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Phase sensitivity of gain-unbalanced nonlinear interferometers
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The phase uncertainty of an unseeded nonlinear interferometer, where the output of one nonlinear crystal is
transmitted to the input of a second crystal that analyzes it, is commonly said to be below the shot-noise level but
highly dependent on detection and internal loss. Unbalancing the gains of the first (source) and second (analyzer)
crystals leads to a configuration that is tolerant against detection loss. However, in terms of sensitivity, there is
no advantage in choosing a stronger analyzer over a stronger source, and hence the comparison to a shot-noise
level is not straightforward. Internal loss breaks this symmetry and shows that it is crucial whether the source or
analyzer is dominating. Based on these results, claiming a Heisenberg scaling of the sensitivity is more subtle
than in a balanced setup.
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I. INTRODUCTION

A nonlinear interferometer (NLI), characterized by the Lie
group SU(1,1) and consisting of two consecutive nonlinear
crystals [1], is a potential alternative to a linear interferometer
seeded by a squeezed state [2] for high-precision measure-
ments because of its supreme phase sensitivity [3]. Indeed,
it is said to feature a “Heisenberg scaling” when the gains in
both crystals are equal [1,4]. It has been suggested that one can
suppress the influence of detection loss by using unbalanced
gains in the two crystals [5,6], and in fact sub-shot-noise phase
sensitivity in an unseeded NLI with this method was recently
demonstrated [7].

In this article, we show that (i) the photon statistics of
an unseeded and gain-unbalanced NLI lead to a suppression
of the deleterious influence of detection loss, (ii) the phase
sensitivity is in this case ultimately limited by the lower gain
and is therefore symmetric with respect to the two crystals,
(iii) a comparison to the shot-noise level is not straightforward,
and (iv) internal loss breaks the symmetry so that a higher gain
in the source crystal might be beneficial. Since NLIs may be
intrinsically gain-unbalanced, claiming a Heisenberg scaling
has to be carefully justified in each individual case.

An NLI characterized by the SU(1,1) group typically
consists of two nonlinear crystals A and B, as shown in Figs. 1
and 4. In the original proposal [1], crystal A is the source of
the radiation, which is transmitted into crystal B acting as an
analyzer. The NLI can be operated at constructive interference
where both crystals generate radiation, a method that has, for
example, been explored to create and tailor bright squeezed
vacuum states of light [8–11]. In addition, it was shown that
by seeding the NLI with a light field, the phase sensitivity is
boosted even further, for both a coherent- and a squeezed-state
input field [5,12,13], and the influence of internal loss may be
decreased [14,15]. To focus on the physical mechanisms of an
NLI, we restrict ourselves in this article to the unseeded case
with vacuum input modes, which has no correspondence in a
conventional interferometer.

As it is the case in other quantum physical processes with
multiple nonlinear crystals, such as induced coherence [16,17],
it is essential that the two crystals are pumped coherently. Nev-
ertheless, the gains in both crystals can be controlled separately

and the relative phase of the pump field can be varied. In fact, it
would be experimentally difficult to ensure that the gain of the
source and the gain of the analyzer are exactly equal, especially
since the number of photons produced scales exponentially
with the electric field amplitude of the pump. Unbalanced gains
give an additional degree of freedom to optimize the properties
of the NLI. In this spirit, it was shown theoretically that the
deleterious effects of detection loss [14] can be overcome by
intentionally unbalancing the gains [5,6,18]. This effect was
recently demonstrated experimentally [7] for the case in which
the analyzer is pumped more strongly than the source. On
the other hand, the significance of the analyzing crystal is
questioned by proposals to operate the device in a truncated
mode of operation, with only the source as a squeezer [19]. At
first sight, these considerations imply an opposite role of the
analyzing crystal and make it necessary to investigate the effect
of gain unbalancing in more detail to understand the ultimate
limit of the sensitivity of the device. A seeded and gain-
unbalanced setup has been investigated in [20], but without
explicit consideration of the limitations on the sensitivity.

In Sec. II we use simple transformations to derive exact
analytical expressions for the detected photon number, its
variance, and the phase sensitivity that can be applied to
a situation with unbalanced gains, and we show the con-
ditions under which detection loss is significant or can be
overcome. In Sec. III we calculate the phase sensitivity of a
gain-unbalanced NLI. The effect of internal loss breaks the
symmetry between source and analyzer so that, depending
on the parameters of the setup, it makes a difference which
crystal is pumped more strongly, as we show in Sec. IV.
Because all of these calculations focus on a degenerate NLI,
we generalize in Sec. V our approach to compare the results to
a nondegenerate setup, before we conclude in Sec. VI. To keep
this paper self-contained, we include the detailed calculations
for the degenerate NLI in Appendix A, the quantum Fisher
information in a lossless and balanced setup in Appendix B,
and the nondegenerate NLI in Appendix C.

II. THEORETICAL DESCRIPTION

There are two intrinsically different approaches to realize
an NLI. The degenerate scheme employs two parametric
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FIG. 1. Schematic of a degenerate nonlinear interferometer that
consists of two coherently pumped nonlinear crystals A and B.
Internal loss is modeled by a beam splitter Sd, detector inefficiencies
by a beam splitter Sηd . The bosonic annihilation operator â denotes
the input mode of the interferometer, the operator b̂′ the field detected
by detector Dd.

amplifiers (the source and the analyzer) that act as single-mode
squeezers. Alternatively, two-mode squeezers are used in the
the nondegenerate scheme. Each type of NLI has its own
theoretical description, which in turn has an impact on the
overall phase sensitivity, as already pointed out by [1], even
though the scaling behavior is very similar. In this article, we
mostly focus on the degenerate NLI shown in Fig. 1 and use
the subscript d for all quantities derived for the degenerate
case. For a treatment of the nondegenerate setup, we refer to
Appendix C. For completeness, we discuss in Sec. V the results
of the nondegenerate NLI and compare them to the degenerate
case.

An NLI as shown in Fig. 1 consists of a source, which
we call crystal A, that generates squeezed vacuum through
parametric down-conversion. Its output is transmitted to an
analyzing crystal, called crystal B, where it is either further
squeezed or unsqueezed, depending on the phase accumulated
between the crystals and by the pump. The output of the
analyzer is then detected by detector Dd. For more details
on the derivations of this section, we refer to Appendix A.

We assume that the pair generation in each crystal A

and B is described by a Bogoliubov transformation â′ =
uA â + vA â† and b̂ = uB â′′ + vB â′′†. Here, uA,B and vA,B are
complex parameters that describe the amplification process.
They are connected to the usual hyperbolic functions and
fulfill the relation 1 = |uA,B |2 − |vA,B |2 ≡ UA,B − VA,B . The
operators â and b̂ are photon annihilation operators and â† and
b̂† are photon creation operators that follow the usual bosonic
commutation relations, and the different primes describe the
field at various instances of the interferometer. Note that
Vj corresponds to the number of photons produced by an
unseeded crystal. However, in our setup crystal B will always
be seeded by the output of crystal A.

The loss inside the NLI is modeled by a beam splitter Sd,
which transforms the input modes â′ and �̂ via â′′ = td â′ + rd �̂

and �̂′ = t∗d â′ − r∗
d �̂ to the output modes, where Td ≡ |td|2 and

Rd ≡ |rd|2 are the intensity transmittance and reflectivity with
Rd + Td = 1. We allow for complex td and rd so that we can
include phases that are accumulated inside the NLI.

With these transformations, the operator describing the
output field of crystal B (and therefore neglecting detection
loss for the moment) takes the form

b̂ = (tduAuB + t∗d v∗
AvB)â + (tdvAuB + t∗d u∗

AvB)â†

+ rduB�̂ + r∗
d vB�̂†. (1)

For a vacuum input in modes â and �̂ it is relatively easy to see
that the photon number Nd(φ) ≡ 〈b̂†b̂〉 after crystal B displays
interference, that is,

Nd = TdVA + VB + 2TdVAVB − 2Td

√
UAVAUBVB cos φ.

(2)

Here, we define the phase as φ ≡ arg (uAvAuBv∗
Bt2

d ) + π . It
includes the phase of the coefficients uj and vj and therefore
the phase difference of the laser field that pumps crystals A

and B. The argument of td accounts for the phase accumulated
by the photons inside the NLI. We see that internal loss
leads to a decreasing visibility and by that sensitivity, whose
scaling might change for a decohering quantum state inside
the interferometer [21].

The variance of the photon number b̂†b̂ after crystal B may
be written as (see Appendix A)

�N2
d = 2Nd(1 + Nd) − RdTdVA. (3)

Therefore, the photon statistics in the output of the NLI is,
at least for no loss, superthermal and, due to the fact that
Nd = Nd(φ), phase dependent. Note that Nd depends on VA

and VB as well as on internal loss.
The phase uncertainty of the NLI without taking detection

loss into account is defined as

�φ2
d = �N2

d

/∣∣∣∣∂Nd

∂φ

∣∣∣∣
2

(4)

and depends on the phase φ, internal loss Td, as well as the gains
through VA and VB . Equation (4) is the measure for the phase
uncertainty that is usually employed [1,14,22,23]. It implies
that the average value of the detected photon number is used to
estimate the phase1 and a more detailed motivation based on
error propagation can be found in [24]. Since only the average
photon number is determined, Eq. (4) can be asymptotically
linked to the Fisher information if the central limit theorem
holds [25]. We see from Eq. (3) that in a balanced setup without
losses, the variance is not finite and discuss this case separately
in the example given below.

We emphasize that other estimators are possible and might
even be a better choice than the average value of the photon
number, but they might also require further information to be
meaningful. In fact, detecting the statistical properties of the
signal might lead to a better estimation of the phase [24].

To model detection loss we introduce, according to Fig. 1,
a second beam splitter Sηd with transmittance ηd before the
detector Dd. With Eq. (4) we demonstrate in Appendix A that
the phase uncertainty including detection loss takes the form

�φ2
ηd = �φ2

d

(
1 + 1 − ηd

ηd

Nd

�N2
d

)
. (5)

1A phase estimator based on photon the number Nd = A − K cos φ,
where A and K are defined in accordance with Eq. (2), can be
defined with the average value np after p measurements of Nd as
� ≡ arccos[(A − np)/K]. Equation (4) then scales additionally with
p−1. The estimator is, assuming the validity of the central limit
theorem, asymptotically unbiased [25].
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Hence, the phase sensitivity is modified in the presence of
detection loss. In particular, it depends on the inverse Fano
factor Nd/�N2

d , the ratio of photon number and its variance.
Therefore, the photon statistics are crucial in determining
the influence of detection loss. It is obvious from Eq. (5)
that detection loss is suppressed if the inverse Fano factor
is small. Note that a similar expression for the nondegenerate
case was derived in [5,14] for the sum of the signal of the
two output ports in the nondegenerate NLI. We discuss the
limitations for this specific case in Sec. V. An expression for
the phase sensitivity in the degenerate case for equal internal
and detection loss was analzed in [22].

Example: Balanced gain. In the original work [1] the gains
in the two crystals were balanced, i.e., VA = VB ≡ V as well
as UA = UB ≡ U , and no internal loss was considered, thus
setting Rd = 0. Hence, we find from Eq. (2) the form Nd =
2UV (1 − cos φ). From Eq. (4) we obtain

�φ2
d

∣∣
φ=0 = 1 + 2UV (1 − cos φ)

UV (1 + cos φ)

∣∣∣∣
φ=0

= 1

2UV
. (6)

Note that U = 1 + V , and that V corresponds to the number
of photons that are produced by crystal A and are annihilated
by crystal B. Because V photons are inside the NLI and
interact with a possible object, it is said that the NLI has
a Heisenberg scaling of the phase sensitivity. The choice of
φ = 0 corresponds to the phase where the phase uncertainty
�φ2

d is minimal [1]. Therefore, the NLI would be ideally
operated at this point. We show in Appendix B that the quantum
Fisher information is 2UV and, therefore, Eq. (6) saturates the
quantum Cramér-Rao bound.

However, with equal gains and for this phase all photons
created by the source are annihilated by the analyzer and we
have Nd|φ=0 = 0, i. e., we expect to measure no photons in
the output of the NLI. This fact is particularly unfavorable
because it means that vacuum fluctuations are of the same
order of magnitude. Since in a realistic experiment these
fluctuations are introduced by nonperfect detectors, in our
treatment modeled by Sηd , they significantly reduce the phase
sensitivity.

The effect becomes obvious when we note that the inverse
Fano factor Nd/�N2

d = 1/(2 + 2Nd) and, following Eq. (5),
we arrive at

�φ2
ηd

�φ2
d

− 1 = 1 − ηd

2ηd

1

1 + 2UV (1 − cos φ)
. (7)

To provide a quantitative analysis of the relative deviation of
the phase uncertainty from the uncertainty without detection
loss, we plot Eq. (7) in Fig. 2 as a function of detection loss ηd.
The deviation depends on the phase, the loss, and the gain. For
constructive interference (φ = π ), we see that the deviation is
the smallest and even further reduced with increasing gain. At
destructive interference (φ = 0), we have a deviation that has
a similar functional behavior, but is orders of magnitude larger
than for constructive interference. Moreover, increasing the
gain does not decrease the deviation (the black solid and dashed
lines overlap). In fact, it can be easily seen that Eq. (7) reduces
to �φ2

ηd = �φ2
d(1 + ηd)/(2ηd) for φ = 0, in total agreement
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FIG. 2. Relative deviation of the phase uncertainty under the
influence of detection loss ηd from the lossless case for equal gain.
We show Eq. (7) for three different phases 0, π/10, and π (black,
red, and blue) for two different gain parameters V = 5 and 25
(solid and dashed lines). At destructive interference, the influence of
detection loss is the highest and is always the same, independent of the
gain.

with the expression for the phase uncertainty of the sum of the
two output ports in the nondegenerate NLI discussed in [5,14].
If we were not to operate this NLI at or close to destructive
interference, we could get a significant number of photons
exiting the device and therefore suppress the influence of the
detection loss. However, the minimal phase uncertainty occurs
exactly at vanishing φ and with it at vanishing Nd, and only
in this case do we obtain the unique Heisenberg scaling of the
uncertainty.

As this example demonstrates, the effect of detection loss
in an unseeded NLI is governed by the intensity Nd(φ) in the
output of the interferometer. Since we are mainly interested in
the phase where its uncertainty is minimal, we do not have the
flexibility to operate the interferometer at a different phase,
e.g., at constructive interference where Nd(φ) is maximal.
However, there is a different option for increasing Nd(φ),
namely, using different gain values for the two crystals, that is,
unbalancing the gains. If, for example, the source is stronger
than the analyzer, all the photons created in crystal A can never
be annihilated in crystal B, even if the interferometer is set to
destructive interference. In the opposite case in which the ana-
lyzer is weaker than the source, crystal B not only annihilates
all photons emerging from crystal A, but overcompensates
and creates additional photons. Therefore, the larger the gain
difference, the higher the intensity in the output of the interfer-
ometer and the smaller the impact of detection loss. Hence, we
expect a suppression of detection loss for a gain-unbalanced
setup [5–7].

III. PHASE SENSITIVITY FOR UNBALANCED GAIN

In the section above, we established that unbalancing the
gain can be beneficial if there is significant detection loss in
the NLI. However, even though the impact of detection loss is
reduced, the effect of unbalanced gain on the phase uncertainty
itself has not been studied yet. In this section, we derive the
minimal phase uncertainty for vanishing internal loss Rd = 0.
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For that, we minimize Eq. (4) for arbitrary gains and find that
the minimum uncertainty occurs at the phase

φmin = ± arctan

√
VmaxUmax − VminUmin

(Umax + Vmax)2VminUmin
, (8)

which leads with Eq. (2) to the number of photons

Nd(φmin) = Vmax − Vmin

Umin + Vmin
. (9)

Here, we defined Vmin= min[VA,VB] and Vmax= max[VA,VB]
as the smaller and the larger parameter, respectively. The
parameters Umin and Umax are defined in an analogous way.
Moreover, we see that Nd(φmin) � 1 if Vmin � Vmax. In this
case, detection loss has practically no impact on the phase
uncertainty, which one can directly see from Eq. (5). Note
further that for VA 	= VB , the optimal sensitivity is achieved if
the NLI is not operated at destructive interference φmin 	= 0.

With the phase from Eq. (8) we find that the minimal phase
uncertainty takes the form

�φ2
d(φmin) = 1

2UminVmin
. (10)

Hence, the phase sensitivity is limited by the crystal with
smaller gain, independent on whether it is crystal A or B.
In the numerical analysis of [5] it was implicitly seen that
the smaller gain limits the sensitivity, but this fact was not
commented upon further.

Quantum limitations. The attention that NLIs have attracted
is due to the scaling behavior of their phase uncertainty, which
is often referred to as the “Heisenberg scaling.” Indeed, we
saw from Eq. (6) in a gain-balanced NLI with VA = VB =
V � 1 that �φd(0) ∼= 1/(

√
2V ). Since V corresponds to the

number of photons produced by the source, the connection to
the Heisenberg scaling is evident. However, a disadvantage of
a gain-balanced NLI is that it is very susceptible to detection
loss.

In an unbalanced setup at high gain, we find from Eq. (10)
that �φd(φmin) ∼= 1/(

√
2Vmin), where Vmin is the smaller

gain parameter. If the source is weaker than the analyzer
(VA < VB), the sensitivity is limited by VA and therefore
by the number of photons that interact with the object. A
comparison to the shot-noise level of this photon number seems
obvious and the phase sensitivity indeed displays a Heisenberg
scaling. Such phase measurements below the shot-noise level
determined by VA have recently been performed using direct
detection [7].

If the analzyer is weaker than the source (VB < VA), the
sensitivity is limited by VB , which is completely independent
of how many photons interacted with the object or were
inside the NLI, described by VA. However, it is VA that
is conventionally used [5] to determine a shot noise or
Heisenberg scaling behavior. In this case, the comparison
would be somewhat artificial because the sensitivity is not
limited by this number.

Of course, if the sample in the interferometer is very
sensitive and gets easily destroyed by high intensities or if
radiation pressure on mirrors degrades the sensitivity, one
would always operate the NLI with the smaller number of

photons inside and naturally choose VA < VB so that the
analyzer is stronger. But, if there is no limitation on how many
photons might interact with an object inside the NLI, there is no
preference as to which of the the two gains should be the lower
one because the resulting sensitivity is exactly the same. The
interferometer is completely symmetric and the only limiting
factor is the crystal with smaller gain, independent of which
crystal it is. Hence, a comparison to a Heisenberg limit is not
straightforward and has to be justified in each case, let alone
the fact that the pump is assumed to be undepleted. In fact,
other variations of an NLI give a phase sensitivity that scales
with the shot-noise level of pump photons [23].

In conclusion, the second crystal has to be considered an
essential part of the interferometer. Of course, it is valid to
employ truncated schemes [19] if the output of an NLI is
detected by homodyne detection [26], but the original proposal
[1] only involves a much simpler direct detection scheme [4,7],
in which the analyzing crystal is vital. On the same note, the
quantum Fisher information and the quantum Cramér-Rao
bound do not specify a particular detection scheme and
are usually calculated for the state inside the interferometer
[5,18,19,27]. Because the analyzer is seen as a part of the
detection, the bound is independent of the gain of crystal B

and since one optimizes over all possible detection schemes, it
is implicitly assumed that this gain can be arbitrarily high.
On the other hand, if one sees crystal B as an integral
component of the interferometer, one cannot just optimize over
all possible parameters but is restricted by the experimental
limitations.

IV. BREAKING THE SYMMETRY THROUGH
INTERNAL LOSS

In the previous section, we pointed out that the phase
sensitivity is limited by the lower gain, and therefore is
completely symmetric with respect to the source and analyzer.
If we introduce internal loss, this symmetry is broken.

It is straightforward to see that including internal loss, i.e.,
a beam splitter Sd with Td < 1 in-between the two crystals as
shown in Fig. 1, affects solely the photons created in crystal
A and only indirectly through a modified input the action of
crystal B. This fact stands out most clearly by observing that in
both Eqs. (2) and (3) the quantity VA always appears together
with the transmittance Td. For simplicity, we introduce the
notation Vt ≡ TdVA, which describes the number of photons
that are transmitted from crystal A to crystal B. In agreement
with the previous notation, we also use Ut ≡ 1 + Vt . In the
following, we first give an intuitive explanation of the influence
of internal loss on the sensitivity, before turning to the exact
results.

If internal loss is small, we can neglect the term −RdTdVA

in Eq. (3) for the variance. Moreover, if operated at high gain,
Vt � 1, the photon number as described in Eq. (2) takes the
form

Nd(φ) ∼= Vt + VB + 2VtVB − 2
√

UtUBVtVB cos φ (11)

and therefore we arrive at the same result as in Eq. (10)
for the minimal phase uncertainty, with only VA replaced
by Vt . In fact, an expansion of the exact treatment given
below in orders of Rd gives rise, up to lowest order, to the
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phase uncertainty �φ2 ∼= 1/(2UminVmin), where now Vmin =
min[Vt ,VB] and Vmax = max[Vt ,VB ]. Because Vt depends on
Td, the phase uncertainty is independent of the transmittance
only if VB < Vt . Thus, if internal loss dominates, it is better
to have a stronger source than analyzer, the opposite case of
what was used in [5–7].

However, for a more accurate description of the NLI we derive
from (4) an expression for the phase where its uncertainty
is minimized. We can perform this calculation analytically,
but the expressions are rather cumbersome and we therefore
refrain from presenting them. When we use this phase in Eq. (2)
to calculate the photon number, we find

Nd,min = 2(VB − Vt )2 + L +
√

4(VB − Vt )2(UB + Vt )2 + 4UBVBL + RdVt [2UBVB − UtVt ] + L2

2(UB + VB)(Ut + Vt )
, (12)

where we defined a loss-dependent term L ≡ RdVt (1 +
8UBVB). With this analytic expression we are able to de-
termine the variance �N2

d,min = 2Nd,min(1 + Nd,min) − RdVt

from Eq. (3). The inverse Fano factor Nd,min/�N2
d,min that

suppresses the effect of detection loss according to Eq. (5) can
be calculated for different parameters. We plot this factor in
Fig. 3(a) on a logarithmic scale. For Rd = 0 unbalancing the
gains decreases the influence of detection loss significantly:
the dotted line describing the balanced configuration is much
higher than the red and blue solid lines with a stronger
analyzer and source, respectively. However, the number of
photons transmitted to crystal B, Vt = (1 − Rd)VA, decreases
for Rd > 0 and for an initially balanced situation we arrive
effectively at a gain-unbalanced setup with Vt < VB . Hence,
the dotted line decreases rapidly until it is very close to the
case of a stronger analyzer (blue line).

For the same reason, a stronger source at first slightly
increases the inverse Fano factor because the unbalancing is
effectively lowered, making detection loss more significant
again. On the other hand, for a stronger analyzer we see a
decrease of the inverse Fano factor, because due to internal
loss the gain unbalancing effectively increases and we have
Vt < VA < VB . Hence, detection loss is further suppressed and
in this sense the setup improves. The plot also demonstrates
that it is better to have a stronger analyzer to suppress the effect
of detection loss in the presence of internal loss, which is the
configuration that was investigated in [5–7]. Note further that
only for Rd

∼= 0 we see that there is a significant advantage
of gain unbalancing and in this case it does not matter much
which one of the crystals has higher gain.

After considering the inverse Fano factor Nd/�N2
d that

suppresses detection loss, we now turn to the minimal phase
uncertainty itself. We find the analytical expression

�φ2
d,min = [Nd,min(UB + VB)(Ut + Vt ) + UBVt

+ UtVB − RdVt ][4UBVB(Ut − Rd)Vt ]
−1 (13)

for the phase uncertainty without detection loss and plot it in
Fig. 3(b). Here, the effect of internal loss is exactly opposite
to the one on detection loss: for an unbalanced situation, the
phase sensitivity is always better if the source is stronger (red
solid line), compared to the case where the analyzer is stronger
(blue solid line). This can be intuitively understood considering
that internal loss can affect the output of crystal A directly and
the action of crystal B only indirectly by modifying its input.

Hence, it is beneficial to have a stronger source so that the
reduced number of photons in the interferometer is still large
enough to not limit the sensitivity.

Not surprisingly, for equal gain (using the higher of the two
gains for both crystals) always outperforms the unbalanced
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FIG. 3. Effect of internal loss Rd on Nd,min/�N 2
d,min in (a) and

on �φ2
d,min in (b). In (a) we demonstrate that the inverse Fano factor

Nd/�N 2
d decreases rapidly for the gain-balanced situation (dotted

line) because internal loss deteriorates the number of transmitted
photons Vt . Therefore, the gain of crystal A is effectively lower and
detection loss is suppressed. The same is true if the analyzer is stronger
than the source (blue solid line) and the advantage of unbalancing the
gain decreases. If the source is stronger (red solid line), the inverse
Fano factor increases slightly at first. Moreover, it is always larger
than for the opposite case. In (b) we show that the phase uncertainty
(without detection loss) is the smallest for a gain-balanced setup
(dotted line). For large loss Rd, the case of a stronger source (red line)
is very close to the gain-balanced result. Moreover, for an unbalanced
setup it is always beneficial to work with a stronger source than with
a stronger analyzer (blue line).
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FIG. 4. Schematic of a nondegenerate nonlinear interferometer
consisting of two coherently pumped nonlinear crystals A and B.
Internal loss is modeled by a beam splitter S1,2 in each arm, detection
loss by a beam splitter Sη1,2 in front of each detector D1,2.

setup. However, for sufficiently large loss, the balanced
situation is very close to the case of a stronger source.

Since in a gain-unbalanced setup with internal loss a
stronger analyzer suppresses the effect of detection loss,
whereas a stronger source in addition reduces the influence of
internal loss, the latter one seems at first sight advantageous.
However, a stronger source suppresses detection loss not as
well as a stronger analyzer and is only beneficial for small
internal loss when compared to the balanced setup. Therefore,
the decision which crystal to pump stronger has to be made
based on the order of magnitude of the internal and detection
losses. In each individual case, it might be beneficial to have
stronger source or a stronger analyzer.

V. COMPARISON OF DEGENERATE
AND NONDEGENERATE CONFIGURATION

So far we have only considered a degenerate setup. How-
ever, we generalize our results to the case of a nondegenerate
NLI (see Appendix C) and compare them in this section to the
degenerate ones obtained above. The setup is shown in Fig. 4,
where we now have different input and output modes 1 and
2. Even though the expressions for the photon number and
variance are different from the degenerate configuration, they

are similar enough so that our previous discussion can also be
applied, with some limitations, to the nondegenerate case.

The photon number detected by detector Dj in a nondegen-
erate as well as a degenerate configuration takes the form

Nηj = ηjNj = ηj (Aj − Kj cos φ), (14)

whereAj is the amplitude andKj the contrast of the signal and
the index j = d,1,2. Here, ηj is the efficiency of the detector
j modeled by a beam splitter Sηj and Tj the transmittance
of the beam splitter Sj between the two crystals. Rj is the
corresponding reflectivity. The explicit form of Aj and Kj is
summarized in Table I for all cases. The internal loss in each
arm of the NLI may be different and has an effect on the signal
and variance [28]. Note that φ is defined slightly different from
the degenerate case to account for the different phases in the
two branches of the NLI.

In the nondegenerate setup one can, in addition to con-
sidering both exit ports separately, analyze the sum of the two
signals [1]. Without detection loss, we therefore define the sum
of the two signals N+ ≡ N1 + N2. Ultimately, we are inter-
ested in the phase uncertainty �φ2

j which can be analogously
defined to Eq. (4) where we replace the index d by j = 1,2,+.
To obtain the phase uncertainty, we first need the variance of
the photon number.

We display in the table the variances �N2
ηj and �N2

j with
and without detection loss, respectively, and note that only for
j = d,1,2 the relation

�N2
ηj = η2

j�N2
j + ηj (1 − ηj )Nj (15)

holds, but not for the sum of the two signals. Therefore, the
suppression of the detection loss for phase sensitivity of the
signal sum is not as straightforward. However, if η1 = η2 ≡
η+, we also find Eq. (15) for j = + as predicted by [14]. In
analogy to Appendix A we arrive at

�φ2
ηj = �φ2

j

(
1 + 1 − ηj

ηj

Nj

�N2
j

)
(16)

TABLE I. Comparison of degenerate and nondegenerate NLI. The index d denotes the degenerate case, 1 and 2 the two output ports of the
nondegenerate case, and + their sum. The signal without detection loss has an amplitude Aj and a contrast Kj . The variance of the detected
signal is �N 2

ηj . In the second part of the table, we show the variance �N2
j without detection loss and later the same quantity for vanishing

internal loss. The factor in the second column shows the influence of detection loss in a balanced situation. The optimal phase uncertainty
�φ2

j (φmin) was calculated for the lossless case.

j Aj Kj �N 2
ηj

d TdVA + VB + 2TdVAVB 2Td
√

UAUBVAVB ηdNd(1 + ηd + 2ηdNd) − η2
dRdTdVA

1 T1VA + VB + (T1 + T2)VAVB 2
√

T1T2UAUBVAVB η1N1(1 + η1N1)
2 T2VA + VB + (T1 + T2)VAVB 2

√
T1T2UAUBVAVB η2N1(1 + η2N2)

+ A1 + A2 4
√

T1T2UAUBVAVB (η1N1 + η2N2)(1 + η1N1 + η1N1)
+η1η2(N1 + N2) − η1η2(T1 + T2 − 2T1T2)VA

j �N 2
j 1 + 1−ηj

ηj

Nj

�Nj

∣∣∣
φ=0

�N 2
j with Tj = 1 �φ2

j (φmin)

d 2Nd(1 + Nd) − RdTdVA (1 + ηd)/(2ηd) 2Nd(1 + Nd) 1/(2UminVmin)

1 N1(1 + N1) 1/η1 Nd(1 + Nd) 1/(4UminVmin)
2 N2(1 + N2) 1/η2 Nd(1 + Nd) 1/(4UminVmin)
+ N+(2 + N+) + [2T1T2 − (T1 + T2)]VA (1 + η+)/(2η+) 4Nd(1 + Nd) 1/(4UminVmin)
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and thus that the inverse Fano factor Nj/�N2
j determines the

suppression of detection loss with j = d,1,2,+. In fact, for a
gain-unbalanced scheme and vanishing internal loss we find
for the expression in parentheses the factor shown in Table I
in agreement with [14]. Note that if only one single exit port
is detected in the nondegenerate setup, we find a significantly
different dependence on detection loss. We also see that gain
unbalancing suppresses detection loss in the nondegenerate
setup, even though for the sum of the two signals and η1 	= η2

the treatment is more subtle.
If the internal loss in each arm is equal, i.e., T1 = T2 = Td,

we find N1 = N2 = Nd and N+ = 2Nd. Moreover, if we
assume the lossless case with Tj = 1, we can express all
variances simply by the number of photons in one exit port
Nd (see the third column in the lower part of Table I). Since all
of these results differ only by a factor from the degenerate
result, we can use the phase from Eq. (8) to obtain the
minimal uncertainty. These results are shown in the table
as well. We note that the phase uncertainty is smaller by a
factor of 2 in the nondegenerate case, regardless of using only
one detector or both. In particular, we obtain again that the
sensitivity is limited by Vmin = min[VA,VB]. Hence, we see
that the discussion from above similarly applies to the different
cases of a nondegenerate setup. This is also true if we include
internal loss in analogy to Sec. IV, even though there are more
parameters since there might be different loss in each arm
of the NLI. We therefore refrain from presenting a lengthy
discussion of all different cases.

Finally, to compare the sensitivity to the shot-noise level
in a nondegenerate setup, one has to remember that VA is the
number of photons per mode produced by crystal A. Therefore,
the number of photons inside the NLI is n+ = 2VA, whereas
in the degenerate case it was nd = VA. Hence, the shot-noise
level could be defined as 1/

√
2VA in contrast to the degenerate

NLI, where it is 1/
√

VA. In case of a stronger analyzer, we have
�φd,min

∼= 1/(
√

2VA) = 1/(
√

2nd) and �φ+,min
∼= 1/(2VA) =

1/n+. In absolute values, �φ+,min < �φd,min. However, if we
assume the same number of photons inside the interferometer,
that is, nd = n+, we find �φd,min = �φ+,min/

√
2 in contrast to

our previous statement.

VI. CONCLUSIONS

We have demonstrated that the sensitivity of a degenerate
NLI is limited by the crystal with the smaller gain, whether
it is the source or analyzer crystal. Hence, the second crystal
has to be considered an essential part of the interferometer
and its gain is equally important as the one of the source in
a setup without internal loss. Moreover, the sensitivity might
not scale at all with the number of photons produced by the
source. We emphasize that a comparison to the shot-noise or
Heisenberg limit is only suggestive if the gain of the source
is the limiting factor. If the analyzer is limiting the sensitivity,
a comparison to the shot-noise level and a discussion of a
“Heisenberg scaling” seems rather artificial. Together with the
discussion of [23], we therefore hope to raise awareness for
the subtleties of claiming a Heisenberg scaling.

In order to suppress the effect of detection loss, it might
be beneficial to unbalance the gains of the two crystals on

purpose. Indeed, we showed that detection loss is suppressed
by the inverse Fano factor of the photon statistics. For a gain-
balanced NLI, the optimal phase occurs for a vacuum output
state and the sensitivity is susceptible to detection loss. In
contrast, unbalancing the gains leads to a significant photon
number in the output that suppresses it.

Whereas for this suppression it is irrelevant whether the
source or the analyzer is stronger (the NLI is symmetric
in this sense), it changes dramatically when internal loss is
considered. Internal loss effectively changes the gain of the
source and therefore may increase or decrease the suppression
of detection loss. In addition, this broken symmetry between
the two nonlinear crystals has the consequence that a higher
gain in the source reduces the effect of internal loss on the
phase sensitivity.

To suppress negative effects of internal loss, a stronger
source should be used; to additionally suppress detection loss,
a stronger analyzer seems beneficial. In fact, a stronger source
with internal loss suppresses detection loss, but not as well
as a stronger analyzer. Hence, the decision on whether to
use a higher gain for the source or for the analyzer has to
be based on the magnitude of internal and detection losses
for each individual case. We emphasize that these results
are valid for a degenerate NLI, but most of them carry over
to the nondegenerate case, for which we provide analytical
expressions as well.
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APPENDIX A: DEGENERATE CONFIGURATION

In this Appendix, we use the notation according to Fig. 1,
where the input mode of the degenerate NLI is denoted by
the operator â. It describes, as its subsequent counterparts,
a photonic annihilation operator and fulfills the bosonic
commutation relation [â,â†] = 1. The input enters at first
crystal A, and its output â′ is described by the Bogoliubov
transformation

â′ = uAâ + vAâ†. (A1)

Here, uA and vA are complex parameters. They describe
the amplification process and fulfill the relation 1 = |uA|2 −
|vA|2 = UA − VA. Due to this identity, we can identify UA

and VA with respective hyperbolic functions, that is UA =
cosh2 rA and VA = sinh2 rA, where we introduced the so-called
squeezing parameter or gain rA of crystal A.
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The internal loss of the NLI is modeled by a beam splitter
Sd, which is described by the transformation

â′′ = tdâ
′ + rd�̂ and �̂′ = t∗d �̂ − r∗

d â′, (A2)

where �̂ is the operator associated with the noise input of
the beam splitter according to Fig. 1 and causes vacuum
noise. We displayed also the transformation for the output
�̂′ to show that td and rd may be chosen complex and there
is in addition a phase shift. The asterisk (∗) denotes the
complex conjugate. Note that td and rd describe the field
transmittance and reflectivity, respectively. They fulfill 1 =
|rd|2 + |td|2 ≡ Rd + Td. Choosing complex td and rd makes it
possible to absorb phases of input modes into their definition.
We therefore do not have to treat phases accumulated inside
the NLI separately. With the relation (A1) for crystal A we
find

â′′ = tduAâ + tdvAâ† + rd�̂. (A3)

The action of crystal B is again described by a Bogoliubov
transformation

b̂ = uBâ′′ + vBâ′′† (A4)

with the same assumptions and notations for the coefficients
uB and vB as for crystal A. With the help of Eq. (A3) we find

b̂ = (tduAuB + t∗d v∗
AvB)â + (tdvAuB + t∗d u∗

AvB)â†

+ rduB�̂ + r∗
d vB�̂†. (A5)

Detection loss is modeled by the transformation

b̂′ = √
ηdb̂ +

√
1 − ηdd̂, (A6)

which corresponds to a beam splitter Sηd in front of the detector.
Here, ηd is the detection efficiency.

Let us assume that there is vacuum input in mode d̂ . We
then find

b̂′†b̂′|0d〉 = ηdb̂
†b̂|0d〉 +

√
ηd(1 − ηd)b̂|1d〉 (A7)

and obtain, projecting with 〈0d | onto Eq. (A7),

〈0d |b̂′†b̂′|0d〉 = ηdb̂
†b̂ (A8a)

and

〈0d |(b̂′†b̂′)2|0d〉 = η2
d(b̂†b̂)2 + ηd(1 − ηd)b̂†b̂ (A8b)

when we take the modulus square of Eq. (A7). The expectation
value of Eq. (A8) for an arbitrary input state in the other modes
directly leads to

Nηd = ηdNd (A9a)

and

�N2
ηd = η2

d�N2
d + ηd(1 − ηd)Nd, (A9b)

where Nηd and �N2
ηd are the photon number and variance

detected by Dd, and Nd and �N2
d the photon number and

variance without detection loss. With Eq. (A9) we find for the

phase sensitivity �φ2
ηd ≡ �N2

ηd/| ∂Nηd

∂φ
|2 including detection

loss the expression

�φ2
ηd = �N2

d

/∣∣∣∣∂Nd

∂φ

∣∣∣∣
2

×
(

1 + 1 − ηd

ηd

Nd

�N2
d

)
. (A10)

The above expressions are so far general for generic input
in modes â and �̂. But, now we make the assumption that we
have a vacuum input in all modes. When we rewrite Eq. (A5)
as b̂ ≡ Adâ + αdâ

† + Bd�̂ + βd�̂
† and introduce the complex

coefficients

Ad = tduAuB + t∗d v∗
AvB , Bd = rduB ,

αd = tdvAuB + t∗d u∗
AvB and βd = r∗

d vB, (A11)

we see that b̂|0〉 = αd|1a〉 + βd|1�〉 and find for the state
|ψd〉 ≡ b̂†b̂|0〉 the expression

|ψd〉 = (|αd|2 + |βd|2
)|0〉 +

√
2A∗

dαd|2a〉
+ (B∗

d αd + A∗
dβd)|1a,1�〉 +

√
2B∗

d βd|2�〉. (A12)

Hence, the vacuum expectation value Nd ≡ 〈0|ψd〉 = |αd|2 +
|βd|2 takes with Eq. (A11) the form

Nd = TdVA + VB + 2TdVAVB − 2T
√

UAVAUBVB cos φ,

(A13)

where we used Rd + Td = 1, Uj = 1 + Vj , and introduced the
phase

φ ≡ arg
(
uAvAuBv∗

Bt2
d

) + π. (A14)

Note that the definition of the phase includes a shift by π

so that φ = 0 describes the dark fringe. The variance can be
calculated through �N2

d = 〈ψd|ψd〉 − N2
d and we find after

some algebra

�N2
d = 2Nd(1 + Nd) − RdTdVA. (A15)

APPENDIX B: QUANTUM FISHER INFORMATION

In this Appendix, we calculate the quantum Fisher information
for a degenerate NLI with vacuum input and equal gain in
both crystals. For a more convenient description, we use the
Bogoliubov transformation from Eq. (A1) with uA = uB =
u and vA = vB = v to write the squeezed photon operator
â′ = Ŝ†âŜ, where we introduced the squeezing operator Ŝ. If
the gain is equal in both crystals and no loss is present, the
final state at the output of the NLI is a pure state which can
be written as a sequence of squeezing, phase evolution, and
antisqueezing. Hence, it takes the form

|ψf 〉 = Ŝ† exp

(
i
φ

2
â†â

)
Ŝ|0〉 = exp

(
i
φ

2
â′†â′

)
|0〉. (B1)

With the notation n̂′ ≡ â†′â′, the derivative of the final state
with respect to φ can be written as |ψ ′

f 〉 = n̂′|ψf 〉/2.
For a pure state, the quantum Fisher information [25] of the

NLI can be written as

Fφ = 4
(〈ψ ′

f |ψ ′
f 〉 − |〈ψ ′

f |ψf 〉|2) = 〈n̂′2〉 − 〈n̂′〉2, (B2)

where the expectation values are taken with respect to the
initial state, i.e., |0〉 in our case. With the help of Eq. (A1) we
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find the relation

n̂′|0〉 = V |0〉 +
√

2u∗v|2〉, (B3)

and, by projecting this state on itself and on |0〉 we find the
variance of n̂′ and therefore show that the quantum Fisher
information can be written as

Fφ = 2UV. (B4)

APPENDIX C: NONDEGENERATE CONFIGURATION

In contrast to the degenerate case, we have for a nondegenerate
setup two input modes, namely, modes 1 and 2, which are
described by the bosonic annihilation operators â1 and â2,
according to Fig. 4. Crystal A is described by the Bogoliubov
transformation

â′
1 = uAâ1 + vAâ

†
2 and â′

2 = uAâ2 + vAâ
†
1. (C1)

We define the coefficients vA and uA in complete analogy to
the degenerate case in Eq. (A1).

To model the loss that occurs inside the interferometer, we
place two beam splitters in each branch, whose transmitted
outputs is the input of crystal B. We describe the beam splitter
Sj with j = 1,2 that accounts for internal loss through the
transformation

â′′
j = tj â

′
j + rj �̂j and �̂′

j = t∗1 �̂j − r∗
j â′

j . (C2)

Here, rj and tj denote the amplitude reflectivity and transmit-
tance of the beam splitter. In addition, we use the conventional
definitions Rj = |rj |2 and Tj = |tj |2 as well as the relation
Rj + Tj = 1. The operators �̂j describe the noise input of each
beam splitter, the operators �̂′

j the output according to Fig. 4.
The output of crystal B is then found through the relation

b̂1 = uBâ′′
1 + vBâ

′′†
2 and b̂2 = uBâ′′

2 + vBâ
′′†
1 . (C3)

We define the coefficients vB and uB as in Eq. (A5). Detection
loss is modeled by the transformation

b̂′
j = √

ηj b̂j + √
1 − ηj d̂j , (C4)

where ηj is the efficiency of the detector in output mode
j = 1,2 and d̂j the noise that is introduced. Since this
transformation is completely analogous to Eq. (A6), we find
exactly Eqs. (A9) and (A10), with the index d now replaced
by j = 1,2.

With all the transformations above, including the beam
splitters Sηj

for detection loss, we find

b̂′
1,2 = A1,2â1,2 + α1,2â

†
2,1 + B1,2�̂1,2

+ β1,2�̂
†
2,1 + √

1 − η1,2d̂1,2 (C5)

for the field detected by detector D1,2. Here, we defined the
complex coefficients

A1,2 = √
η1,2(t1,2uAuB + t∗2,1v

∗
AvB), B1,2 = √

η1,2r1,2uB,

α1,2 = √
η1,2(t1,2vAuB + t∗2,1u

∗
AvB), β1,2 = √

η1,2r
∗
2,1vB.

(C6)

It is straightforward to calculate b̂′
1,2|0〉 = α1,2|1a2,1〉 +

β1,2|1�2,1〉. With that result we find, in analogy to the calculation

in the degenerate setup, for |ψj 〉 ≡ b̂
′†
1,2b̂

′
1,2|0〉 the expression

|ψ1,2〉 = (|α1,2|2 + |β1,2|2
)|0〉 + α1,2A

∗
1,2

∣∣1a1 ,1a2

〉
+ α1,2B

∗
1,2

∣∣1a2,1 ,1�1,2

〉 + β1,2A
∗
1,2

∣∣1a1,2 ,1�2,1

〉
+ √

1 − η1,2
(
α1,2

∣∣1a2,1

〉 + β1,2

∣∣1�2,1

〉)∣∣1d1,2

〉
+ β1,2B

∗
1,2

∣∣1�1 ,1�2

〉
. (C7)

It is easy to see that the photon number Nηj = 〈0|ψj 〉 =
|αj |2 + |βj |2 detected by Dj takes the form

Nηj (φ) = ηj (Aj − Kj cos φ) (C8)

with the amplitude Aj ≡ TjVA + VB + 2(T1 + T2)VAVB and
the contrast Kj = 2

√
T1T2UAUBVAVB . Note that the term in

parentheses can be defined as the photon number Nj without
detection loss. Moreover, the phase

φ ≡ arg(uAuBvAv∗
Bt1t2) + π (C9)

is slightly differently defined from Eq. (A14) to include a phase
that may be accumulated in the two arms in the interferometer
and is included in the complex values of tj .

When we calculate the variance �N2
ηj ≡ 〈ψj |ψj 〉 − N2

ηj ,
we find with the help of Eq. (C7)

�N2
ηj = (|αj |2 + |βj |2

)(
1 − ηj + |Aj |2 + |Bj |2

)
. (C10)

With the use of |Aj |2 + |Bj |2 = ηj + |αj |2 + |βj |2, as well as
Eq. (C8), this expression reduces to

�N2
ηj = Nηj (1 + Nηj ). (C11)

It also implies directly that �N2
j = Nj (1 + Nj ) in the case

without detection loss. Moreover, the variance of the sum of
both signals is

�N2
+ = �N2

η1 + �N2
η2 + 〈ψ1|ψ2〉 + 〈ψ2|ψ1〉 − 2Nη1Nη2.

(C12)

The overlap

〈ψ1|ψ2〉 = Nη1Nη2 + (α2A1 + β2B1)(α1A2 + β1B2)∗ (C13)

takes a simple form. Calculating the product is cumbersome,
but using trigonometric relations, the definition of the phase
φ, the relations Uj = 1 + Vj as well as Tj + Rj = 1, and
Eq. (C8) we arrive at

�N2
+ = (Nη1 + Nη2)(1 + Nη1 + Nη2) + η2Nη1 + η1Nη2

+ η1η2[2T1T2 − (T1 + T2)]VA. (C14)
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