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Quantum metrology allows for a tremendous boost in the
accuracy of measurement of diverse physical parameters.
The estimation of a rotation constitutes a remarkable example
of this quantum-enhanced precision. The recently introduced
Kings of Quantumness are especially germane for this task
when the rotation axis is unknown, as they have a sensitivity
independent of that axis and they achieve a Heisenberg-limit
scaling. Here, we report the experimental realization of these
states by generating up to 21-dimensional orbital angular
momentum states of single photons, and confirm their high
metrological abilities. © 2017 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5585) Quantum informa-

tion and processing; (120.3940) Metrology.
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The conventional description of the quantum world involves a
key mathematical object—the quantum state—that conveys com-
plete information about the system under study; once it is known,
the probabilities of the outcomes of any measurement can be pre-
dicted. This statistical description entails counterintuitive effects
that have prompted several notions of quantumness, yet no single
one captures the whole breadth of the physics.

There are, however, instances of quantum states that behave in
an almost classical way. The paradigm of such a behavior is that of
coherent states of light [1]; they are as much localized as possible
in phase space, a property that is preserved under free evolution.

The concept of coherent states has been extended to other
physical systems [2]. The case of spin is of paramount importance.
The corresponding spin coherent states have minimal uncertainty
and they are conserved under rotations. So, in the usual way of
speaking, they mimic a classical angular momentum as much as
possible. One could rightly wonder what kind of state might serve

as the opposite of a coherent state. The answer will depend on the
ways to formalize the idea of being “the opposite” [3]. Here, we
take advantage of the Majorana representation, which maps a
pure spin S into 2S points on the Bloch sphere [4].

It turns out that the Majorana representation of a coherent
state consists of a single point (with multiplicity 2S). At the
opposite extreme, we can imagine states whose Majorana repre-
sentations are spread uniformly over the sphere. The resulting
states are precisely the Kings of Quantumness [5,6]. With such
symmetric spreadings, the constellations essentially map onto
themselves for relatively small rotations around arbitrary axes.
This means that they resolve rotations around any axis approx-
imately equally well. We emphasize that the problem of estimat-
ing a rotation is of utmost interest in magnetometry [7–9],
polarimetry [10,11], and metrology in general [12]. In this work,
we experimentally demonstrate the generation of these states and
certify their potential for quantum metrology [13].

Let us first set the stage for our experiment. We consider
a system that can be described in terms of two independent
bosonic modes with creation operators â†α, with α ∈ f�; −g.
This encompasses many different instances, such as strongly cor-
related systems, light polarization, Bose–Einstein condensates,
and Gaussian–Schell beams, to mention only a few [14]. The
Stokes operators for these two-mode systems can be compactly
expressed as [15] Ŝ � 1

2 â
†
ασαβâβ, where σ denotes the Pauli

matrices, and summation over repeated indices is assumed.
One can verify that Ŝ2 � Ŝ0�Ŝ0 � 1� with Ŝ0 � N̂∕2, and N̂ �
â†αδαβâβ � N̂� � N̂ − being the total number of excitations.

From now on, we restrict our attention to the case where N is
fixed. This corresponds to working in a �2S � 1�-dimensional
Hilbert space HS of spin S (with N � 2S). This space HS

is spanned by the Dicke basis jS; mi, wherein the action of Ŝ
operators is the standard for an angular momentum. Sometimes,
it is preferable to use the two-mode Fock basis jN�; N −i, related
to the Dicke basis by N� � S � m and N − � S − m.
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Spin coherent states are constructed much in the same way as
in the canonical case [2]: they are displaced versions of the north
pole of the Bloch unit sphere S2. If n is a unit vector in the
direction of the spherical angles (θ, ϕ), they can be defined as
jni � eiϕŜz eiθŜy jS; Si. They are not orthogonal, but one can still
decompose an arbitrary state jΨi using this overcomplete set. The
associated coherent-state wave function is Ψ�n� � hnjΨi, and
the corresponding probability distribution, Q�n� � jΨ�n�j2, is
nothing but the Husimi function.

The wave function Ψ�n� can be expanded in terms of the
Dicke basis jS; mi. If the corresponding coefficients are
Ψm�hS;mjΨi, we obtain Ψ�n���1�jzj2�−SPS

m�−ScmΨmzS�m,
where cm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2S�!∕��S − m�!�S � m�!�

p
, and z � tan�θ∕2�e−iϕ

is the complex number derived by the stereographic projection
of �θ;ϕ�. Apart from the unessential positive prefactor, this is
a polynomial of order 2S; thus, jΨi is determined by the set
fzig of the 2S complex zeros of Ψ�n�. These zeros, which are also
the zeros of Q�n�, specify the so-called constellation by an inverse
stereographic map of fzig↦�θi ;ϕi�.

Since the spherical harmonics Y Kq�n� are a complete set of
orthonormal functions on S2, they may be used to expand the
Husimi function Q�n�. The resulting coefficients, ϱKq, are noth-
ing but the standard state multipoles [16], and there are 2S � 1 of
them (see Supplement 1). The monopole is trivial, as it is just a
constant term. The dipole indicates the position of the state in the
Bloch sphere. When it vanishes, the state has vanishing (first-
order) polarization and points nowhere in the mean. If the
quadrupole also vanishes, the variance of the state is uniform;
i.e., no directional signature can be observed in its second-order
fluctuations, and we say that it is second-order unpolarized.
Similar interpretation holds for higher-order multipoles. One
can also look at these multipoles as the K th directional moments
of the state constellation and, therefore, these terms resolve
progressively finer angular features.

The quantity
P

qjϱKqj2 gauges the overlap of the state with the
K th multipole pattern. It seems thus suitable to look at the
cumulative distribution [17]AM � PM

K�1

PK
q�−K jϱKqj2, which

concisely condenses the state angular capacity up to order M
(1 ≤ M ≤ 2S). Observe that the monopole is omitted, as it is just
a constant term.

The spin coherent states jni have remarkably simple constel-
lations, just the point −n, and they maximizeAM for all ordersM ,
confirming yet from another perspective the outstanding
properties of these states [5].

In contradistinction, the Kings are those pure states that make
AM ≡ 0 for the highest possible value ofM . This means that they
convey the relevant information in higher-order fluctuations. The
search for these states has been systematically undertaken recently
in Ref. [5], where the interested reader can check the details (see
also Supplement 1, where one can find the nonzero components
Ψm of the Kings). The resulting Majorana constellations for some
values of S are depicted in Fig. 1. For S � 3, the constellation is a
regular octahedron and the state is third-order unpolarized
(M � 3). For S � 5, it consists of two pentagons. For S � 6
we have the icosahedron, and the corresponding state is fifth-
order unpolarized. For S � 10 we have a slightly stretched
dodecahedron (i.e., the four pentagonal rings that define its ver-
tices are displaced against the pole), and it is fifth-order unpolar-
ized. As we can appreciate, the Kings have the points very
symmetrically placed on the unit sphere, so their constellations

possess many axes along which they return to themselves after
a rotation. Consequently, they can resolve relatively small angles
around a large number of axes.

Other states with a high degree of angular resolution are the
NOON states, given by jNOONi � 1ffiffi

2
p �jN; 0i − j0; N i� in the

two-mode Fock basis and 1ffiffi
2

p �jS; Si − jS; −Si� in the Dicke basis.
As shown in Fig. 1, their Majorana constellation consists of 2S
equidistantly placed points around the equator of S2. A rotation
around the z axis of angle π∕�2S� makes jNOONi orthogonal to
itself, whereas for π∕S it returns to itself. This nicely supports the
ability of NOON states to detect small rotations.

To compare the performance of these two classes of states, let
us assume we have to estimate a rotation R�ω;u� of angle ω
around an axis u of spherical angles �Θ;Φ�. We consider only
small rotations and take the measurement to be a projection
of the rotated state onto the original one; i.e., it can be represented
by P̂ � jΨihΨj. As discussed in Supplement 1, the respective
sensitivities (defined as the ratio Δω � ΔP̂∕j∂hP̂i∕∂ωj, the
variance being ΔP̂ � �hP̂2i − hP̂i2�1∕2) are

ΔωKings �
ffiffiffi
3

p

2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�S � 1�

p ;

ΔωNOON � 1
ffiffiffi
2

p 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S2 cos2 Θ� S sin2 Θ

p : (1)

The sensitivity of the Kings is completely independent of the
rotation axis and with a Heisenberg-limit scaling 1∕S for large S.
For the NOON states, the sensitivity scales as 1∕S when Θ � 0,
but can be as bad as 1∕

ffiffiffi
S

p
when Θ � π∕2. In short, it is essential

to know the rotation axis to ensure that the NOON state is
aligned to achieve its best sensitivity.

We stress that the measurement scheme for Δω involves only
second-order moments of Ŝ. Given their properties, one could
expect that detecting higher-order moments will bring out even
more advantages of the Kings.

To check these issues, we have generated these extremal states
for the cases of S � 3, 5, 6, and 10 using orbital angular momen-
tum (OAM) states of single photons [18], which has already
proven fruitful in quantum metrology [19]. Working at the
single-photon regime is not essential, but it highlights the
potential implications for quantum information processing [20].
Therefore, the index m in the Dicke basis is identified with the
OAM eigenvalue l of a single photon along its propagation

(a)

(b)

Fig. 1. (a) The Majorana constellations in the Bloch sphere for the
Kings (orange) and the NOON states (yellow) corresponding to spin
S � 3, 5, 6, and 10. (b) The Laguerre–Gauss representation of the same
Kings and NOON states, shown in (a), where the azimuthal index l
corresponds to m in the Dicke basis. We consider the fundamental radial
mode, i.e., p � 0, where p is the radial index of the Laguerre–Gauss modes.
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direction. In general, there exist many families of optical modes
carrying OAM, but we choose the Laguerre–Gauss basis LGl;p,
where p is the radial index. Since the radial profile is irrelevant to
the experimental realization of the Kings states, for the sake of
simplicity, we always set the radial index to its fundamental value,
i.e., p � 0. The resulting transverse profiles of both the Kings and
the NOON states are as in Fig. 1(b).

We experimentally create the Kings by means of spontaneous
parametric downconversion. A sketch of the experimental setup is
shown in Fig. 2(a). A quasi-continuous wave ultraviolet (UV) la-
ser operating with a repetition rate of 100 MHz and an average
power of 150 mW at a wavelength of 355 nm is used to pump a
type-I β-barium borate crystal. The single photons, signal and

idler, are subsequently coupled to single-mode fibers to filter their
spatial mode. One of the photons, the idler, is used as a trigger.
The other photon, the signal, is made incident on a first spatial
light modulator (SLM1), where the desired quantum states were
imprinted on the signal photon holographically [21]. The gener-
ated photonic Kings are subsequently imaged onto a second
spatial light modulator (SLM2) by a 4f system. The second
SLM possessing the desired hologram followed by a single-mode
optical fiber perform the projective measurement on the state of
the signal photon. Both photons are sent to avalanche photodiode
detectors (APD), and coincidence counts are recorded by a coinci-
dence box with a coincidence time window of 3 ns [22].

To verify the accurate experimental generation of these states,
we perform quantum state tomography to reconstruct the Husimi
Q function, as shown in Fig. 2(b). The average fidelity of the
resulting states is around 90%; i.e., 94%, 87%, 91%, and
93%, respectively (see Supplement 1).

We now study the behavior of such states under rotations in
the sphere S2. This is experimentally realized by projective mea-
surements of the Kings onto themselves after a rotation ω around
several axes (see Fig. 3). To demonstrate the high sensitivity to
rotation of these states along arbitrary axes, we perform such ro-
tations around each axis passing through the Majorana points and
facets of the Kings constellations. For the cases of S � 3, 6, and
10, we find four-, five-, and three-fold symmetry axes passing
through their Majorana points and three-, three-, and five-fold
symmetry axes passing through the normals to the facets of their
constellations, respectively. Note that, since we are dealing with
OAM, these rotations correspond to rather abstract mode trans-
formations, although the polar axis still represents a physical
real-space rotation around the optical axis.

Finally, in Fig. 4 we experimentally check the sensitivity of
the Kings and NOON states. As we can see, the experimental

(a)

(b)

Fig. 2. (a) Sketch of the experimental setup and (b) density plots of the
experimentally reconstructed Husimi Q functions for the same King
states as in Fig. 1. The fidelities of these reconstructed states are (from
left to right) 0.94, 0.87, 0.91, and 0.93. The differences with the
theoretical Q functions cannot be visually noticed.

S = 3 S = 6 S = 10

ω (rad) ω (rad) ω (rad)

ω (rad)ω (rad)ω (rad)

Axes

Axes Axes

Axes Axes

Axes

P P P

P P P

Fig. 3. Experimental results of the projection of the S � 3, 6, and 10 (first, second, and third column, respectively) Kings states, jΨ�S�i, onto them-
selves after a rotation of ω around the axis u, R̂�ω;u�, i.e., hP̂i � jhΨ�S�jR̂�ω;u�jΨ�S�ij2. The axes are presented graphically along with the associated
constellations. The first row corresponds to rotations along the axes passing through theMajorana points (pink arrows), and the second row corresponds to
rotations along the axes normal to the facets of the constellations (blue arrows). The experimental results (red and blue dots) are shown along with the
theoretical results (blue and green curves) for all rotation axes.
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sensitivity of the Kings is completely independent of the
orientation of the rotation axes (within the error bars). In the
limit of small rotation angles, the NOON states overcome
the Kings all the way up to cos Θ � 1∕

ffiffiffi
3

p
. Nonetheless, since

the Kings achieve the ideal sensitivity irrespectively of the axis,
they are the most appropriate to detect rotation around arbitrary
axes.

The problem of the Kings is closely related to other notions as
states of maximal Wehrl–Lieb entropy [23], Platonic states [24],
the Queens of Quantumness [25], or the Thomson problem [26].
However, there are still many things to elucidate concerning
these links. They are, however, a nice illustration of the connec-
tions between different branches of science, and on how some
seemingly simple problems—distributing points in the most sym-
metric manner on a sphere—can illuminate such complicated
optimization problems that we have just described.

Thus far, efforts were concentrated in estimating the rotation
angle, which in terms of magnetometry means that we only want
to know the magnetic field magnitude. The Kings will allow for a
simultaneous precise determination of the rotation axis (i.e., the
magnetic field direction). Our experimental results corroborate
that this extra advantage can pave the way to much more refined
measurement schemes.
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1. MULTIPOLES AND EXTREMAL STATES

We consider a state represented by a density matrix $̂ living in
the (2S + 1)-dimensional Hilbert spaceHS of spin S. The state
multipoles can be defined in terms of the Husimi Q function as

$Kq = CK

∫
S2

d2n YKq(n) Q(n) , (1)

where the normalization constant is

CK =

√
4π

2S + 1
1

CSS
SS,K0

, (2)

and CSS
SS,K0 is a Clebsch-Gordan coefficient [1].

When expressed in the Cartesian basis they appear in a very
transparent way. For example, the three dipole ($1q) and the five
quadrupole ($2q) terms can be given, respectively, as

℘i = 〈ni〉 , Qij = 〈3ninj − δij〉 , (3)

where 〈 f (n)〉 =
∫
S2

d2n f (n) Q(n)/
∫
S2

d2n Q(n) and the index
i runs x, y, and z. These multipoles appear then as the standard
ones in electrostatics, but replacing the charge density by Q(n)
and distances by directions [2]. It is also clear that they are the

Kth directional moments of the state constellation and, therefore,
these terms resolve progressively finer angular features.

We look at the cumulative distribution

AM =
M

∑
K=1

K

∑
q=−K

| $Kq |2 , (4)

which sums polarization information up to order M (1 ≤ M ≤
2S). The distribution AM can be regarded as a nonlinear func-
tional of the density matrix $̂. On that account, one can try to
ascertain the states that maximize AM for each order M. As
with any cumulative distribution, AM is a monotonically non-
decreasing function of the multipole order. We shall be consid-
ering only pure states, which we expand in the Dicke basis as
|Ψ〉 = ∑S

m=−S Ψm |S, m〉, with coefficients Ψm = 〈S, m|Ψ〉. We
easily get

AM =
M

∑
K=1

K

∑
q=−K

2K + 1
2S + 1

∣∣∣∣∣ S

∑
m,m′=−S

CSm′
Sm,KqΨm′Ψ

∗
m

∣∣∣∣∣
2

. (5)

As it has been proven in Ref. [3], spin coherent states |n〉maxi-
mize AM for all orders M.
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We concentrate on the opposite case of states minimizingAM.
Obviously, the maximally mixed state

$̂ =
1

2S + 1
1̂12S+1 (6)

kills all the multipoles and so indeed causes Eq. (4) to vanish
for all M, being fully unpolarized [4, 5]. Nonetheless, we are
interested in pure Mth-order unpolarized states. The strategy
we adopt is thus very simple to state: starting from a set of
unknown normalized state amplitudes in Eq. Eq. (5), which we
write as Ψm = am + ibm (am, bm ∈ R), we try to get AM = 0
for the highest possible M. This yields a system of polynomial
equations of degree two for am and bm, which we solve using
Gröbner bases implemented in the computer algebra system
MAGMA. In this way, we get exact algebraic expressions and we
can detect when there is no feasible solution.

The detailed list of resulting minimal states, which are the
Kings of Quantumness, can be found in [6], where the reader
can also see the associated Majorana constellations. In this paper,
we have considered the cases of S = 3, 5, 6 and 10: the Kings
have the following nonzero Ψm components:

S = 3 Ψ±2 = ∓ 1√
2

S = 5 Ψ±5 = 1√
5

Ψ0 =
√

3
5

S = 6 Ψ±5 = ∓
√

7
5 Ψ0 =

√
11
5

S = 10 Ψ±10 =
√

561
75 Ψ±5 = ∓ 3

√
209

75 Ψ0 =
√

741
75

(7)

Intuitively, these constellations seem to have the points as
symmetrically placed on the unit sphere as possible. We have
explored the connection with spherical t-designs [7], which are
patterns of N points on a sphere such that every polynomial of
degree at most t has the same average over the N points as over
the sphere. Thus, the N points mimic a flat distribution up to
order t, which obviously implies a fairly symmetric distribution.

For a given S, the maximal order of M for which we can
cancel out AM does not follow a clear pattern. However, the
numerical evidence suggests that Mmax coincides with tmax in
the corresponding spherical design. Further work is needed,
however, to support this conjecture.

2. ROTATIONAL SENSITIVITY

The goal of our work is the estimation of a rotation R̂(ω,u) of
angle ω around an axis u of spherical angles (Θ, Φ); i.e.,

R̂(ω,u) = exp(−iω Ŝ · u) , (8)

which is generated precisely by Ŝ · u. Our measurement was a
projection onto the original state; i.e., P̂ = |Ψ〉〈Ψ|. The sensitiv-
ity of the state |Ψ〉 to this measurement can be retrieved from a
simple error propagation [8]

∆ω =
∆P̂∣∣∂〈P̂〉/∂ω

∣∣ , (9)

where the variance is ∆P̂ = [〈P̂2〉 − 〈P̂〉2]1/2. Note that for
projective measurements, we have the simplification ∆P̂ =
[〈P̂〉 − 〈P̂〉2]1/2, and so the knowledge of 〈P̂〉 is enough to assess
∆ω.

We consider only small rotations, which means that the angle
ω is small enough to expand R̂(ω,u) up to second order. Ob-
viously, 〈P̂〉 = |〈Ψ|R̂|Ψ〉|2 and then, after a direct computation,
we get

〈P̂〉 =
∣∣∣1− iω 〈Ŝ〉 · u− 1

2 ω2〈(Ŝ · u)2〉
∣∣∣2 . (10)

The last term is a little messy, but can be evaluated; the result
reads (after expanding up to ω2 and using spherical coordinates)

〈P̂Kings〉 = 1− 1
3

ω2S(S + 1) ,

(11)

〈P̂NOON〉 = 1− 1
2

ω2S
(

sin2 Θ + 2S cos2 Θ
)

. (12)

From here we can finally get the sensitivity

∆ωKings =

√
3

2
1√

S(S + 1)
,

(13)

∆ωNOON =
1√
2

1√
2S2 cos2 Θ + S sin2 Θ

, (14)

as quoted in the Letter.

3. NOON STATES ROTATION

We experimentally generate our states using the OAM of single
photons. In consequence, the index m in the Dicke basis is
identified with the OAM eigenvalue ` of a single photon along its
propagation direction. In this representation, only the azimuthal
modes; i.e., exp(i`φ), are relevant. In general, there exist many
families of optical modes carrying OAM. Here, we choose the
Laguerre-Gauss basis LG`,p. As the radial profile is irrelevant to
the experimental realization of the Kings states using OAM, for
the sake of simplicity, we set the radial index to its fundamental
value; i.e., p = 0.

The energy of modes with different azimuthal mode index `
varies slightly with the absolute value of the index. Thus a trans-
formation of a state with predominant contribution of modes
with large |`| to one with a predominant contribution of modes 
with vanishing ` will result in a red-shift due to the rotational 
Doppler effect. However, for two reasons this effect will be 
miniscule. The first is that the wave-vector along the axis of 
propagation is much larger than the azimuthal wave vector. Sec-
ondly, the King state per definition comprises of points spread 
rather evenly on the Bloch sphere, thus involving modes with
both small and large |`|. After a transformation, the points will 
still be rather evenly spread over the Bloch sphere (the constel-
lation rotates rigidly), so while some of the constituent modes 
will get red-shifted, other will be blue-shifted. This will further 
act to hide any rotational Doppler shift.

In Fig. 1, we experimentally confirm the superiority of the 
Kings over the NOON states. For this purpose, we have used the 
case of S = 3, 6 and 10, as well. To compare the performances of 
the NOON states with that of the Kings, we perform the same set 
of projective measurements by rotating the NOON states over 
the same axes discussed in previously for the Kings. However, 
due to their lack of rotation sensitivity, the NOON states are 
studied under a full rotation of π. As it was expected, the NOON 
states possess the largest sensitivity to rotation for a single axis 
(z), thus overcoming the Kings for this case. Nonetheless, it is 
clearly evident that the Kings are distinctly superior with respect 
to any other rotation axes.

4. TOMOGRAPHIC RECONSTRUCTION

To verify the generated states two different sets of projections 
were utilized: (i) projections onto coherent states and (ii) pro-
jections onto rotated Kings with the axes of rotations defined
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Fig. 1. Kings superiority over NOON states. Experimental results of projecting NOON states corresponding to S = 3, 6 and 10 onto
themselves after a rotation along the various axes sketched in Fig. 3 of the main text. In the first row, the NOON states are rotated
around their optimal z axis. For a comparison of the NOON versus the Kings, we show rotations of the NOON states along the axes
of rotation defined by the Majorana points (second row) and the normal to the facets (third row) of the constellations of the Kings
with corresponding S . The axes are presented graphically along with the associated constellations on the top-right corner of each
plot. The coloured region (red for Majorana points rotations and blue for facets rotation) shows the region for which the Kings are
mapped back onto themselves, as shown in Fig. 3 of the main text.

by the Majorana points. Such a D-dimensional channel can be
described by an overcomplete positive operator-valued mea-
surement (POVM) Π̂j ≥ 0, j = 1, . . . , D. The probabilities pj
of observed relative frequencies f j, as given by the Born rule
pj = Tr($̂Π̂j) can be inverted by maximizing the Fermi extended
likelihood [9]

L =
D

∑
j

f j log

(
pj

∑j′ pj′

)
(15)

to yield the Kings estimates. This amounts to solving the ex-
tremal equation

R̂$̂ = Ĝ$̂ , (16)

where we have defined

R̂ = ∑
j

f j

pj(ρ)
Π̂j, Ĝ =

∑j f j

∑j pj(ρ)
∑

j
Π̂j. (17)

This can be solved in an iterative way

$̂(k+1) = Ĝ−1R̂$̂(k)R̂Ĝ−1, (18)

starting from the (2S + 1)-dimensional maximally mixed state
(6). A few thousand of iterations are typically needed to observe
a convergence to the stationary point of the map Eq. (16).

In the experiment, several hundred of projections were
recorded for each King and the fidelities of the estimated states

with respect to the target states were found to be close to or in
excess of 90% in all cases. See Table 1 for details.

The conventional description of the quantum world involves
a key mathematical object—the quantum state—that conveys
complete information about the system under study: once it
is known, the probabilities of the outcomes of any measure-
ment can be predicted. This statistical description entails many
counterintuitive effects that have prompted several notions of
quantumness, yet no single one captures the whole breadth of
the physics.

S dim D fidelity

3 7 288 0.94

5 11 572 0.87

6 13 544 0.91

10 21 1054 0.93

Table 1. Measurement sizes D and resulting fidelities obtained
with quantum state tomography of experimentally generated
King states.
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9. M. G. A. Paris and J. Řeháček, eds., Quantum State Estima-
tion, vol. 649 of Lect. Not. Phys. (Springer, Berlin, 2004).

4


	XML ID funding
	3087214.pdf
	Multipoles and extremal states
	Rotational sensitivity
	NOON states rotation
	Tomographic recontruction




