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The optical properties of nanoscale composite materials are often quite different from the
properties of the constituent materials from which the composite is constructed. The
formation of composite materials thus constitutes a means for engineering new materials
with desired optical properties. In this paper we review theories and models that have been
devised for relating the linear and nonlinear optical properties of composite materials to
those of the constituent materials and to the morphology of the composite structure, and we
review experimental studies aimed at validating these models. Morphologies that are
explicitly discussed include those of Maxwell Garnett and of Bruggeman, layered structures,
and fractal structures.

1. Introduction

The optical properties of composite materials comprise
an interesting field of study, since these properties may
differ significantly from those of the constituents. Due
to this fact it is conceivable that one may actually design
materials with properties meeting a set of desirable
conditions. To achieve this goal, two requirements must
be met: suitable constituent materials must be found
and characterized and relationships predicting the
effective optical parameters of a composite must be
determined. The former problem is being actively
addressed by materials scientists, especially in the areas
of polymers and semiconductors. It is the latter problem
that will be addressed in this article.
Before beginning the discussions about the various

models of composites, we must define what is meant by
the term “composite”. Obviously, there are a number
of possibilities. For this article we will confine ourselves
to this one: a composite is any material which is formed
from two or more different constituents with the fol-
lowing size constraint. Each constituent is present in
the whole in grains large enough that it may be
described by its bulk optical properties. At the same
time the typical grain dimensions and spacings must
be much smaller than an optical wavelength so that the
composite may be described by effective optical param-
eters which are related to the constituent parameters.
An example of such a composite is stained glass, i.e.,

glass doped with small metal particles. The dimensions
of the particles are typically on the order of hundreds
of angstroms, which is much smaller than optical
wavelengths. (On the other hand, some stained glasses
have such small dopings of the metal that the spacing
between particles may be comparable to a wavelength.
These glasses may not be well described by effective
medium theory.) It is obvious that such composites
have significantly different properties than their con-
stituents. The glass is nonabsorbing throughout the
visible spectrum, the metal is highly absorbing and
reflective throughout the same range, but the composite
displays a resonance absorption peak within the visible,
which gives the glass its characteristic coloring. In an

effort to explain this phenomenon, Maxwell Garnett1
developed one of the earliest effective medium theories.
His efforts, which will be described in detail later in this
paper, were very successful; the effective dielectric
constant he derived accurately predicted the location of
the resonance in the visible part of the spectrum.
The task of determining the effective linear and

nonlinear optical constants of a composite may be
performed either theoretically or empirically. Theoreti-
cal analyses are in general difficult to perform with
solutions possible only in certain special cases. For
those composite geometries which lend themselves to
analytic solutions, it then becomes an easier problem
to tailor materials; the constituent parameters neces-
sary to achieve the desired composite parameters be-
come well-known. However, it may still be a difficult
problem finding materials with these characteristics and
combining them in the necessary manner.
The aim of this paper is to review the work that has

been performed on composite materials, with an em-
phasis on the determination of their optical properties.
The manufacture of the composites will not be consid-
ered, although many of the references cited herein do
give some details regarding these processes.
Before considering specific composite geometries, it

is informative to ask the question, How much can we
determine theoretically about such composites without
knowledge of the underlying geometry? The answer is
that it is not possible to predict the effective medium
parameters, but it is possible to determine upper and
lower limits on the effective linear dielectric constant.
This was shown by Brown,2 who considered the problem
of a two-constituent composite using a statistical ap-
proach. He derived an integral equation for the mac-
roscopic polarization of the composite and then used
successive Born approximations to determine the effec-
tive dielectric constant. The first two terms in his
expression were independent of the geometry of the
composite, but all subsequent terms required knowledge
of the mesoscopic structure.
So how restrictive a set of limits may be found?

Obviously, the value of the effective dielectric constant
must fall between the maximum and minimum values
of the dielectric constants of the constituents. It isX Abstract published in Advance ACS Abstracts, July 15, 1996.
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possible to do better than this. The most well-known
limits are the Wiener limits3 derived for composites
whose constituents have purely real dielectric constants:

An intuitive explanation of these limits may be garnered
from the analogous problem of determining the effective
electrical conductivity of a composite. The expression
for the Wiener limits is identical, with the dielectric
constant ε replaced by the conductivity σ. In this case
one can picture the composite as a network of conductors
connected in series and parallel. The maximum con-
ductivity achievable occurs when all of the elements in
the network are connected in parallel; the minimum
conductivity achievable occurs when all of the elements
are connected in series. The effective conductivity will
fall somewhere between these bounds, which are exactly
the Wiener limits.
It is possible to determine more restrictive limits than

the Wiener limits. Hashin and Shtrikman4 explored the
problem, using only the assumptions that the composite
is macroscopically homogeneous and isotropic. Using
a variational approach, they determined the most
restrictive limits that can be found under these simple
assumptions. For a two-constituent composite their
result is

where

and f1 and f2 are the volume fill fractions of constituents
1 and 2, respectively, and it is assumed that ε1 < ε2.
Bergman5 pointed out that there is a way to find more

restrictive limits without knowing the actual composite
microstructure. If some macroscopic parameter other
than the dielectric constant is known for the composite,
it gives us information about the geometry of the
composite. Thus it is possible to use this information
in the variational analysis to derive even tighter bounds.
These results, while interesting, do not provide a

complete solution to the problem at hand. We wish to
know the values of the effective medium parameters.
Thus we must consider specific composite geometries.
In the next section we discuss the Maxwell Garnett
geometry and some of its modifications. In subsequent
sections we discuss the Bruggeman geometry (randomly
interspersed media), the layered geometry, and fractal
structures.

2. Maxwell Garnett Geometry Composites

The composite geometry most often considered both
theoretically and experimentally consists of inclusion
particles randomly dispersed in a host material (see
Figure 1). This composite was considered by Maxwell
Garnett,1 who attempted to explain the linear optical
properties of metal-doped glasses. His model assumed
that the inclusion particles were spherical and uniform
in size. Under the assumption that the inclusion radius
was much smaller than the typical spacing between

inclusions, which in turn was much smaller than an
optical wavelength, an effective dielectric constant could
be determined for the composite. Observing that a
metal sphere in the presence of an oscillating electric
field emits radiation as if it were an electric dipole,
Maxwell Garnett replaced the spheres in the model by
the equivalent point dipoles, i.e., he ignored their finite
size. If p represents the average dipole moment of an
inclusion andN represents the number of inclusions per
unit volume, then the total polarization of the medium
(normalized by the dielectric constant of the host) is
given by

The average dipole moment is given by

where a is the inclusion radius and Eloc is the local field
experienced by the inclusion. For sparse, randomly
distributed dipoles the local field is given by the Lorenz
relation:

Simple algebra yields the composite polarization and
thus the effective dielectric constant:

Here f represents the volume fill fraction of the inclusion
particles.
This expression displays an important feature: for

metal inclusion particles, which have a negative real
part of the dielectric constant, the real part of the
denominator of â may go to zero, implying the existence
of a resonance. Maxwell Garnett compared this reso-
nance with the observed colors of several metal-doped
glasses. For the samples which met his model criteria,
the agreement between the theory and experimental
observations was very good. (Several samples had fill
fractions so small that the assumption that the inter-
particle spacing was much smaller than an optical
wavelength was violated. For these samples there was
still some agreement with the theory, but not as good;
they are more accurately described as a collection of
scatterers than as an effective medium.) From this
work we get an indication that effective medium theory
can yield accurate predictions for composite materials.
Note also that, although Maxwell Garnett considered
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Figure 1. Maxwell Garnett composite geometry.
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only metallic inclusion particles, the derivation is valid
in general, i.e., the constituents may be pure dielectrics
as well.
Another important concept evident in the above

derivation is that of local fields; the electric field driving
the polarization of an inclusion particle is not the same
as the macroscopic electric field appearing in Maxwell’s
equations. Instead it is a local field whose value
depends on the polarization of the surrounding medium
as well as the applied field. This redistribution of the
field between the constituents is the reason that the
optical constants of the effective medium are not simply
the weighted averages of those of the constituents.
Local-field effects play a role in each of the composite
geometries to be considered. Their role is even more
significant in the nonlinear effective medium theories,
since the local-field correction factor appears multiple
times in expressions for the nonlinear susceptibilities.
(Note: throughout this work, we assume that the
nonlinear response of the materials is due to effects
which are spatially localized, e.g., due to electronic or
molecular orientation effects, so that local fields are
important. Thermal nonlinearities are ruled out due
to their spatially nonlocal nature.)
The Maxwell Garnett geometry may be generalized

by allowing the particles to be nonspherical. Analytic
solutions are possible if the inclusions are ellipsoidal
(all having the same shape). While numerous orienta-
tional correlations between inclusion particles are pos-
sible, usually only two extremes are considered: either
the inclusions are all oriented the same way or they are
randomly oriented. The effective media for these two
possibilities are significantly different. For oriented
ellipsoids, the composite is anisotropic. Cohen et al.6
have modified the Maxwell Garnett derivation by
including shape factors describing the ellipsoids and by
using an ellipsoidal cavity in determining the local field.
The result of their calculation is given by

where L is the shape factor. To test their theory, Cohen
et al. formed composites by sputtering silica and either
silver or gold onto quartz substrates. The composition
of the composites formed in this manner varied continu-
ously along the length of the substrate; near the metal
target the composite was mostly metallic, whereas near
the silica target the composite was mostly silica. For
their measurements, they used a thin slit to select
various portions of the sample with nearly uniform
compositions, but differing fill fractions. By comparing
the absorption peak wavelength of the samples versus
the volume fill fraction of the metal, they found that
the shape of the inclusion particles changed with
changing fill fraction. They also verified this fact by
electron microscopy. In addition, they found good
qualitative agreement between theory and experiment
regarding the absorption spectra for various fill frac-
tions.
For randomly oriented ellipsoids the effective medium

is isotropic. In this case the result for the linear
medium is analogous to the spherical inclusion particle
model; however, the shape of the inclusions may have
some effect. This difference is significant only when the
shape of the particles approaches either extreme (needles

or plates) and the difference between the dielectric
constants of the two constituents is large.
The Maxwell Garnett model may be extended to the

regime of nonlinear optics. This presents two possibly
interesting effects. First the local fields play a much
more important role in nonlinear effects; the local-field
correction factor, which appears in linear optics to the
first power, appears in the third-order susceptibility to
the fourth power. Second the resonance appearing in
the linear dielectric constant provides the possibility of
resonant enhancement of the nonlinearity of the com-
posites. Three different cases must be considered:
nonlinear inclusion particles in a linear host, linear
inclusion particles in a nonlinear host, and nonlinear
inclusion particles in a nonlinear host.
It is rather surprising, considering the age of the

Maxwell Garnett theory, that no nonlinear version was
developed until the 1980s. The first work done was that
by Ricard et al.,7 who determined the third-order
susceptibility of metal colloids in water. Taking the
Maxwell Garnett result to lowest order in the fill
fraction:

a Taylor expansion with respect to a small change in
the inclusion dielectric constant was performed:

The change in the inclusion dielectric constant was
assumed to be due to a third-order nonlinearity:

where Eloc is the local-field experienced by the particle.
Using the electrostatic electric field experienced by a
single sphere in the host material as the local-field, they
arrived at the expression

Note that the local-field correction factor does indeed
appear to fourth power in this expression and that it
displays the same resonance condition, so the possibility
of strong resonant enhancement of ø(3) exists. Ricard
et al. set out to verify this theory by forming composites
of silver or gold colloids in water and measuring ø(3) by
degenerate four-wave mixing (DFWM). They selected
their wavelengths based on the resonance conditions for
the two metals: 532 nm for gold and 396 nm for silver.
In both cases they found phase conjugate reflectivities
several thousand times stronger on resonance than off
resonance. This ratio is consistent with theoretical
predictions, which estimate a ratio of the on-resonance
to off-resonance reflectivities due to the metal particles
on the order of 1010 for gold and 106 for silver. The
smaller measured ratio may be attributed to the ad-
ditional nonlinear contributions from the host material
and the glass windows of the cell.
In subsequent papers Hache et al.8,9 considered three

possible origins of the nonlinearity of the metal par-
ticles: intraband, interband, and hot-electron contribu-
tions. The intraband model considered the nonlinearity
due to electron transitions within a single conduction
band. It was found that for this case ø(3) is negative
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imaginary and scales as the inverse of the particle
radius cubed.8 The interband model considered the
nonlinearity due to electron transitions from the d band
to the s conduction band. For this case ø(3) is negative
imaginary and independent of size.9 The hot-electron
model considered the nonlinearity due to nonequilib-
rium heating of the conduction band electrons. For this
case ø(3) is positive imaginary and independent of size.
The corresponding experiments on gold colloids ranging
in size from 28 to 300 Å found little or no size
dependence for the nonlinearity. In addition, all of the
tensor components of ø(3) were positive imaginary,
except for øxyxy

(3) . Thus the hot-electron contribution
was dominant, except for the one-tensor component for
which it vanishes. In this term the interband contribu-
tion dominated.
Three other theoretical formulations of Maxwell Gar-

nett geometry nonlinear composites have been proposed.
Agarwal and Dutta Gupta10 used a T matrix approach
to arrive at a general relationship for ø(3) (and ø(5) as
well) and then determined the forms of the matrices for
the case of spherical inclusion particles. Their theory
is scalar in nature, i.e. it ignores the tensor nature of
ø(3). The relationship they arrive at is subtly different
than that of Ricard et al. in that the local-field correction
factor contains the term εeff + 2εh rather than the term
3εh. The equation of Agarwal and Dutta Gupta is the
more accurate one; the expression of Ricard et al. used
the low fill fraction approximate equation for the
Maxwell Garnett model and approximated the local-field
by the single-particle field, ignoring the effects of the
other particles on the surrounding linear dielectric
constant. However the difference between the two
expressions is very small in the low fill fraction limit.
For metal colloid composites the fill fraction is typically
on the order of 10-6, for which case the effective
dielectric constant is very nearly equal to that of the
host material.
Sipe and Boyd11 have also developed an effective

nonlinear medium theory based on the Maxwell Garnett
geometry. Their theory is a fully tensor one which
considers the possibility of a nonlinear host as well as
nonlinear inclusions. The goal of their work was to
determine if enhancement of ø(3) is possible through the
local-field correction factors, even if both constituents
are purely dielectric, so no plasma resonance is possible.
For the case of nonlinear inclusions in a linear host they
found that no enhancement is possible; the relative
effective nonlinearity increases monotonically with in-
creasing fill fraction but never goes above unity (see
Figure 2a). For the case of linear inclusion particles in
a nonlinear host they found that enhancement is pos-
sible when the inclusions have a much larger linear
index of refraction than the host (see Figure 2b). In this
case the dipole field of the inclusions forces the electric
field to concentrate in the host, greatly increasing the
local-field there. Their results show the relative effec-
tive nonlinearity starting at unity at zero fill fraction
and increasing monotonically with increasing fill frac-
tion. Thus the larger the fill fraction becomes, the
greater the enhancement achieved. This prediction has
not yet been tested experimentally, due to the necessity
of achieving very large fill fractions, a difficult materials
problem. Note that the theory of Sipe and Boyd also
covers the case in which both constituents are nonlin-
ear: the result is simply the sum of the results for the

two cases of one linear and one nonlinear constituent.
Finally, Stroud and Hui12 used the concept that the

energy dissipated in the composite must be the same
as that dissipated by a medium with the same effective
dielectric constant to derive an integral expression for
the effective medium. They used the low fill fraction
approximation in the Maxwell Garnett geometry to
arrive at the same relation as Ricard et al.7 In a
subsequent paper, Zeng et al.13 assumed that the
electric field was uniform in the nonlinear constituent
and performed a Taylor expansion of the linear effective
dielectric constant with respect to a perturbation in the
value of the constituent dielectric constant. In this case
for the Maxwell Garnett geometry they arrived at the
more accurate answer for the effective nonlinearity
when the inclusions are nonlinear; for a nonlinear host
they have a prediction, although it must be recognized
that the nonuniform electric field in the host violates
their assumptions.
Numerous experiments have been performed on this

geometry composite, primarily on metal particles in
various hosts. The work of Ricard et al.7 and Hache et
al.9 has already been mentioned. Two points not stated
were that they also measured the response time and
found it was faster than the laser pulses (∼5 ps), so the
nonlinearity was electronic in origin. Also they com-
mented on the figure of merit of such composites; since
optical loss adversely affects the nonlinear interaction,
it is not sufficient to consider only ø(3). A typical figure
of merit for third-order nonlinearities is given by

where R is the linear absorption coefficient and τ is the
response time. It can be seen that even though a metal

Figure 2. Theoretically predicted, effective nonlinearity of a
Maxwell Garnett geometry composite versus the inclusion
particle fill fraction. (a, top) Nonlinear inclusion particles in a
linear host material. (b, bottom) Linear inclusion particles in
a nonlinear host material. [From ref 11.]

F ) ø(3)/Rτ (14)
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particle composite has an enhanced value of ø(3) near
resonance, the improvement of the figure of merit is not
as large, since the linear absorption also increases
sharply near resonance.
Bloemer et al.14 measured the nonlinearity of gold

colloids in water. Using four different inclusion sizes
(4.6, 10.9, 15.6, 32.7 nm) they found that ø(3) is only
slightly size dependent, so the hot-electron contribution
is most probably dominant. They also compared with
theory the shift and broadening of the resonance with
increasing inclusion particle size. In some cases they
found good agreement, while in others they found
significant disagreement. They suggested that probable
causes include nonspherical inclusion particle, lattice
defects within the inclusions, and contributions from the
host matrix. In another experiment Bloemer et al.15
made of composite of gold in gelatin. They were able
to form waveguides and measure ø(3) by DFWM. They
saw no evidence of saturation effects and found fair
agreement between a full waveguide based theory and
their experiment. La Peruta et al.16 were also able to
form composites of silver particles in a polymer into
waveguides. They measured ø(3) on resonance, finding
the expected resonant enhancement. Uchida et al.17
formed composites consisting of copper or silver doped
into glass hosts and found that ø(3) and R peak at the
same wavelength and that their ratio is approximately
constant as a function of fill fraction. (Thus, increasing
the volume fraction of the metal to increase the non-
linear response will not improve the material perfor-
mance, since the figure of merit remains constant.)
They also found evidence of two response times: the
faster one (∼12 ps) was attributed to the electronic
response, while the slower one (∼200 ps) was attributed
to thermal effects.
The group including Magruder, Haglund, Yang, and

several others have performed a number of experiments
on composites formed by ion implantation of metals into
glass.18-24 The composites formed in this manner are
thin layers (∼150 nm) at the surface of the glass. In
one experiment on copper-doped glasses19 they used
forward DFWM to determine the xyxy component of ø(3)
(eliminating the possibility of either thermal or hot-
electron contributions). They found a particle size
dependence to ø(3) that went nearly as the inverse of the
radius cubed, implying that the intraband contribution
was important for these composites. This result is
different from that of Hache et al.,9 who found that the
hot-electron contribution dominated for gold particles.
This may be explained by noting that the intraband and
interband terms are wavelength dependent, so the
quantum size enhancement may hold at one wave-
length, but not another. In another experiment Magrud-
er et al.20 doped both silver and copper into glass and
found evidence that the two metals interact and that
the silver enhances the response of the copper near
resonance (see Figure 3 and Table 1).
Numerous theories and experiments have also ad-

dressed composites consisting of semiconductor nano-
crystallite inclusions dispersed in a host. In determin-
ing the linear optical absorption of such particles Efros
and Efros25 divided the problem into three regimes
based on the radius of the crystallites, a, versus the
Bohr radii of the electrons and holes, ae and ah. In the
strong confinement regime (a , ae and a , ah) the
absorption spectrum was determined to be discrete lines

which were blue-shifted with respect to the bulk band-
gap wavelength. The magnitude of the shift was
influenced by the electron mass. In the intermediate
confinement regime (ah < a < ae) this same blue-shift
was found. In the weak confinement regime (ah , a
and ae , a) an energy shift was also present, but it was
determined by the total exciton mass.
The first measurement of the nonlinear susceptibility

of a semiconductor nanocrystallite composite was per-
formed by Jain and Lind.26 Using standard Corning
and Schott glass filters, which were glasses doped with
CdSSe particles, they made DFWM measurements to
determine the magnitude of ø(3) and the response time.
Their results showed large nonlinearities (∼10-8 esu)
and subnanosecond recovery times. This work encour-
aged many groups to perform measurements on similar
samples.27-40 Enhanced nonlinearity due to quantum
confinement,37 femtosecond response times,35 saturable
absorption,31 nonlinear susceptibilities around 10-4 at
low temperatures,33 and alteration of saturation inten-
sity with crystal size38 all have been observed. We will
not go into the details of these works, since, as Ricard
et al.36 pointed out, the local-field effects (and thus the
composite nature of these materials) play almost no role
in the optical properties due to the low fill fractions and
lack of resonance effects. The interested reader is
referred to the references already cited as well as the
review papers by Brus,41 Reisfeld,42 and Alivisatos.43
Modifications of the Maxwell Garnett geometry may

also be considered in the nonlinear regime. For the case
of ellipsoidal inclusions Haus et al.44 have performed a
theoretical calculation of the effective third-order non-
linearity. Using a self-consistency approach, they found
analytic expressions for effective nonlinearity for sphe-
roidal inclusion particles which were either completely
oriented or randomly oriented. For the completely
oriented particles they found that, even though the
constituent nonlinearities were assumed to be third-

Figure 3. Optical density of copper and silver co-doped into
silica glass. The presence of the silver affects the absorption
at the copper particle resonance. [From ref 20.]

Table 1. Linear and Nonlinear Optical Coefficients
Measured at 570 nma

sample R (cm-1) n2 (cm2/W) â (cm/W)

9Ag to 3Cu 5.9 × 104 1.0 × 10-9 3.8 × 10-5

6Ag to 6Cu 5.4 × 104 1.3 × 10-9 -0.9 × 10-5

3Ag to 9Cu 4.6 × 104 1.6 × 10-9 -1.4 × 10-5

a R, absorption coefficient; n2, index of refraction; â, two-photo
absorption coefficient.
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order, the composite had nonlinearity to all orders and
bistability was possible. In another paper Haus et al.45
investigated the behavior of such spheroidal composites.
They found that the position of the resonance can be
controlled by the particle shape and that ø(3) displays
two resonances, even if the particles are randomly
oriented. They performed DFWM experiments on gold-
doped glass composites (Schott RG6 filter) and found
two indications of spheroidal particles. First, the linear
absorption peak was broader than that predicted for
spherical inclusion particles (see Figure 4a). A better
match to theory was obtained when they assumed some
spherical inclusions (17%) and some prolate spheroidal
inclusions (83%). Second, a plot of the phase conjugate
reflectivity versus wavelength displayed two peaks for
two of their samples (see Figure 4b). The paper also
considers theoretically the possibility of bistability in
these materials. They found that intrinsic bistability
is possible and the particle shape affects the turning
point.
Another modification of the basic MG geometry is to

form inclusion particles consisting of a spherical core
material surrounded by a concentric spherical shell. For
such composites it is possible to use the concentration
of the electric field in the vicinity of the core, as well as
that inside the core, for enhancement of the overall
nonlinearity. Neeves and Birnboim46,47 have analyzed
such structures and determined their effective third-
order susceptibilities for both electrostrictive and elec-
tronic contributions. Using a metallic core to strongly
increase the field in the shell (or a metallic shell to
increase the field in the core), they found it was possible
to achieve a resonant enhancement of ø(3) by a factor of
104 and a corresponding increase in the figure of merit
by a factor of between 10 and 103 (see Figure 5 and
Table 2). Thus the absorption of these composites does
not increase as rapidly as the nonlinearity near reso-
nance. In their paper utilizing numerical methods,
Zhang and Stroud48 considered particles consisting of
a gold core with an unspecified nonlinear material for
the shell. They also found that enhancements on the
order of 100 were possible. In addition, they commented
that there is an optimal shell thickness, which depends
on the parameters of the materials used. Wang and Li49
performed a similar analysis, using a Tmatrix approach
to determine the effective value of ø(3), arriving at
similar results.
Particles matching the description of this model have

been constructed by Zhou et al.50 by reducing the bonds
on the surface of a gold-sulfide particle to form a gold
coating. They measured the linear absorption proper-
ties of their samples, finding a red shift of the peak of

Figure 4. (a, top) Linear absorption of Schott RG6 filter glass.
Line 1 is the experimental data and lines 2 and 3 are the
theoretical predictions for part spherical and part spheroidal
inclusions and for all spherical inclusions. (b, bottom) Phase
conjugate reflectivity plotted as a function of wavelength for
three RG6 samples. The data display two peaks, indicating
two distinct resonance frequencies. [From ref 45.]

Table 2. Composite Model Calculations for the Electrostrictive Mechanism in a Polystyrene Compositea

model absorption

core shell medium r1/r2 λ (nm) conjugate signal øeff
(3) (esu) γ (cm-1) η (esu cm)

PS water 1.0 500b 3 × 10-6 30c 3 × 10-6

Au PS water 0.5 500 6 × 10-5 1 × 103 2 × 10-6

PS Au water 0.6 500 2 × 10-3 2 × 104 3 × 10-6

PS Au water 0.8 628 9 × 10-3 3 × 104 9 × 10-6

PS Au water 0.9 942 2 × 10-2 3 × 104 2 × 10-5

Al PS water 0.5 500b 9 × 10-5 1 × 102 3 × 10-5

PS Al water 0.92d 500 1 × 10-2 8 × 104 4 × 10-6

Al silica organic 0.5e 200 2 × 10-5 1 × 104 6 × 10-8

a 2r2 ) 100 nm, F ) 1%. For (3.7°) coarse grating τ ) 33 ms; for (176°) fine grating τ ) 50 µs. For r2 ) 100 nm, all electrostrictive
øeff
(3) are increased by 103, and both τ’s are increased by 10. b Nonresonant. c γs dominant; otherwise γm dominates γ. d Particle, 2r2 ) 50
nm. e Particle, 2r2 ) 10 nm.
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the plasmon resonance with increasing particle size, in
agreement with theoretical predictions.
Kalyaniwalla et al.51 extended the analysis to the case

of confocal ellipsoids, specifically considering the case
of a semiconductor core surrounded by a metal shell.
They used the parameters of CuCl, CdS, and GaAs for
the semiconductor material and silver for the metal and
found the existence of intrinsic bistability in such
composites, with the potential for much lower thresholds
than for composites of pure metals. They also analyzed
the propagation of a light wave through the composite.
They found that, due to the loss, a wave with sufficient
energy to induce the higher bistable field in the cores
will only do so in the first micrometer length. After this
the intensity has decreased to a point where the wave
is on the lower part of the bistable curve. Therefore
there is a limitation to the practical interaction length.
To summarize the Maxwell Garnett composites, mod-

ern theories allow one to determine the effective linear
and nonlinear susceptibilities for a composite consisting
of spherical (or ellipsoidal) inclusions randomly dis-
persed in a host material. The results display resonant
enhancement when the inclusions are metallic and the
host dielectric. In addition local-field effects may lead
to enhancement of the overall nonlinearity even off
resonance in certain special cases. These same local-
field effects may lead to intrinsic bistability in the
composites.

3. Bruggeman Geometry

The principle difficulty with the Maxwell Garnett
model is that it treats the constituents asymmetrically;
one component constitutes inclusion particles while the
other constitutes the host. Thus the model only applies

to composites in which one component occupies a small
volume fraction of the total material.
Another common composite model, often called the

effective medium theory (EMT) or the Bruggeman
theory, avoids this problem by treating the constituents
symmetrically. The model assumes that grains of two
or more materials are randomly interspersed (see Figure
6). It was first proposed and analyzed by Bruggeman52
in 1935. Since his paper is written in German, we look
to more recent analyses, e.g., those by Landauer,53
which arrive at the same result, albeit with respect to
the analogous parameter of effective conductivity, and
by Stroud.54 To analyze such a composite, one considers
a single grain within the whole. This grain will be
surrounded by grains of each type of constituent mate-
rial, including its own type. We thus make the ap-
proximation that the grain is surrounded by a material
of uniform dielectric constant given by that of the
effective medium. If we take the grain to be spherical,
we may solve for the internal electric field due to a
uniform applied field E0:

which leads to a displacement field of the form

Treating the grains of the other constituents in the same
manner, we may determine the average displacement
field of the composite by taking the weighted sum of
the fields of the individual grains:

This field is simply related to the effective dielectric
constant:

Thus we arrive at the relation for the linear effective
medium:

It is readily apparent that this formula is symmetric
with respect to the constituents. This theory will be
applicable for materials in which all components occupy
large volume fractions of the whole.
There is an important feature of composites predicted

by this model. As the volume fraction of one constituent
increases from very small values, there will come a point
at which the grains begin to join and form continuous
threads throughout the composite. At this percolation
threshold the properties of the composite (especially the
conductivity of a metal/insulator composite) may change
significantly. For a metal/insulator composite the per-

Figure 5. Electric field distribution in the vicinity of a coated
inclusion particle. The solid lines represent the field component
parallel to the applied field E0, while the dashed lines
represent the component perpendicular to E0. Note the large
field in the shell region. (a) Gold core. (b) Aluminum core.
[From ref 46.]

Figure 6. Bruggeman (interspersed) composite geometry.
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colation threshold is the point at which the conductivity
becomes nonzero, i.e., the composite appears as a metal
rather than an insulator. These changes are correctly
accounted for by the Bruggeman theory but not by the
Maxwell Garnett theory. Experimentally, the percola-
tion threshold has been detected in actual composites,
although at volume fractions slightly larger than the
theory indicates.55

Another difference between the predictions of the
Bruggeman and the Maxwell Garnett models appears
in the behavior near the surface plasmon resonance of
metal particles in a dielectric. At very low volume
fractions of the metallic constituent, the predictions of
the two models are virtually identical. However, as the
volume fraction increases, the Maxwell Garnett model
continues to predict a sharp resonance, whereas the
Bruggemanmodel predicts a broadening and weakening
of the resonance (see Figure 756). This fact has led
Sheng55 to suggest a modification which combines the
two models. For a two component composite, instead
of a grain consisting of a single material, Sheng consid-
ers a grain consisting of a core of one material with a
shell of the other material. The dimensions of the core
and shell are such that the volume fraction of each
material is the same as that in the composite as a whole.
Sheng determined the probability of a core of material
1 with a shell of material 2 and vice versa and then
proceeded with an analysis similar to that described
above. Thus the symmetric treatment of the constitu-
ents is preserved, while the use of the relative prob-
abilities of the two core/shell combinations results in
accurate predictions in the low volume fraction limit,
i.e., the dielectric anomaly is also preserved. He com-
pared the predictions to several actual composites; his
results are shown in Figure 8. We see that the model
agrees well with the data for each volume fraction.
Experimental work has called into question the valid-

ity of the Bruggemanmodel for predicting the functional
dependence of the linear effective dielectric constant on
fill fraction in metal/insulator composites. In an experi-
ment performed by Grannan et al.,57 composites of silver
particles embedded in a KCl host were manufactured
at various fill fractions below the percolation threshold
and the effective dielectric constant was measured. The
authors noted that if one used a modified form of the

fill fraction defined as

where fc is the percolation threshold, that the dielectric
constant followed the functional form:

where the exponent s was found to equal approximately
0.73. For their experiments, Grannan et al. measured
a percolation threshold of around 20%. Berthier et al.58
subsequently noted that the Bruggeman theory predicts
approximately the following form for the effective
medium:

Thus the predicted exponent is inaccurate. In this case
it is important also to note that the critical fill fraction

Figure 7. Comparison of the measured optical density of a
silver in silica glass composite containing 39% silver (crosses)
with the predictions of the Maxwell Garnett and the effective
medium theories. The Maxwell Garnett model overestimates
the strength of the resonance, while the Bruggeman model
does not predict the resonance. [From ref 56.]

Figure 8. Comparison of the modified theory by Sheng55 with
experimental data for gold/silica glass composites. (The curves
are displaced with respect to each other for the sake of clarity.)
[From ref 55.]
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quoted by Grannan et al. is significantly smaller than
that predicted by the Bruggeman theory (33.3%). This
difference demonstrates that the Bruggemanmodel does
not accurately describe these real composites. This is
not truly surprising, since the assumptions underlying
the derivation, namely, spherical grains with uniform
internal electric fields, are too strong to be realistic.
Thus the Bruggeman theory may be more useful for its
qualitative predictions and the intuition regarding
composite behavior which they provide than for quan-
titative analysis.
Theories regarding the nonlinear properties of Brugge-

man geometry composites typically use even stronger
simplifying assumptions. If one followed the derivation
of Landauer, one would need to determine the polariza-
tion of a spherical particle with one nonlinear suscep-
tibility embedded in a host with another nonlinear
susceptibility. This proves to be a difficult analysis. It
is thus necessary to simplify the problem. For example,
Zeng et al.13 assumed that the electric field is still
uniform within each grain and that the nonlinearity
represented a perturbation to the dielectric constant of
each constituent material. They thus were able to
perform a Taylor expansion of the effective dielectric
constant with respect to small changes in each of the
constituent dielectric constants. They used the local-
field from the linear field calculation to determine to
lowest order the magnitude of the perturbations. Their
result was

where the derivatives are determined from the expres-
sion for the linear effective dielectric constant:

Another approach to nonlinear EMT theories is to use
numerical methods. In two papers Zhang and Stroud48,59
compared results of numerical calculations on random
three-dimensional binary composites with the predic-
tions of the linear and nonlinear EMT. (They actually
considered the analogous property of conductivity, not
the dielectric constant.) They analyzed composites of
two different conductors at zero frequency and compos-
ites of a conductor and an insulator at finite frequencies.
Four different fill fractions were considered: 1%, 24.92%
(the percolation threshold), 50%, and 90%. In all cases
they found good quantitative agreement between simu-
lation and theory in the linear limit (see Figure 9).
However, there was not good agreement between simu-
lation and theory for the nonlinear properties (see
Figure 10). For the two conductor composites, the EMT
overestimated the enhancement of the nonlinearity of
the poor conductor by a significant amount. For the
insulator/conductor composites, plots of the nonlinear
susceptibility versus frequency show interesting fea-
tures and large enhancements in the simulations which
do not appear in the analytic theory. In their papers
Zhang and Stroud hypothesize that the differences are
due to the critical dependence of the nonlinear suscep-
tibility on the composite microstructure: there exists
the possibility of strong localized surface plasmon
resonances. To demonstrate this, in ref 59 they added

correction terms to the effective dielectric constant
consisting of weak surface plasmon resonant terms.
These terms had little impact on the linear effective
dielectric constant but significantly altered the calcu-
lated nonlinear susceptibility. In this way they were
able to produce a prediction which had qualitatively
similar enhancement peaks as the numerical simula-
tions.

4. Layered Geometry

Another common composite geometry is that of alter-
nating layers of two or more materials (see Figure 11).
Such a composite is not isotropic: the optical properties
for electric fields polarized parallel to the layers will

øeff
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Figure 9. Comparison of the predictions of the linear effective
medium theory (solid lines) and numerical simulations (circles)
for the effective electrical conductivity of a metal/insulator
composite. [From ref 48.]

Figure 10. Comparison of the predictions of the effective
medium theory (solid lines) and numerical simulations (circles)
for the effective nonlinear electrical conductivity of a metal/
insulator composite. The differences between the two results,
shown in the inset, indicate the inaccuracy of the nonlinear
effective medium theory. [From ref 59.]

Reviews Chem. Mater., Vol. 8, No. 8, 1996 1815



typically be different than those for electric fields
polarized perpendicular to the layers. Thus the com-
posite is uniaxial with its optic axis normal to the layers.
To develop an effective medium theory, one must

simply assume that each layer is much thinner than
an optical wavelength. Spatial averaging of the meso-
scopic fields to arrive at the macroscopic parameters is
straightforward due to the simplicity of the geometry.
Several analyses for the linear13,60,61 and nonlinear13,61
optical properties have been carried out. For electric
fields parallel to the layers, the field is continuous across
the boundaries, so the effective linear dielectric constant
and nonlinear susceptibilities are merely the weighted
averages of those of the constituents:

When the electric field is polarized perpendicular to the
layers more interesting effects occur. In this case the
displacement field is continuous across the boundaries,
so the electric field is nonuniformly distributed between
the layers. Thus local-field effects play a role. It has
been shown13,60,61 for the linear medium that the effec-
tive dielectric constant is given by

Expressions for the effective nonlinear susceptibilities
depend on the specific nonlinear process considered. For
the nonlinear refractive index Boyd and Sipe61 found
the following expression for ø(3):

Notice that the local-field correction factor is the ratio
of the effective linear dielectric constant to that of the
constituents. For one constituent this factor must be
larger than unity, while for the other it is less than unity
(unless it equals unity for both, the trivial case). Thus
if the constituent for which the factor is greater than
unity is the strongly nonlinear one, enhancement is
possible. Boyd and Sipe have plotted the behavior of
the effective nonlinearity versus volume fill fraction of
one constituent using the ratio of the linear dielectric
constants of the constituents as a parameter (see Figure
12). It is readily apparent that for large ratios enhance-
ment of up to an order of magnitude is obtainable. Note
that the fill fraction for maximum enhancement is
approximately 80% for the linear constituent. This
indicates the importance of the local-field factor; a
composite in which the nonlinear component constitutes

only 20% of the volume may, through local-field effects,
have a nonlinearity enhanced by a factor of nearly 10
over that of the pure nonlinear material.
Fischer et al.62 have performed experiments to verify

some of the predictions of this theory. They constructed
a composite consisting of alternating layers of titanium
dioxide and the conjugated polymer poly(p-phenyle-
nebenzobisthiazole) (PBZT) by means of spin casting.
The layer thicknesses of the TiO2 and the PBZT were
500 and 400 Å, respectively, which yielded nearly the
ideal fill fraction for enhancement given the linear
refractive indexes of the constituents. For their com-
posite the expected enhancement was 35%. The non-
linearity was measured using a z-scan setup63 with the
sample placed at various angles with respect to the
beam axis (thus achieving a component of the electric
field normal to the layers). Analysis of the data was
accomplished by determining the nonlinear phase shift
experienced by a plane wave propagating through a
uniaxial material described by the composite effective
material parameters.64 The results of their measure-
ments along with their theoretical predictions are shown
in Figure 13. It is evident that the theory, which
includes the effective medium predictions, gives a good
description of the experiment. Also note that the open

Figure 11. Layered composite geometry.
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Figure 12. Effective nonlinear refractive index of a layered
composite assuming that only constituent a is nonlinear. Note
that if the linear dielectric constants of the two constituents
differ by a factor of 4, the nonlinear response can be enhanced
by a factor of 9. [From ref 61.]

Figure 13. Measured nonlinear response of the PBZT/
titanium dioxide composite for both s- and p-polarized light
(solid circles) and of pure PBZT for p-polarized light (open
circles). The solid curves show the theoretical predictions and
the dashed curve shows the expected behavior if there was no
local field enhancement of ø(3). [From ref 62.]
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circles on the graph, which represent z-scan measure-
ments of the pure polymer, fall on the dotted line
representing the theoretical prediction for p-polarized
light falling on an isotropic material. This indicates
that the source of the enhancement is in fact the local-
field effects and not an anisotropy in the constituent.
Bergman et al.65 have considered the possibility of

bistability in such composites when one constituent is
an optically linear metal and the other constituent is
an optically nonlinear dielectric. They derived a cubic
equation for the square of the electric field inside the
dielectric and determined conditions for there to exist
three real roots. However, due to the difficulty of the
analysis they did not show which of the roots was stable.
Instead they hypothesized that only two would be stable,
i.e., bistability exists in these composites.
Levy et al.66 added a twist to such composites: they

considered the possibility of using a layered composite
as one constituent of a layered composite (see Figure
14). Using the application example of electric-field-
induced tuning of the transmission of a thin film, they
compared the efficiency of a standard two component
composite with their three-component composite. They
found that it was possible to tune between 0% and 80%
transmission and that the three-constituent composite
required a much smaller applied field to accomplish
this: on the order of 104 V/cm versus 105 V/cm.
The group of Zhou, Sheng, Chen, and Chui60,67 have

suggested using layered composites in a novel manner.
They have shown that infrared absorption peaks of an
array of rods of metal/insulator layered composites may
be tuned by adjusting the array geometry. They per-
formed their calculations in two manners: numerically
form first principles and numerically using the effective
medium parameters for the rods. Their results dem-
onstrated that as long as the rods are wide enough that
edge effects do not dominate, the effective medium
approximation gives accurate results and is far less
computationally intensive than the full first principles
analysis.

5. Fractal Structures

A different type of optical composite is formed when
one of the constituents forms fractal structures within
the whole. For example, one constituent could consist
of metal spheres which clump together forming ag-
gregates with fractal dimension. The manner in which
the clusters form will affect their fractal dimension,
which in turn affects the optical properties. The prob-
lem is thus very involved.
The potential for strong local-field effects in fractal

structures is great due to their geometry. Fractals do
not possess translational symmetry (instead they pos-
sess scale symmetry) so they cannot propagate pure
traveling waves. Thus the field excitations are localized,

which may lead to (subwavelength) regions of enhanced
absorption, etc.68

When considering the linear optical properties of
fractal composites, most of the workers are specifically
concerned with determining the scattering and absorp-
tion cross sections.68-72 One of the early analyses of this
sort was performed by Berry and Percival,69 who were
actually interested in the optical properties of smoke.
Considering fractal arrays of spherical particles, they
found that there are qualitative differences in the optical
properties for fractal dimensions less than and greater
than 2 (i.e., whether or not the fractal occupies area).
For fractal dimensions less than 2 they found that
multiple scattering is not significant and the absorption
cross section simply equals N times that of a single
sphere, whereN is the number of monomers comprising
the fractal. The scattering cross section was found to
increase with the number of monomers until the size of
the fractal becomes comparable to an optical wavelength
and saturation occurs.
Hui and Stroud70 analyzed the linear properties of

fractal composites using a three-dimensional differential
effective medium approach on self-similar clusters.
Their theory assumed knowledge of how fill fraction
changes with increase in cluster size and used Mie
theory to arrive at the composite extinction coefficient.
They found that the electric dipole absorption displays
a large increase over that of the monomer. The predic-
tions include a broadening and a red-shift of the
absorption (see Figure 15). They note that experiments
performed on fractal type structures have seen the
resonance broadening but not the red-shift. They
hypothesized that this is due to a lack of large clusters
in those composites.
The approach of Shalaev and Stockman71 to fractal

composites used a binary approximation, which assumes
that one need only consider dipole-dipole coupling of
the monomer to its nearest neighbor. The effects of the

Figure 14. Three-component layered composite.

Figure 15. Imaginary part of the effective linear dielectric
constant for metal inclusions in a host material. (a) Maxwell
Garnett model prediction. (b) Effective medium approximation
with fractal clustering of the inclusion particles. (c) Effective
medium approximation with nonfractal clustering of the
inclusion particles. [From ref 70.]
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other monomers was accounted for using a modified
Lorenz local field. The results predict a broadening and
shift of resonance, as did those of Hui and Stroud. In
addition, they predict the possibility of giant Raman
scattering: an impurity which causes Raman scattering
may see a local-field much larger than the applied
electric field due to its neighboring monomer.
Markel et al.68,72 have performed more rigorous

analyses based on the exact properties of dipole polar-
izability and on the assumption of scaling for dipole
eigenstates of fractals. They found some results in
agreement with simpler theories: the width of the
absorption peak of the fractal is much greater than that
of the monomer. However, they found that the binary
approximation may not give accurate predictions for the
height at the peak of the absorption. In addition they
found that for clusters of more than 15 monomers, the
dependence of the polarizability on N had practically
leveled off.
Determination of the nonlinear optical properties of

fractal composites is an even more difficult task. Buten-
ko et al.73,74 used the binary approximation to determine
enhancement factors for various nth-order nonlinear
processes arising from the nonlinearities of impurities
linked to the fractal. (Their definition of the enhance-
ment factor was the ratio of the nth power of the field
intensity at a bound impurity to that of the unbound
impurities.) They found that this factor can be very
large due to the strong localized fields within the fractal
structure. Their predictions were verified by Rautian
et al.75 and Butenko et al.76 using fractal clusters of
silver in solution. In ref 76 a degenerate four-wave
mixing experiment (using a frequency-doubled Q-
switched Nd:YAG laser) found that the aggregate
samples displayed the same return as the nonaggregate
sample when the input irradiance was a factor to 103
lower (see Figure 16). Thus the nonlinear efficiency was
greater by a factor of 106.
Shalaev et al.77,78 used a scale-invariant theory to

determine forms for this gain factor. They found that
for degenerate four-wave mixing the factor varies as |Im
ø0|-6. For metallic spheres they calculated this value
to be on the order of 106, in agreement with the above
results. A set of works by this group of authors79-82

finds similar results for other sources of the nonlinear-
ity, such as Raman scattering and the nonlinear refrac-
tive index.

Yu et al.83,84 have also analyzed the nonlinear behav-
ior of fractal clusters in a host assuming that the fractals
occupy a small volume fraction and that the nonlinearity
is weak (permitting a perturbative approach). Consid-
ering nonlinear conductivity (which is analogous to
nonlinear susceptibility), they compared the predictions
of a differential effective medium theory with numerical
simulations. Their results show good agreement be-
tween the two approaches, which indicated the possibil-
ity of a large enhancement of the effective nonlinearity
when the fractal cluster is nonlinear and the host is the
better conductor. Comparing the result for these ma-
terials with the predictions of the Maxwell Garnett
theory (i.e., unclustered inclusions), Yu84 found that the
ratio of the imaginary part of the nonlinearities scaled
as f -5/2, where f is the volume fraction occupied by the
fractal. Since this ratio may be very large, the cluster-
ing of the inclusion particles has greatly enhanced the
nonlinear response of the composite.
Choy and Yu85,86 have extended the analysis to

strongly nonlinear materials. They again have com-
pared the results of the differential effective medium
theory with numerical simulations, finding good agree-
ment. They have determined a scaling law for the
effective nonlinear response and found that it is differ-
ent for superconductor/conductor composites and for
conductor/insulator composites.
This review of the optical properties of fractal com-

posites has been by necessity very brief. For a more
thorough coverage, the reader is refered to the review
article by Clerc et al.87

6. Conclusion

In this paper we have provided a brief review of the
optical properties of composite materials. The discus-
sion was divided into categories defined by the compos-
ite geometries: the Maxwell Garnett, which consists of
spherical inclusions randomly dispersed in a host; the
Bruggeman, which consists of two (or more) randomly
interspersed materials; the layered geometry; and frac-
tal structures. In all cases the interest lies in accurately
predicting the linear and nonlinear optical constants
and especially to find cases when these properties are
enhanced with respect to those of the constituents. As
has been shown, the successes of these theories is mixed.
For example, the Maxwell Garnett model correctly
predicts the surface plasmon resonance of metallic
inclusions but can overestimate the strength of the
effect; the Bruggeman model predicts a percolation
threshold, but due in part to the correlations between
neighboring particles, the percolation threshold of real
composites typically occurs at lower volume fill fractions
than the theory suggests. Still, if one keeps in mind
that these models are only approximations to actual
composites, these theories can provide one with intuition
about the causes for the composite properties and simple
relationships with which to predict approximately their
behavior.
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Figure 16. Efficiency of DFWM as a function of the pump
irradiance. Data points labeled 2, 4, and 5 represent ag-
gregated inclusions, while data labeled 3 represents stabilized
monomers. [From ref 76.]
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