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We show that electrostriction contributes significantly to self-action effects in optical fibers, adding 19%
to the nonlinear refractive index for fields that vary slowly compared with the ,1-ns time scale of the
acoustic response. Electrostriction also modifies the tensor nature of the nonlinear-optical response. The
electrostrictive nonlinearity is the origin of the observed difference between measurements of n2 with cw and
mode-locked lasers.  1996 Optical Society of America
The nonlinear refractive index of optical fibers contin-
ues to draw considerable attention. With the prospect
of densely packed wavelength-division-multiplexed
channels and soliton transmission,1 the ability to
predict and ultimately to control nonlinear interactions
in fibers becomes increasingly important. The first
measurement of n2 in optical f ibers utilized self-phase
modulation of 100-ps pulses.2 Subsequently, vari-
ous measurement techniques relying on self-phase
modulation (SPM) or cross-phase modulation (XPM)
with either mode-locked pulses or slowly modulated
cw signals have been reported,3 – 6 with increasing
emphasis on accuracy and precision.

Results of these measurements have typically been
analyzed with the assumption that the origin of the
nonlinearity was nonresonant electronic response.
This assumption leads to specif ic predictions regarding
polarization properties and specif ically precludes the
possibility of time-scale effects. However, calculations
predict that the real part of the Raman susceptibility
will contribute 15% of the total nonlinearity measured
in the SPM experiments,7 and this contribution is
essentially instantaneous on the time scale of the
pulses. Electrostriction, the process in which the
material density increases in response to the intensity
of an applied optical f ield, has a much slower response
time, approximately the 1-ns transit time of a sound
wave propagating across a fiber core. The inf luence
of electrostriction was previously analyzed for long-
range soliton interactions.8 Self-action effects owing
to electrostriction have generally been assumed to be
negligible, but we show below that electrostriction can
add measurably to the nonlinear response.

In the perturbation approximation the refractive-
index change associated with electrostriction is given
by Dñstd ­ Dẽstdy2n, where Dẽstd ­ s≠ey≠rdDr̃std is the
change in the dielectric constant Dẽstd that is due to the
change in density Dr̃std and n is the linear refractive
index. To determine the refractive-index change we
first solve the acoustic wave equation to determine
the impulse response function hstd that describes the
density variation initiated by a delta-function intensity
pulse. The general solution for the density variation is
the convolution of hstd with the intensity of the applied
field, and thus the refractive-index change has the
form
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The acoustic wave equation is given by9
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Here v is the sound velocity in the fiber, G0 is the acous-
tic damping parameter, ge ­ r0s≠ey≠rd is the elec-
trostrictive coefficient, and we use c as the vacuum
speed of light. We solve Eq. (1) in the Fourier domain8

for DrsV, qd as a function of the hypersonic frequency
V and the transverse wave vector q. The frequency-
response function H sVd is obtained from DrsV, qd af-
ter integration over q. From the convolution theorem,
the frequency- and time-dependent index changes asso-
ciated with the electrostrictive response to an arbitrary
pulse with intensity spectrum BsVd are thus found to
be the Fourier-transform pair
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We have defined the field such that Ẽ ­ E0bstd 3

exps2iv0td 1 c.c., with a peak optical intensity given
by I0 ­ sncy2pd jE0j2. The relevant spectrum is
BsVd ­

R
`

2` jbstdj2 expsiVtddt, where the envelope
function bstd has a maximum value of unity. Typical
parameter values for optical f ibers are n ­ 1.46 for
the linear refractive index, e ­ 2.1 for the dielectric
constant, r0 ­ 2.2 3 1023 kgycm3 for the density,
and v ­ 5.9 3 105 cmys for the speed of sound.
The electrostrictive coeff icient can be estimated as
ge ­ se 2 1d se 1 2dy3 ­ 1.5, which follows from the
Lorentz–Lorenz law for the dependence of the dielec-
tric constant on material density. We calculate that
n2sstrd ­ 0.574 3 10216 cm2yW .

Although we do not have an analytic expression
for the frequency-response function H sVd, we can
 1996 Optical Society of America
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facilitate the numerical integration of DrsV, qd
over q by introducing a normalized sound veloc-
ity n ­ vyGa, acoustic wave vector x ­ qa, and
acoustic frequency g ­ VyG, where the phonon
damping rate is G ­ 3 3 1027 s21. We assume azi-
muthal symmetry in the density function and treat
the cladding as infinite, and we ignore the longitu-
dinal components of the Laplacian, as the transverse
gradient of the intensity dominates for all but sub-
picosecond pulses. H sVd can then be expressed as the
dimensionless integral

H sVd ­ n2
Z `

0

x3 exps2x2y2d
sn2x2 2 g2d 1 ig2 dx , (4)

which is normalized such that H s0d ­ 1.
From Eqs. (3) it is evident that the inf luence of

the electrostrictive nonlinearity depends strongly on
the duration and the intensity spectrum of the pump
pulse. Figure 1 is a plot of the relative strength of the
electrostrictive nonlinearity h ­ Dñstdmaxyfn2sfastdI0g
versus the pulse width for Gaussian and square tem-
poral profile pulses, assuming that n2sfastd ­ 2.96 3

10216 cm2yW for SPM of linearly polarized light.3 The
electrostrictive response to a cw signal is 19% of the
fast nonlinearity, or 16% of the total nonlinear re-
sponse. This result holds for linearly polarized light
propagating through a medium in which the polariza-
tion state is preserved.

In general, however, the polarization state is not pre-
served in propagation through optical f ibers because
of the effects of linear and nonlinear birefringence.
It is therefore necessary to determine the effective
value of n2 for propagation through a non-polarization-
preserving fiber.10,11 Furthermore, the tensor proper-
ties of electrostriction differ signif icantly from those
of the electronic response. The tensor properties of
the third-order material susceptibility associated with
the fast electronic nonlinearity are well known.1 For
the radial acoustic mode approximation used in this
study the electrostrictive material response is a scalar
change in density, and we can express the electrostric-
tive contribution to one Cartesian component of the
nonlinear polarization as

P sstrd
i svsd ­ 3x sstrd

X
j

jEj svpdj2Eisvsd , (5)

where x sstrd ; x sstrdsvs ­ vs 1 vp 2 vpd. This expres-
sion is valid for two interacting f ields, where the pump
at frequency vp is assumed to be much more intense
than the signal at frequency vs and where the pump
intensity does not vary signif icantly over the elec-
trostrictive response time. Note that the degeneracy
factor has the same value whether or not vs ­ vp; that
is, the weak-wave retardation factor is equal to 1 for
electrostriction.

We next introduce the fractional electrostrictive
contribution h ; n2sstrdyn2sfastd ­ x sstrdyx s3d. Here
x s3d ; x

s3d
iiii includes both the electronic and the Raman

contributions. When we retain only the automatically
phase-matched terms, we arrive at an expression for
the total nonlinear material polarization driving the
nonlinear refractive index as the sum of electrostrictive
and fast contributions. The tensor properties of the
Raman susceptibility are taken here to be equivalent
to the nonresonant electronic. For the SPM case
vs ­ vp, we obtain
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whereas for the case of XPM, vs fi vp, we obtain
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The contribution to the nonlinear refractive index
from each polarization component of the pump can
be expressed as n2seffd ; kpn2sfastd, where n2sfastd ­
12p2x s3dyn2c is the SPM index for linearly polarized
light. The subscript p in the effective nonlinearity
factor kp refers to the polarization state of the pump
with respect to the probe: for the pump component
parallel to the probe kp ­ kjj, and for orthogonal pump
and probe kp ­ k'. If the polarization state is not
maintained through propagation, the signal experi-
ences an effective nonlinear phase shift proportional
to the energy-weighted path average of the nonlinear
response induced by the two orthogonal pump compo-
nents.12 At any position along the f iber the nonlinear
index changes experienced by the x and y polarization
components of the signal are

Dnx ­ n2sfastdI0fkjjf 1 k's1 2 f dg , (8a)

Dny ­ n2sfastdI0fkjjs1 2 f d 1 k'f g , (8b)

where a fraction f ­ f szd of the pump energy resides
in polarization state x and a fraction s1 2 f d in or-
thogonal state y. Because of the random nature of the
polarization evolution we cannot determine explicitly
the energy-distribution function f szd. Instead, we in-
troduce a probability distribution ps f d describing the
distribution of energy in polarization state x along

Fig. 1. Magnitude of the electrostrictive nonlinearity
Dnsmaxd relative to the fast nonresonant electronic con-
tribution for linearly polarized light as a function of
pulse width (FWHM) for a f iber with mode f ield radius
a ­ 4.5 mm and n2sfastd ­ 2.96 3 10216 cm2yW.



August 1, 1996 / Vol. 21, No. 15 / OPTICS LETTERS 1119
Table 1. Effective Nonlinearity Factor
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aSPM and XPM refer, respectively, to the single- and

dual-frequency situations, and h ­ n2sstrdyn2sfastd.

the length of the fiber. An effective nonlinear change
in the refractive index can then be expressed as the
probability-weighted average of the local nonlinear re-
sponse, that is, by

kDnl ­
Z 1

0
fDnxf 1 Dny s1 2 f dgps f ddf

; keffn2sfastdI0 . (9)
A study of the random walk associated with polari-

zation evolution12 suggests a uniform distribution for
f szd such that ps f d ­ 1. Through simple integration
of Eq. (9) that uses substitutions from Eqs. (8) and
by use of ps f d ­ 1, the effective nonlinearity factor
associated with propagation in a typical single-mode
fiber is

keffsrandom pol.d ­ s2kjj 1 k'dy3 . (10)
An exception arises when the pump or the probe is un-
polarized, as in the XPM experiment discussed below.
In this case there is no propagation dependence to the
state of polarization; a local ensemble average always
yields equal energies in any two orthogonal polariza-
tions. This implies that ps f d ­ ds f 2 1y2d and

keffsunpol.d ­ skjj 1 k'dy2 . (11)

Through the use of Eqs. (6)–(11) we have calculated
the effective nonlinearity factors kp for nonlinear inter-
actions involving the fast nonresonant electronic and
the steady-state electrostrictive responses. These re-
sults are summarized in Table 1. This procedure suc-
cessfully reproduces the factor of keff ­ 8y9 routinely
cited for SPM in non-polarization-maintaining fiber10,11

in the absence of electrostriction and the factor of
keff ­ 2y3 for XPM when unpolarized light is used.6 A
new result is the factor of keff ­ 7y9 for the action of
XPM in a system with randomly evolving polarization;
this prediction remains to be confirmed by either ex-
periment or numerical simulation.

We confirm the inf luence of the electrostrictive
nonlinearity by examining the results of a recent XPM
experiment that uses a harmonically modulated cw
pump.6 A pump with peak intensity I0, modulation
frequency V0, and modulation depth m impresses a
time-dependent nonlinear phase given by

DfNLstd ­
2p

l
L

m
m 1 1

h2n2sfastd

1 n2sstrd RefH sV0dgjI0 cossV0t 1 wd (12)
onto a collinearly polarized probe at wavelength l.
The propagation distance is L, and w is a small phase
shift that arises from the imaginary part of the acous-
tic frequency response. In Ref. 6 the authors mea-
sured the nonlinear phase shift in dispersion-shifted
fibers, using 7-MHz modulation of unpolarized pump
light. They reported a value of the SPM index, ad-
justed to linearly polarized light for purposes of ref-
erence, of njj

2 sreportedd ­ 3.35 3 10216 cm2yW. This
value is to be compared with the value of njj

2 sfastd ­
2.96 3 10216 cm2yW obtained in mode-locked-pulse
SPM experiments3 for similar f ibers, also adjusted for
linearly polarized light. Using the factors of Table 1
relevant to unpolarized light, and recognizing the as-
sumption of zero electrostrictive contribution implicit
in the value reported in Ref. 6, we deduce that the rel-
ative electrostrictive contribution to the nonlinearity
measured in this experiment is given by

h ­ 4hfnjj
2sreporteddynjj

2sfastdg 2 1jy3 ­ 0.176 . (13)

This 17.6% addition to the nonlinear refractive index is
in excellent agreement with the expected electrostric-
tive response to a low-frequency modulation of the
pump, as predicted by Eq. (3).
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