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Oceanic rogue waves -
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Oceanic rogue Waves
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Characteristics of rogue waves
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= Rogue waves appear from nowhere and disappear without a trace.
= Rogue waves # accidental constructive interference

= They occur much more frequently than expected in ordinary wave statistics.

Probability distribution in rogue systemes:

Rogue waves (Heavy-tailed)

pd

T ¥ _ Wave amplitude?
Normal distribution (decay exponentially)

Probability (log-scale)

" Not limited to ocean: Observed in many other wave
systems including optics.



1D vs 2D systems &

Nonlinear Schrodinger equation explains the wave dynamics in ocean as
well as optics.

In 1D systems, such as optical fibers are studied extensively.
J.M. Dudley et al, Nat. Photon, 8, 755 (2014)

Water waves are not 1D.

Two focusing effects in 2D systems:
* Linear: Spatial (geometrical) focusing
* Nonlinear: Self focusing



Optical caustics

Coffee cup Ray picture
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e Caustics are defined as envelope of a family of rays
* Singularities in ray optics
* Catastrophe theory is required to remove singularity

Books:
J.F. Nye, Natural Focusing and Fine Structure of Light.

Y.A. Kravtsov, Caustics, Catastrophes and Wave Fields.
O.N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics.



Generation of opftical caustics
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A sharp caustic is formed only if the phase variations are large g



Statistics of caustics
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Caustics exhibit long-tailed probability distribution

a) A=2m, linear

b) A=8m, linear

¢) A=16m, linear
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A. Mathis, L. Froehly, S. Toenger, F. Dias, G. Genty & J. Dudley. Scientific Reports 5, 1 (2015).
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Caustics In ocean waves
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Caustic of tsunami focused by
an underwater island lens

M. V. Berry, Focused tsunami waves, Proc. R. Soc. A (2007)

Simulated linear
propagation of
tsunami waves, using
real ocean floor
bathymetry:

1
H. Degueldre, J. Metzger, T. Geisel and R. Fleischmann, Nature Physics 12, 259 (2016). 0



Nonlinear focusing
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Self focusing:

Refractive index depends on intensity:

n=nytn,Il

Rubidium vapors show large nonlinear effects

CW laser
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Effect of nonlinearity on caustics
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Phase variations:

a) A=2m, linear b) A=8m, linear ¢) A=16m, linear
5

After linear
propagation:

b) A=2x, nonlinear ¢) A=8m, nonlinear d) A=16m, nonlinear

After nonlinear
propagation:
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Statistics of caustics

Intensity distributions with fit to 4 Exp(-BI°)
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After nonlinear
propagation:
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Simulation — Linear propagation
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Linear propagation was simulated by FFT beam propagation

b) A=2m, linear ¢) A=8m, linear d) A=16m, linear
Experiment:
b) A=2m, linear ¢) A=8m, linear d) A=16m, linear
Simulation:
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Simulation — Rb model
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NLSE:

Our Rb model includes:

* All hyperfine transitions
* Doppler broadening

* Power broadening

* Collisional broadening
* Optical pumping

Transmission
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Simulation — Nonlinear propagation
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Nonlinear propagation was simulated by FFT beam propagation and split-step

b) A=2x, nonlinear

Experiment:

b) A=2x, nonlinear

Simulation:

c) A=8m, nonlinear

¢) A=8m, nonlinear

A. Safari, R. Fickler, M. Padgett, R. Boyd,
Physical Review Letters 119, 203901 (2017)

d) A=16x, nonlinear

d) A=16m, nonlinear
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Conclusion
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= Caustics are important:
e Natural way of focusing energy of a wave
* Can generate large amplitude waves

= Generation of caustics in linear space requires large
fluctuation

= Nonlinear instability can generate caustics from small
fluctuations

Nonlinear

Linear

A. Safari, R. Fickler, M. Padgett, R. Boyd,
Physical Review Letters 119, 203901 (2017) .
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Tsunami wave
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Simulation — Nonlinear propagation
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“Caustics, Catastrophes and Wave Fields”, Kravtsov, Orlov (1993)
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1D NLSE

Ocean: |A| A
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Transform the frame and replace time with space in ocean wave based on x=v ¢
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2D NLSE
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1D vs 2D systems
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Nonlinear Schrodinger equation explains the wave dynamics in ocean as
well as optics.

In 1D systems (studied extensively):
* Nonlinear modulational instability Optical Wave Envelope E

Modulational instability

Electric field

Time t

YOE 1 J°E 2
I?:'-'l"z ﬂ2|?’+}’|E| E=0

J.M. Dudley et al, Nat. Photon, 8, 755 (2014)

In 2D systems:

* Spatial (geometrical) focusing
* Nonlinear focusing



