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Abstract: We perform a calculation to determine how quantum
mechanical fluctuations influence the propagation of a spatial soliton
through a nonlinear material. To do so, we derive equations of motion
for the linearized operators describing the deviation of the soliton posi-
tion and transverse momentum from those of a corresponding classical
solution to the nonlinear wave equation, and from these equations we
determine the quantum uncertainty in the soliton position and trans-
verse momentum. We find that under realistic laboratory conditions the
quantum uncertainty in position is several orders of magnitude smaller
the classical width of the soliton. This result suggests that the reliabil-
ity of photonic devices based on spatial solitons is not compromised by
quantum fluctuations.
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1. Introduction

Spatial solitons are beams of light that propagate with a constant transverse dimen-
sions as the result of an exact balance between diffraction and self focusing effects [1].
The possibility of such an occurrence was recognized in some of the very early stud-
ies of nonlinear optical phenomena [2,3], and the relation between spatial solitons and
temporal solitons was elucidated by Zakharov and Shabat [4]. Although the balance be-
tween diffraction and self focusing can occur in either one or two transverse dimensions,
the equilibrium condition is unstable in the two-dimensional case for a material with a
purely third order nonlinear susceptibility [5,6]. Spatial solitons, however, are predicted
to be stable and have been observed experimentally in one transverse dimension [7-9],
as occurs for instance in the case of propagation through a planar waveguide.

Numerous technological applications based on the properties of spatial solitons
have been proposed, including optical interconnects [10], optical logic gates [11], and
other optical switching devices. The operational integrity of any such device requires
that the spatial jitter in the position of the spatial soliton be held to a minimum. In
the present paper, we describe a theoretical investigation of the influence of quantum
noise on the propagation of spatial solitons, and in particular derive expressions that
allow us to determine the uncertainty in the position of a spatial soliton after propa-
gating through a nonlinear optical medium. As described below, we find that quantum
fluctuations can lead to a small but measurable uncertainty in the soliton position. We
earlier studied the influence of quantum fluctuations on the initiation of the filamenta-
tion process [12].

There is a considerable body of prior work involving the influence of quantum
noise on the properties of temporal solitons. Much of this work was motivated by issues
associated with the reliability of optical fiber telecommunications systems. For instance,
Gordon and Haus [13] have considered the influence of noise associated with the am-
plification of solitons signal trains in a long-distance telecommunications system. The
influence of quantum fluctuations on propagation of solitons through a passive optical
fiber system has also been considered, for instance by Drummond and co-workers [14]
and by Haus and co-workers [15,16]. The calculation presented in the present paper fol-
lows much of the same methodology as that used by Haus and Lai [16] in their treatment
of temporal solitons. Our work differs from theirs in that we use the formalism to treat
spatial rather than temporal solitons. In addition, we are particularly interested in de-
termining the uncertainty in the transverse soliton position, whereas Haus and Lai used
their formalism to treat quadrature squeezing in the transmitted soliton. In addition,
we establish some mathematical relations such as the definition of the adjoint operation
in the context of the present problem (Appendix A) and we establish the sense in which
soliton propagation can be described by the same equations as the quantum mechanical
treatment of a free particle (Appendix B).

2. Theoretical Formulation

Our theoretical development starts with the nonlinear Schrodinger equation with vari-
ation in one transverse spatial dimension

2ik
∂

∂z
A+

∂2

∂x2
A+ 2k2

n̄2

n0
|A|2A = 0 , (1)

where the amplitude A is defined according to the convention

E(r, t) =
1

2
x̂ [A(x, z) exp (iβ0z − iω0t) + c.c.] . (2)
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We make the change of variables

X ≡
√
2 kx Z ≡ kz c ≡ −1/2

Φ(+) ≡
A√
n0/n̄2

Φ(−) ≡
(
Φ(+)

)∗
≡

A∗√
n0/n̄2

where n̄2 = (n0c/4π)n2 where n2 is the usual nonlinear refractive index defined such
that ∆n = n2I. We then find that the nonlinear Schrodinger equation (for the positive
frequency part of the field) takes the standard [16] normalized form [17]

i
∂

∂Z
Φ(+) +

∂2

∂X2
Φ(+) − 2c

∣∣∣Φ(+)
∣∣∣2Φ(+) = 0 . (3)

The fundamental soliton solution to this equation is given by

Φ
(+)
0 (X,Z) =

N0|c|1/2

2
exp

[
i
N20 |c|

2

4
Z − ip20Z + ip0(X −X0) + iθ0

]

sech

[
N0|c|

2
(X −X0 − 2p0Z)

]
, (4)

where the quantity

N0 =

∫ ∣∣∣Φ(+)(X,Z)
∣∣∣2 dX

represents the soliton intensity profile integrated over the transverse spatial dimension
X , θ0 is the soliton phase, p0 is the transverse soliton momentum, andX0 is the position
of the soliton center.

Let us next consider how the spatial evolution of this soliton solution is influ-
enced by small perturbations in the solitons parameters. To do so, we represent the field
amplitude as the sum of the fundamental soliton solution and a small perturbation Ψ̂(+)

which we treat quantum mechanically:

Φ̂(+)(X,Z) = Φ(+)(X,Z) + Ψ̂(+)(X,Z) . (5)

We also introduce the negative frequency part of the field operators

Ψ̂(−)(X,Z) = Ψ̂(+)(X,Z)† , Φ̂(−)(X,Z) = Φ̂(+)(X,Z)† ,

etc. The perturbation is assumed to obey the quantum mechanical commutation relation

[
Ψ̂(+)(X ′, Z), Ψ̂(−)(X,Z)

]
= Sδ(X −X ′) S =

h̄ck20n2

2∆t Ly
. (6)

where ∆t is the response time of the nonlinear response and Ly is the thickness of
the slab waveguide that confines the radiation in the y direction. The form of the
coefficient S is obtained by requiring that the total electric field obey the standard
field commutation relation and then reducing the problem to one transverse dimension
and one frequency component, under the assumptions that the spectrum is essentially
uniform over the frequency interval 1/∆t and that the field amplitude is essentially
constant over the thickness Ly of the waveguide. By substituting expression (5) into the
nonlinear Schrodinger equation (1) and linearizing in the perturbation, the evolution
equation for the perturbation

i
∂

∂Z
Ψ̂(+) +

∂2

∂X2
Ψ̂(+) + 4|c|

∣∣∣Φ(+)0
∣∣∣2 Ψ̂(+) + 2|c|(Φ(+)0

)2
Ψ̂(−) = 0 (7)
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is obtained. It has been shown previously [16] that to a good approximation the pertur-
bation Ψ̂(+) can be represented as the sum of contributions resulting from fluctuations
in the four fundamental soliton degrees of freedom:

Ψ̂(+)(X,Z) =
∂Φ
(+)
0

∂N0
∆N̂

(+)
0 +

∂Φ
(+)
0

∂θ0
∆θ̂
(+)
0 +

∂Φ
(+)
0

∂p0
∆p̂
(+)
0 +

∂Φ
(+)
0

∂X0
∆X̂

(+)
0 . (8)

In writing this equation in the form shown, we have ignored the continuum contribution
to the perturbation. The derivatives which form the coefficients of the fluctuation op-
erators in this expression are also solutions of Eq. (7). These solutions can be denoted
by

Ψ
(+)
j (X,Z) =

∂Φ
(+)
0 (X,Z)

∂j0
, (9)

where j = N, θ, p and X and are given explicitly by

Ψ
(+)
N (X,Z) =

[
1

N0
+ i
N0|c|2

2
Z −

c

2
X tanh

(
N0|c|2

2
X

)]
Φ
(+)
0 (X,Z) ,

Ψ
(+)
θ (X,Z) = iΦ

(+)
0 (X,Z) ,

Ψ(+)p (X,Z) =

[
iX +N0|c|Z tanh

(
N0|c|

2
X

)]
Φ
(+)
0 (X,Z) , (10)

Ψ
(+)
X (X,Z) =

[
N0|c|

2
tanh

(
N0|c|

2
X

)]
Φ
(+)
0 (X,Z) .

Using the derivative solutions Ψ
(+)
j (X,Z) as well as their adjoints Ψ

(+)
j (X,Z)

(see Appendix A for a description of the adjoint operation in the present context), we
can now invert the expansion of the perturbation operator Ψ̂(+) to give the individual
fluctuation operators as follows :

∆N̂0 = −

∫ [
Ψ
(−)
θ (X, 0)Ψ̂

(+)(X, 0) + Ψ
(+)
θ (X, 0)Ψ̂

(−)(X, 0)
]
dX ,

∆θ̂0 =

∫ [
Ψ
(−)
N (X, 0)Ψ̂

(+)(X, 0) + Ψ
(+)
N (X, 0)Ψ̂

(−)(X, 0)
]
dX ,

∆p̂0 =
1

N0

∫ [
Ψ
(−)
X (X, 0)Ψ̂

(+)(X, 0) + Ψ
(+)
X (X, 0)Ψ̂

(−)(X, 0)
]
dX , (11)

∆X̂0 = −
1

N0

∫ [
Ψ(−)p (X, 0)Ψ̂

(+)(X, 0) + Ψ(+)p (X, 0)Ψ̂
(−)(X, 0)

]
dX .

Here

∆N̂0 = ∆N̂
(+)
0 +∆N̂

(−)
0 = ∆N̂

(+)
0 +H.c.

represents the complete (i.e. Hermitian) fluctuation operator, and ∆N̂
(+)
0 its positive

frequency part, and so on. Eqs. (11) can be verified by direct calculation making use of
Eqs. (8) and (10). Note that these are the fluctuation operators relevant to the entrance
plane to the material. Using these expressions, the following commutation relationships
involving the fluctuation operators can be calculated:

[
∆N̂0,∆θ̂0

]
= iS[

∆X̂0, N0∆p̂0

]
= iS . (12)
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These commutation relations are consistent with the view that the pair ∆N̂0 and ∆θ̂0
and the pair ∆X̂0 and N0∆p̂0 form conjugate operator pairs, and lead to uncertainty
relations between the conjugate quantities. We shall see below (Eq. (22)) that the param-
eter N0 is typically smaller than unity, with the consequence that uncertainty relation
expressed in terms of position ∆X̂0 and momentum ∆p̂0 (without the factor of N0)
predicts a quantum mechanical uncertainty increased over the single particle case by a
factor of 1/N0.

The fluctuation operators at any position Z within the interaction region can be
determined similarly. For simplicity, we consider only the case of a soliton propagating
along the Z axis, that is, we set p0 and X0 equal to zero. We then obtain the results

∆N̂(Z) = −

∫ [
Ψ
(−)
θ (X, 0) exp

(
−i
N20 |c|

2Z

4

)
Ψ̂(+)(X,Z)

+Ψ
(+)
θ (X, 0) exp

(
i
N20 |c|

2Z

4

)
Ψ̂(−)(X,Z)

]
dX ,

∆θ̂(Z) =

∫ [
Ψ
(−)
N (X, 0) exp

(
−i
N20 |c|

2Z

4

)
Ψ̂(+)(X,Z)

+Ψ
(+)
N (X, 0) exp

(
i
N20 |c|

2Z

4

)
Ψ̂(−)(X,Z)

]
dX ,

∆p̂(Z) =
1

N0

∫ [
Ψ
(−)
X (X, 0)

exp
(
−iN

2
0 |c|

2Z

4

)
Ψ̂(+)(X,Z)

+Ψ
(+)
X (X, 0) exp

(
i
N20 |c|

2Z

4

)
Ψ̂(−)(X,Z)

]
dX , (13)

∆X̂(Z) = − 1
N0

∫ [
Ψ(−)p (X, 0) exp

(
−iN

2
0 |c|

2Z

4

)
Ψ̂(+)(X,Z)

+Ψ(+)p (X, 0) exp
(
i
N20 |c|

2Z

4

)
Ψ̂(−)(X,Z)

]
dX .

We mentioned above in connection with Eqs. (12) that ∆X̂0 and N0∆p̂0 obey
quantum mechanical commutation relations. Moreover, we show in Appendix B that
the soliton position fluctuation operator ∆X̂ and momentum fluctuation operator ∆p̂
obey the equations

d

dZ
∆p̂ = 0

d

dZ
∆X̂ = 2∆p̂ , (14)

which are the quantum mechanical equations of motion for a free particle with the formal
substitution Z → t. The factor of 2 in the second of Eqs. (14) results as a consequence
of the particular conventions used in this calculation. These equations can be integrated
to express the output fluctuations in terms of the input fluctuations as follows

∆p̂(Z) = ∆p̂0

∆X̂(Z) = ∆X̂0 + 2∆p̂0Z . (15)

We can now use these results to determine the quantum mechanical uncertainty in the
position of the soliton and to determine how this uncertainty changes with propagation
distance Z. As before, we consider the case of a soliton propagating along the Z axis,
that is, we set p0 and X0 equal to zero. Then through use of Eqs. (11) we find that the
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initial uncertainties in the soliton position and momentum, that is, the uncertainties at
the entrance plane (Z = 0) are given by

〈
∆X̂20

〉
=
π2S

3N30 |c|
2

(16)

and

〈
∆p̂20
〉
=
N0|c|2S

12
. (17)

We can then use the result of the second of the Eqs. (15), to find that the uncertainty
at some arbitrary point Z in the material is given by

〈
∆X2(Z)

〉
=
π2S

3N30 |c|
2
+
N0|c|2S

3
Z2 . (18)

We next express these results in terms of physical, i.e. non normalized units.
To do so, we first note that the fundamental soliton solution to the non-normalized
equation (1) for the propagation of a spatial soliton of width w along the z axis is

A(z) = Apeak sech
( x
w

)
exp
(
i
z

2kw2

)
(19)

where

Apeak =
1

kw

√
n0

2n̄2
. (20)

Note that the maximum change in refractive index

∆n =
1

2
n̄2A

2
peak

is given by

∆n =
n0

2k2w2
. (21)

By comparison of Eq. (19) with Eq. (4), with p0, X0, and θ0 set equal to zero, we find
that the parameter N0 of the normalized solution is given by

N0 =
2

kw
. (22)

Through use of Eqs. (18) through (22), and the variable change used in writing Eq.
(3), we finally find that the mean squared position uncertainty in physical units can be
expressed as

〈
∆x2(z)

〉
=
π2S(kw)w2

12
+

S

12(kw)
z2 . (23)

3. Discussion and Conclusions

Eq. (23) presents the primary result of the present calculation. We recall that this
calculation is based on a linearization assumption, and thus strictly speaking its limits
of validity require that the second term on the right hand side of this equation be much
smaller than the first. Thus Eq. (23) is accurate for propagation distances that satisfy
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the inequality z << πkw2/2. For any value of z that satisfies this condition, including
z = 0, the uncertainty in position is dominated by the first term. Under these conditions,
the fractional uncertainty in soliton position will be given approximately as

(∆x)rms
w

≈

√
π2

12
S kw .

We can evaluate this expression under typical laboratory conditions. We asssume that
that k0 = 1.3× 105cm−1, corresponding to a wavelength of 0.5 µm, and that w and Ly
are both of the order of 50 µm. Material parameters enter into the calculation as the
ratio n2/∆t. This ratio tends to be nearly constant for most nonlinear optical materials,
because materials that display a large nonlinear respone tend to be slow. One of the
largest values of this ratio occurs for the conjugated polymers, for which n2 can be as
large as 3 ×10−12cm2/W and for which the response time ∆t is believed to be as short
as 10 fs. We then find that (∆x)rms/w ≈ 10−3, which is at best barely measurable in the
laboratory. Of course, the predicted fractional uncertainty in soliton position would be
larger if calculated for a material with a larger value of n2/∆t. Note also that Eq. (23), if
extrapolated to values of z outside of its demonstrated limits of validity, predicts a linear
increase in the fractional uncertainly in soliton position with increasing propagation
distance z. It is not clear at present what the accurately predicted uncertainty would
be under these conditions.

In summary, we have presented an analysis of the influence of quantum mechan-
ical zero-point fluctuations on the propagation of spatial solitons, and have found that
these fluctuations can lead to an uncertainty in the transverse position of the soliton.
For most realistic conditions with currently available materials, this predicted fractional
uncertainty is at best one part in 103 and consequently is barely experimentally observ-
able. However, the fractional uncertainty could be considerabley larger through use of
materials with a larger nonlinear respponse or under conditions that lie outside of the
validity of the present theory. These larger fractional encertainties in soliton position
could have considerable importance for the construction of optical switching devices
that rely on the properties of spatial solitons.
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Appendix A

In this appendix, we present a discussion of the concept of the adjoint to the classical
solution of the linearized propagation equation (7). First, we note that any two classical

solutions Ψ
(+)
1 (X,Z) and Ψ

(+)
2 (X,Z) to Eq. (7) must obey the equations

i
∂Ψ
(+)
1

∂Z
= −LΨ(+)1 − 2c

(
Φ
(+)
0

)2
Ψ
(−)
1

i
∂Ψ
(+)
2

∂Z
= −LΨ(+)2 − 2c

(
Φ
(+)
0

)2
Ψ
(−)
2 (24)

where the operation L is defined as

L ≡
∂2

∂X2
+ 4c

∣∣∣Φ(+)0
∣∣∣2 .
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By combining the first equation (24) with the complex conjugate of the second, the
following relation can be deduced by direct computation:

i

∫ ∂ (Ψ(+)1 Ψ(−)2
)

∂Z
dX =

∫ [
−Ψ(−)2 LΨ

(+)
1 +Ψ

(+)
1 LΨ

(−)
2 − 2c

(
Φ
(+)
0

)2
Ψ
(−)
1 Ψ

(−)
2

+2c∗
(
Φ
(−)
0

)2
Ψ
(+)
2 Ψ

(+)
1

]
dX . (25)

We can simplify this equation to give

i
∂

∂Z

∫ (
Ψ
(+)
1 Ψ

(−)
2

)
dX =

∫ [
−2c
(
Φ
(+)
0

)2
Ψ
(−)
1 Ψ

(−)
2

+2c∗
(
Φ
(−)
0

)2
Ψ
(+)
2 Ψ

(+)
1

]
dX . (26)

In this form, it is clear that the addition of this equation with its complex conjugate
gives zero, that is,

∂

∂Z

[∫
Ψ
(+)
1

(
iΨ
(−)
2

)
dX + c.c.

]
= 0 . (27)

If we now define the adjoint of Ψ
(+)
i by the relation

Ψ
(+)
i (X,Z) = iΨ

(+)
i (X,Z) , (28)

we find that Eq. (27) can be rewritten as

∂

∂Z

[∫ (
Ψ
(+)
2 (X,Z)Ψ

(−)
2 (X,Z)

)
dX + c.c.

]
= 0 . (29)

This result shows that in the context of the present problem Ψ
(+)
i may be considered to

be the adjoint of Ψ
(+)
i because it expresses the fact that the inner product of two quan-

tities remains invariant upon propagation. This of course is not the usual definition of
the adjoint operation. The adjoint is usually defined within the context of an eigenvalue

problem. In such a circumstance, the functions Ψ
(+)
1 (X,Z) and Ψ

(+)
2 (X,Z) would have

the form

Ψ
(+)
i (X,Z) = fi(X) exp (−iEiZ) (30)

where fi(X) is the eigenfunction and Ei is the eigenvalue. If this form is substituted
into Eq. (29) we find that the equation is satisfied for E1 6= E2 if∫

f1(X)f
∗
2 (X) dX = 0 , (31)

which is the usual definition of the adjoint operation.

Appendix B

In this appendix we prove the basic relations (14) which show that the propagation of a
spatial soliton can be described in terms of the quantum mechanical equations of motion
of a free particle. Through use of the third of Eqs. (13) and the last of the definitions

(10) for Ψ
(+)
X (X,Z) , we find that ∆p̂(Z) can be written as

∆p̂(Z) =
1

N0

∫
Ψ
(+)
X (X,Z)

∗ Ψ̂(+)(X,Z) dX (32)
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We note that the integrals appearing in this equation are of the form of those appearing
in Eq. (29) and therefore that

d

dZ
∆p̂(Z) = 0 . (33)

We next consider the evolution of ∆X̂(Z) as defined by last of Eqs. (13). Through use
of Eqs. (10) and (28) we find that

Ψ(+)p (X,Z)
∗ exp

(
−i
N20 |c|

2Z

4

)
= Ψ(+)p (X,Z)

∗ − 2ZΨ(+)X (X,Z)
∗ (34)

and thus that ∆X̂(Z) can be written as

∆X̂(Z) = −
1

N0

∫
Ψ(+)p (X,Z)

∗ Ψ̂(+)(X,Z) dX + c.c.

+2Z
1

N0

∫
Ψ
(+)
X (X,Z)

∗ Ψ̂(+)(X,Z) dX + c.c. . (35)

Through use of (29) this equation can be rewritten as

d

dZ
∆X̂(Z) =

2

N0

∫
Ψ
(+)
X (X,Z)

∗ Ψ̂(+)(X,Z) dX +H.c. = 2∆p̂(Z) (36)

where we have used the definition (32). Note the key role played by the result (29),
which is a property of any two solutions of Eqs. (24).
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