics, Catastrophes and Wave Fields.*
O.N. Stavroudis, *The Optics of Rays, Wavefronts, and Caustics.*
Generation of optical caustics

A sharp caustic is formed only if the phase variations are large.
Caustics exhibit long-tailed probability distribution

1000 different patterns for each $\Delta$

Intensity distributions with fit to $A \exp(-B I^C)$

Caustics in ocean waves

Caustic of tsunami focused by an underwater island lens

Simulated linear propagation of tsunami waves, using real ocean floor bathymetry:
Nonlinear focusing

Self focusing:

Refractive index depends on intensity:

\[ n = n_0 + n_2 I \]

Rubidium vapors show large nonlinear effects
Effect of nonlinearity on caustics

Phase variations:

After linear propagation:

After nonlinear propagation:
Intensity distributions with fit to $A \exp\left(-B I^C\right)$

Linear propagation:

After nonlinear propagation:
Linear propagation was simulated by FFT beam propagation.

Experiment:

Simulation:
Simulation – Rb model

NLSE:
\[
\frac{\partial \mathcal{E}}{\partial z} - \frac{i}{2k} \nabla^2 \mathcal{E} = \frac{ik}{2\epsilon_0} P
\]

Atomic polarization:
\[
P = \epsilon_0 \chi \mathcal{E}
\]

Our Rb model includes:
- All hyperfine transitions
- Doppler broadening
- Power broadening
- Collisional broadening
- Optical pumping
Nonlinear propagation was simulated by FFT beam propagation and split-step.

Experiment:

Simulation:

A. Safari, R. Fickler, M. Padgett, R. Boyd,
Conclusions

- Caustics are rogue waves!
- Generation of caustics by linear propagation requires large phase fluctuations
- Nonlinear effects can enhance the generation of caustics.
Summary

- Even more than 50 years after their inceptions, self-focusing and filamentation remain fascinating topics for investigation.

- If you want to learn more: