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Effects of atmospheric turbulence on the entanglement of spatial two-qubit states
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We study the effects of atmospheric turbulence on the entanglement of spatial two-qubit states that are prepared
using the signal and idler photons produced by parametric down-conversion. Such states are the basic ingredients
of quantum information protocols and can be prepared, for example, by making down-converted photons pass
through a pair of double-apertures. We make use of the Kolmogorov model for atmospheric turbulence and
quantify the entanglement of the two-qubit state in terms of Wootters’s concurrence. We restrict our analysis to
the two-qubit states that can be represented by density matrices having only two nonzero diagonal elements.
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I. INTRODUCTION

There has recently been great interest in the use of quantum
information methods for free-space optical communication
[1]. Potential applications include both secure communication
[2] and the development of quantum repeaters for swapping
quantum states over perhaps large distances [3]. For many
applications it is necessary for the photons that carry the
quantum state to pass through the Earth’s atmosphere, where
turbulence constitutes a potential loss of quantum coher-
ence. Several publications have dealt with the influence of
atmospheric turbulence on the information content of single
photons [4–8]. These treatments quantify the rate at which
quantum information impressed on an individual photon is
lost as the strength of the turbulence is increased. More recent
works have started to investigate the effects of atmospheric
turbulence on communication schemes that rely on quantum
entanglement [9,10]. In the present paper, we deal with
a situation in which the entangled photons produced by
parametric down-conversion (PDC) are launched into free-
space optical links and a two-qubit state is prepared by placing
a pair of double-apertures in their paths. We wish to determine
how the entanglement of such a two-qubit state is degraded by
atmospheric turbulence in the communication link. We use the
Kolmogorov model for atmospheric turbulence [11,12] and
quantify the entanglement of the state in terms of Wootters’s
concurrence [13,14]. We restrict our analysis to two-qubit
states that can be represented by a density matrix having
only two nonzero diagonal elements, because for such states
the concurrence can be determined directly by measuring the
visibility of two-photon interference fringes [15,16]; also, due
to the position correlations of down-converted photons, a very
close approximation to such states is easily prepared in many
experimental circumstances.

II. ENTANGLEMENT OF SPATIAL TWO-QUBIT STATES

Entangled two-qubit states are very important for quantum
information technology, as they are the necessary ingredients
for many quantum-information-based applications, such as
quantum cryptography [17,18], quantum dense coding [19],
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and quantum teleportation [20]. Two-qubit states have been re-
alized through the use of photons entangled in variables includ-
ing polarization [21], time bin [22,23], frequency [24], position
[25,26], transverse momentum [27,28], orbital angular mo-
mentum [29–31], and angular position [15]. Two-qubit states
that are based on the position correlations of entangled photons
are referred to as spatial two-qubit states [16,25,26,28].
Figure 1 depicts a generic scheme for preparing spatial
two-qubit states using the entangled photons produced by
PDC. This scheme has been analyzed in detail in Ref. [16], but
without the influence of atmospheric influence, and throughout
this paper we use the theoretical framework worked out in
that reference. In the scheme in Fig. 1, the down-converted
photons are made to pass through a pair of signal and a pair
of idler apertures, with the apertures being very small. The
transverse positions of the apertures define the qubit spaces.
Thus {|s1〉,|s2〉} and {|i1〉,|i2〉} form the two-dimensional
orthonormal bases for the signal and idler photons, respec-
tively, where |s1〉 represents the state of the signal photon
passing through the aperture located at position rs1 ≡ (ρs1,z),
etc. The four-dimensional basis set for the two-qubit state can
then be represented by {|s1〉|i1〉,|s1〉|i2〉,|s2〉|i1〉,|s2〉|i2〉},
where |s1〉|i1〉, represents the joint state of the signal and
idler photons when they pass through the apertures located
at positions rs1 ≡ (ρs1,z) and r i1 ≡ (ρi1,z), respectively.
We now make the explicit assumption that the PDC phase
matching is such that the probabilities of finding the signal
and idler photons in states |s1〉|i2〉 and |s2〉|i1〉 are negligibly
low. This can usually be ensured by keeping the distances
between the two signal and the two idler apertures greater than
the length scale over which the down-converted photons are
correlated at the double-aperture plane [16,26]. We can now
write the density matrix ρqubit of the two-qubit state in the basis
{|s1〉|i1〉,|s1〉|i2〉,|s2〉|i1〉,|s2〉|i2〉} as

ρqubit =

⎛
⎜⎜⎜⎝

a 0 0 c

0 0 0 0

0 0 0 0

d 0 0 b

⎞
⎟⎟⎟⎠ . (1)

Here a and b are the probabilities that the signal and
idler photons are detected in states |s1〉|i1〉 and |s2〉|i2〉,
respectively, with a + b = 1. The off-diagonal term c is a
measure of coherence between state |s1〉|i1〉 and state |s2〉|i2〉,
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FIG. 1. (Color online) A generic scheme of the preparation of
spatial two-qubit states. The state of the two photons through the four
apertures is represented by the density matrix ρqubit of Eq. (1). The
turbulence-induced wavefront errors are located primarily near the
plane of the apertures that define the qubit space.

with c = d∗. We note that in an experimental situation, the
probabilities a and b are maximum when the two pairs of
signal and idler apertures are placed at symmetric positions,
that is, ρs1 = −ρi1 and ρs2 = −ρi2.

A well-established method for quantifying the degree of
entanglement of a two-qubit state is by means of Wootters’s
concurrence [13,14]. The concurrence provides a means of
quantifying the degree of entanglement between two indepen-
dent two-state particles. Specifically, it gives the amount of
information for one particle that is lost when the information
regarding the state of the other particle is discarded. For
example, if the particles are not entangled, no information
is lost and thus the concurrence is 0. Conversely, if the
two particles are maximally entangled, the concurrence is
defined in such a manner that its value is unity. For a given
two-qubit density matrix ρ, the concurrence C(ρ) is given
by C(ρ) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4}. Here the λi’s
are the non-negative eigenvalues, in descending order, of the
matrix ζ = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), with

σy =
(

0 −i

i 0

)

being the usual Pauli operator and ρ∗ the complex conjugate
of ρ. For the density matrix ρqubit, the concurrence C(ρqubit)
can therefore be shown to be

C(ρqubit) = 2|c|. (2)

We find it useful to perform our analysis in terms of the
displacement parameters introduced in Ref. [16], which are
defined in terms of the transverse position vectors of the signal
and idler photons as

ρ1 ≡ ρs1 + ρi1

2
, ρ2 ≡ ρs2 + ρi2

2
, �ρ = ρ1 − ρ2,

(3)
ρ ′

1 ≡ ρs1 − ρi1, ρ ′
2 ≡ ρs2 − ρi2, �ρ ′ = ρ ′

1 − ρ ′
2.

Here ρ1(2) and ρ ′
1(2) are the two-photon transverse position

vector and the two-photon position-asymmetry vector when
the signal and idler photons are in state |s1〉|i1〉(|s2〉|i2〉).
In what follows the quantity of central interest is the two-
photon cross-spectral density function W (2)(rs1,r i1,rs2,r i2)
[16], which quantifies the coherence between the two-photon

fields at the two pairs of positions (rs1,r i1) and (rs2,r i2), and
is defined as

W (2)(rs1,r i1,rs2,r i2)

= 〈tr{ρtp
ˆ̃E(−)

s1 (rs1) ˆ̃E(−)
i1 (r i1) ˆ̃E(+)

i2 (r i2) ˆ̃E(+)
s2 (rs2)}〉. (4)

Here ˆ̃E(+)
s2 (rs2) is the positive frequency part of the field at

position rs2, etc. The symbol tr stands for the trace, and
ρtp is the density matrix of the two-photon field produced
by PDC. The ensemble average 〈· · ·〉 is to account for the
statistical fluctuations introduced by the turbulent medium.
The two-photon cross-spectral density function reduces to the
two-photon spectral density function when the two signal
and the two idler positions coincide. Thus S(2)(rs1,r i1) ≡
W (2)(rs1,r i1,rs1,r i1) is the two-photon spectral density at the
pair of positions (rs1,r i1); it is proportional to the probability
of finding the signal and idler photons at the pair of positions
(rs1,r i1). To keep the notations simpler, we do not show
the frequency arguments in the definitions of the two-photon
spectral density and the two-photon cross-spectral density
functions. We now express the matrix elements of ρqubit in
terms of the two-photon correlation functions and thus write

a = ηk2
1S

(2)(rs1,r i1), (5)

b = ηk2
2S

(2)(rs2,r i2), (6)

c = d∗ = ηk1k2W
(2)(rs1,r i1,rs2,r i2), (7)

where η = 1/[k2
1S

(2)(rs1,r i1) + k2
2S

(2)(rs2,r i2)] is a constant
of proportionality. The constant factors k1 and k2 depend on the
sizes of the apertures and the geometry of the arrangement [16].
We assume that in the scheme in Fig. 1 the phase fluctuations
incurred in the propagation to the double-apertures can, in
effect, be accounted for by replacing the turbulent medium by a
single phase screen located primarily near the double-apertures
[4,12]. Therefore, the total field ˆ̃E(+)

s1 (rs1) at position rs1 can
be written as

ˆ̃E(+)
s1 (rs1) = Ê

(+)
s1 (rs1)eiφ(rs1). (8)

Here Ê
(+)
s1 (rs1) represents a deterministic field, whereas φ(rs1)

has a statistical character and represents the turbulence-
induced wavefront errors [12]. We also assume that the statis-
tical fluctuations induced by the turbulence are independent of
the fluctuations induced due to the pump field. Equation (4)
for the two-photon cross-spectral density then becomes

W (2)(rs1,r i1,rs2,r i2) = µturb(rs1,r i1,rs2,r i2)tr{ρtpÊ
(−)(rs1)

× Ê(−)(r i1)Ê(+)(r i2)Ê(+)(rs2)}, (9)

where

µturb(rs1,r i1,rs2,r i2) = 〈e−i[φ(rs1)−φ(rs2)+φ(r i1)−φ(r i2)]〉. (10)

For pump beams that are of Gaussian Schell-model type,
W (2)(rs1,r i1,rs2,r i2) can be written, using the definitions in
Eq. (3), as

W (2)(rs1,r i1,rs2,r i2) = µturb(rs1,r i1,rs2,r i2)

×
√

S(2)(ρ1,z)S(2)(ρ2,z)µ(2)(�ρ,z),

(11)
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where µ(2)(�ρ,z) is the degree of spatial two-photon coher-
ence. Using Eqs. (2), (5), (6), (7), and (11), and considering the
special case where k1S

(2)(ρ1,z) = k2S
(2)(ρ2,z), that is, a = b,

we obtain the following formula for the concurrence C(ρqubit)
of the spatial two-qubit state:

C(ρqubit) = µturb(rs1,r i1,rs2,r i2)µ(2)(�ρ,z). (12)

The effects of the spatial coherence properties of the pump
beam on the entanglement of spatial two-qubit states have
already been studied in detail [16]; in the present paper our
main aim is to study the influence of turbulence. So we take
the pump beam to be fully coherent, that is, µ(2)(�ρ,z) = 1,
in which case the Eq. (12) reduces to

C(ρqubit) = µturb(rs1,r i1,rs2,r i2). (13)

III. INFLUENCE OF KOLMOGOROV TURBULENCE ON
THE ENTANGLEMENT

Assuming the Kolmogorov model [4,11,12] for atmo-
spheric turbulence, we now derive an explicit expression
for µturb(rs1,r i1,rs2,r i2) and, thereby, for the concurrence
C(ρqubit). We take the fluctuations introduced by turbulence
to be a Gaussian random variable with zero mean and, using
the standard result 〈e−ix〉 = e−(1/2)〈x2〉 for Gaussian variables,
write Eq. (10) in the following form:

µturb(rs1,r i1,rs2,r i2)

= exp
{− 1

2 [〈[φ(rs1) − φ(rs2)]2〉 + 〈[φ(r i1) − φ(r i2)]2〉
+ 〈[φ(rs1) − φ(r i2)]2〉 + 〈[φ(rs2) − φ(r i1)]2〉
− 〈[φ(rs1) − φ(r i1)]2〉 − 〈[φ(rs2) − φ(r i2)]2〉]}. (14)

The quantity 〈[φ(rs1) − φ(rs2)]2〉, etc., is known as the phase
structure function, and in the Kolmogorov theory [11] of
atmospheric turbulence it is given by

〈[φ(rs1) − φ(rs2)]2〉 = 6.88

∣∣∣∣ρs1 − ρs2

r0(z)

∣∣∣∣
5/3

. (15)

Here r0(z) is Fried’s coherence diameter at plane z, which is
a measure of the transverse scale over which refractive index
correlations remain correlated. We evaluate the other terms in
Eq. (14) in a similar manner. Next, using Eq. (13), and in terms
of the displacement parameters defined in Eq. (3), we obtain
the following expression for the concurrence:

C(ρqubit) = exp

[
− 3.44

[r0(z)]5/3
(|�ρ + �ρ ′/2|5/3

+ |�ρ − �ρ ′/2|5/3+ |d + �ρ|5/3+ |d − �ρ|5/3

− |d + �ρ ′/2|5/3 − |d − �ρ ′/2|5/3)

]
, (16)

where we have substituted d for (ρ ′
1 + ρ ′

2)/2. Equation (16)
is the main result of this paper; it quantifies the effects of
atmospheric turbulence on the entanglement of spatial two-
qubit states. Here |d| = d can be taken as a measure of the
separation between the two signal and the two idler apertures,
whereas |�ρ ′| = �ρ ′ can be taken as a measure of the effective
physical size of the two-qubit state. For conceptual clarity, we
now consider the one-dimensional version of Eq. (16) and
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FIG. 2. (Color online) Plot of the concurrence C(ρqubit) (a) versus
�ρ ′/r0(z) for d/r0(z) = 10 and (b) versus d/r0(z) for �ρ ′ = 0.1.
Here d is a measure of the separation between the two signal and two
idler apertures, whereas �ρ ′ can be taken as a measure of the effective
physical size of the two-qubit state. Note that the concurrence depends
much more strongly on �ρ ′ than on d .

restrict our further analysis to two-qubit states that have �ρ =
0. Such states are prepared by placing the two signal and the
two idler apertures at symmetric positions, that is, by keeping
ρs1 = −ρi1 and ρs2 = −ρi2. This situation is experimentally
most relevant because, as noted previously, in this situation the
probabilities a and b in Eq. (1), that the signal and idler photons
pass through the apertures, are maximum. The concurrence of
the two-qubit state can now be written as:

C(ρqubit) = exp

{
− 3.44

[r0(z)]5/3
[2(�ρ ′/2)5/3 + 2d5/3

− (d + �ρ ′/2)5/3 − (d − �ρ ′/2)5/3]

}
. (17)

In writing Eq. (17) we have used the convention that ρ ′
1 > ρ ′

2 >

0, which implies that d > �ρ ′/2 > 0. Figure 2(a) shows a plot
of the concurrence as a function of �ρ ′/r0(z) for d/r0(z) = 10,
and Fig. 2(b) shows a plot of the concurrence as a function of
d/r0(z) for �ρ ′/r0(z) = 0.1. We find that the concurrence of
a spatial two-qubit state remains close to unity as long as �ρ ′
is much smaller than Fried’s coherence diameter r0(z). We
also find that the effects of increasing the separation d on
the concurrence saturates once d becomes much larger than
Fried’s coherence diameter. Here, since we are dealing with
two-qubit states with only two nonzero diagonal elements,
we note that in an experiment the concurrence of Eq. (17)
can be measured directly, by measuring the visibility of the
two-photon interference fringes [15,16].

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the effects of atmospheric
turbulence on degrading the entanglement of spatial two-qubit
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states that are prepared by making down-converted photons
pass through a pair of double-apertures. We have used the
Kolmogorov model for atmospheric turbulence and have
quantified the entanglement of the two-qubit state in terms
of its concurrence. Our analysis is presented for two-qubit
states that can be represented by density matrices having
only two nonzero diagonal elements. We have found that,
as a general rule, the concurrence of spatial two-qubit states
remains close to unity as long as the magnitude of the

two-photon position-asymmetry vector is much smaller than
Fried’s coherence diameter.
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