Vol. 4, No. 9 / September 2017 / Optica 1006

T Research Article

Check for
updates

High-dimensional intracity quantum cryptography
with structured photons

Avicia SiT,' FRépERIC BoucHARD,' RoBeRT FickLER,! JEREMIE GAGNON-BiscHoFF,' Huco LarRocauE,’
KHasaT HesHAMI,> DominiQUE ELSER,** CHRISTIAN PEUNTINGER,>* KEVIN GUNTHNER,>* BETTINA HEIM,>*
CHrisTorH MARQUARDT,** GERD LeucHs,"** RoBert W. Boyb,"® aND EBRAHIM KaRiMI™®*

'Physics Department, Centre for Research in Photonics, University of Ottawa, Advanced Research Complex, 25 Templeton, Ottawa,
Ontario K1N 6N5, Canada

2National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

SMax-Planck-Institut fir die Physik des Lichts, StaudtstraBe 2, 91058 Erlangen, Germany

‘Institut fir Optik, Information und Photonik, Universitét Erlangen-Nlrnberg, StaudtstraBe 7/B2, 91058 Erlangen, Germany

®Institute of Optics, University of Rochester, Rochester, New York 14627, USA

SDepartment of Physics, Institute for Advanced Studies in Basic Sciences, 45137-66731 Zanjan, Iran

*Corresponding author: ekarimi@uottawa.ca

Received 5 June 2017; revised 20 July 2017, accepted 25 July 2017 (Doc. ID 297325); published 24 August 2017

Quantum key distribution (QKD) promises information-theoretically secure communication and is already on the
verge of commercialization. The next step will be to implement high-dimensional protocols in order to improve noise
resistance and increase the data rate. Hitherto, no experimental verification of high-dimensional QKD in the single-
photon regime has been conducted outside of the laboratory. Here, we report the realization of such a single-photon
QKD system in a turbulent free-space link of 0.3 km over the city of Ottawa, taking advantage of both the spin and
orbital angular momentum photonic degrees of freedom. This combination of optical angular momenta allows us to
create a 4-dimensional quantum state; wherein, using a high-dimensional BB84 protocol, a quantum bit error rate of
11% was attained with a corresponding secret key rate of 0.65 bits per sifted photon. In comparison, an error rate of
5% with a secret key rate of 0.43 bits per sifted photon is achieved for the case of 2-dimensional structured photons.
We thus demonstrate that, even through moderate turbulence without active wavefront correction, high-dimensional
photon states are advantageous for securely transmitting more information. This opens the way for intracity

high-dimensional quantum communications under realistic conditions. ~© 2017 Optical Society of America

OCIS codes: (270.5568) Quantum cryptography; (060.2605) Free-space optical communication; (050.4865) Optical vortices.
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1. INTRODUCTION

Secure quantum communication, i.e., quantum key distribution
(QKD), is on the forefront of the commercialization of future
quantum technologies. Since its first theoretical proposal [1], it
has been one of the major driving forces to investigate and apply
quantum features for future information processing schemes
[2,3]. While this process of developing commercial quantum

helical wavefronts. Polarization is naturally bidimensional, i.e.,
{|Z),|R)}, and the associated angular momentum can take the
values of 7 per photon, where 7 is the reduced Planck constant,
and |L) and |R) are left- and right-handed circular polarizations,
respectively. In contrast, OAM is inherently unbounded, such
that a photon with ¢ intertwined helical wavefronts, |£), carries
£h units of OAM, where ¢ is an integer [10]. Quantum states of

cryptography devices has already started, possible next-generation
QKD schemes, such as high-dimensional encoding, have come
under scrutiny in quantum information research. Although differ-
ent proof-of-principle experiments have shown the superiority of
such schemes in terms of noise resistance and data capacity [4-8],
their applicability still has to be demonstrated under real-world
conditions. Here, another key question that needs to be addressed
is the most suited photonic degree of freedom that allows encod-
ing of high-dimensional quantum states.

In addition to polarization and wavelength, a light wave may
carry orbital angular momentum (OAM) [9], corresponding to

2334-2536/17/091006-05 Journal © 2017 Optical Society of America

light resulting from an arbitrary coherent superposition of differ-
ent polarizations and spatial modes, e.g., OAM, are referred to as
structured photons; these photons can be used to realize higher-
dimensional states of light [11]. Aside from their fundamental
significance in quantum physics [12,13], single photons encoded
in higher dimensions provide an advantage in terms of security
tolerance and encrypting alphabets for quantum cryptography
[4,5,8] and classical communications [14]. The behavior of
light-carrying OAM through turbulent conditions has been
studied theoretically and simulated in the laboratory scale
[15-18]. Experimentally, OAM states have been tested in classical
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communications across intracity links in Los Angeles (120 m)
[19], Venice (420 m) [20], Erlangen (1.6 km) [21], Vienna
(3 km) [22], and between two Canary Islands (143 km) [23],
which is the longest link thus far. With attenuated lasers,
OAM states and vector vortex beams have been respectively
implemented in high-dimensional and 2-dimensional BB84 pro-
tocols, where the former was performed in a laboratory [8] and
the latter in a hall in Padua (210 m) [24]. Though not QKD, the
entanglement distribution of bidimensional twisted photons has
been recently studied across the Vienna link [25]. Note that no
true single-photon high-dimensional QKD experiment has been
performed outside of the laboratory thus far.

In this paper, we combine polarization {|H),|V)} and
an OAM subspace of {|£),|-7)} to form 4-dimensional
quantum states |£), for £# =1, 2, 3, 4, belonging to the set
{H,ELIV,E0H,~€),|V, =€)}, where |H) = (IL) + |R))/+/2
and |V) = —i(|L) - |R))/~/2 are horizontal and vertical polari-
zation states, respectively. We can create two sets of mutually
unbiased bases (MUBs) from |k), defined as |y)’ = M¥|k)
and |py = M|k), where [(wlyY|* = [(plgy | = 5;, and
|“(wlp)|* = 1/4 for i,j=1,2,3,4 (see Supplement 1 for
M and M,). Figure 1 illustrates the spatial structure of these
MUBs for the case of # = 2. The information encoded within
these modes lies in the transverse polarization and phase distribu-
tions; however, all of these modes possess a “doughnut”-shaped
intensity distribution. The polarization distributions contain only
linearly polarized states, and such beams are commonly called
vector vortex beams [26]; in the case of {|@)}, the linear polar-
izations vary across the transverse plane. {|y)’} and {|p)/} are
conjugate quantities, and based on quantum complementarity
they cannot be measured simultaneously; this forms the backbone
of security in quantum cryptography. Specifically, in the BB84
protocol [1], the bases of preparation and measurement are
randomly chosen between two MUBs by a sender and receiver,
traditionally called Alice and Bob, respectively. We used the two
MUB: of structured modes, {|w)} and {|@)'}, to perform a high-
dimensional BB84 protocol [4,5].

2

0

Fig. 1. Mode structure of mutually unbiased bases for £ = 2.
(@) {lw)’} and (b) {|p)} are examples of two bases of structured states
of light, encoding in both polarization and OAM of £ = 2. Each basis is
orthonormal, and the two bases are mutually unbiased with respect to
each other such that |"(y|@)/|* = 1/4. These MUBs have the advantage
of possessing identical intensity profiles—“doughnut” shaped—and are
shape-invariant upon free-space propagation. The information, therefore,
is encoded in the transverse polarization and phase distributions, denoted
by the white lines and the hue, respectively.

There are different approaches used to generate and sort these
structured modes of light. We udilize liquid crystal devices known
as g-plates [27], which coherently couple optical spin angular mo-
mentum to OAM. Q-plates are advantageous as they are placed
in-line, are efficient in comparison to diffractive elements, and can
be used to create arbitrary complex modal structures [28]. These
g-plates used in conjunction with a carefully chosen sequence of
wave plates can generate {|y)’} and {|@)’} (see Supplement 1 for
details). Furthermore, it is possible to rapidly switch between the
states in {|y)’} and {|@)'}, of the order of 1 MHz, by replacing
the wave plates with Pockels cells. Since g-plates are coherent and
linear devices, they also work in the single-photon regime [29].

2. EXPERIMENT

We built a free-space link between the rooftops of two buildings,
0.3 km apart and 40 m above the ground, on the University of
Ottawa campus; see Fig. 2. Two enclosures were constructed to
contain and protect all of the optics and equipment at the sender
and receiver. The sender unit is comprised of both the heralded
single-photon source and the setup where Alice can prepare states.
The receiver unit contains Bob’s state measurement setup and the
single-photon detection system. No active adaptive optics or
vibration isolation systems were implemented.

In the heralded single-photon source, photon pairs are
generated via the spontaneous parametric downconversion proc-
ess in a 5 mm long ppKTP crystal pumped by a 405 nm laser
diode (200 mW). Nondegenerate wavelengths for the signal
(4, = 850 nm) and idler (4; =775 nm) photons are chosen
in order to efficiently separate the two; only the signal photon
is encoded with information. The signal and idler are each
coupled into a separate single-mode fiber (SMF) to spatially
filter the photons into the fundamental mode. Bandpass filters,
850 £+ 5 nm and 775 £ 20 nm, are placed in front of the fiber
couplers to select the correct photon pairs. The singles count rates
at the source after the SMFs, detected with avalanche photodiodes
(APDs), are 4 MHz and 10 MHz for the signal and idler, respec-
tively. The idler photon heralds the presence of the signal photon,
as determined by a coincidence logic box. This procedure gives a
coincidence rate of around 1 MHz for a coincidence window of
5 ns with 0.2 MHz of accidental coincidence detections.

Alice takes the signal photon and prepares it in one of the states
of the different MUBs through the use of an appropriate sequence
of wave plates and g-plates. She then recombines the signal and
idler photons on a dichroic mirror and enlarges the spatial struc-
ture of both beams such that they can be sent in the same beam
across the link to Bob and to minimize divergence upon propa-
gation, respectively. At the last lens (f,) of the sending unit, the
beam waist is approximately 12 mm. After propagation over the
0.3 km distance, we find the beam waist to be enlarged to approx-
imately 20 mm as a consequence of atmospheric influences and
imperfect optics. In order to measure the received quantum states,
Bob demagnifies the photon’s structure with another set of lenses
and separates the information-carrying signal photon from the
heralding idler photon with another dichroic mirror. The idler
photon is directly coupled into a SMF to act as a herald for
the signal photon. With a sequence of wave plates, g-plates,
PBSs, and SMFs, mirrored to that of Alice’s, Bob can make a mea-
surement on the signal photon by projecting it onto one of the
states from one of the MUBs. In such a way, Bob has a spatial
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Fig. 2. Ottawa intracity quantum communication link. Schematic of the sender (left) with a heralded single-photon source (signal, s, and idler, 7) and
Alice’s state preparation setup. Alice prepares a state from {|w)’} or {|¢)'} using a polarizing beam splitter (PBS), wave plates (WP), and a g-plate (QP).
The signal and idler photons are recombined on a dichroic mirror (DM) before being sent to Bob. Two telescopes comprised of lenses with focal lengths of
f1=75mm, f, = f3 =400 mm (diameter of 75 mm), and f;, = 50 mm are used to enlarge and collect the beam, minimizing its divergence
through the 0.3 km link. Bob, receiver (right), can then perform measurements on the sent states and record the coincidences between the signal
and idler photons with detectors D; and D, at a coincidence logic box. Enclosures are built around the sender and receiver to shelter them from
the wind and weather, as well as to shield them from background light. Examples of experimentally reconstructed polarization distributions for a struc-
tured mode from {|@)/} using a continuous wave laser that Alice prepared (top left) and Bob measured (bottom right) are shown in the insets. ppKTP,
periodically poled KTP crystal; LP, long-pass filter; BP, bandpass filter. Map data: Google Maps, 2016.

mode filter such that, if he projects onto the same state that Alice
sent, the signal photon will be phase-flattened and optimally
detected. By using APDs and a coincidence logic box (5 ns coinci-
dence window), the received idler photon acts as a trigger for the
arrival of the signal photon and the coincidence rates are recorded.
The best performance of our free-space link after coupling to the
SMFs on Bob’s side gave count rates for the signal and idler pho-
tons of 0.75 MHz and 2.5 MHz, respectively, with an optimal
coincidence rate of approximately 50 kHz. However, due to large
temperature and turbulence differences from night to night,
the numbers varied throughout the various experimental runs.
Overall, from sender to receiver, there are approximately 20%
and 25% coupling efficiencies (equivalently 7 dB and 6 dB of
losses) for the signal and idler photons, respectively, which gives
an approximately 5% success rate for recording coincidences.
Since no adaptive optics were utilized, a portion of the raw data
points sampled are greatly perturbed by the turbulence. The most
dominant effect of the atmospheric turbulence given the range of
our measured atmospheric structure constant, C2, between
2.5% 107" m™/3 and 6.4 x 107'® m=2/3 (see Section 3) is beam
wandering [30]. Under stable conditions, the idler photon
remains in the fundamental mode and always couples to the
SMF; however, when there is turbulence, it does not optimally
couple. Since the signal photon is coaxially propagating with
the idler photon, it experiences the same atmospheric turbulence;
we can thus use the idler photon as not only a herald for the signal
photon but also as a “target” to gauge the beam wandering in
Bob’s setup. This helps to correct our measurements for turbu-
lence in postprocessing. During a BB84 protocol, Alice is prepar-
ing each signal photon into a state from a randomly chosen MUB
and then sends it with its heralding idler photon to Bob. Once
each pair reaches Bob, turbulence may have caused them to
wander from the optical axis. Each measurement consists of
coincidence counts acquired for 200 ms, repeated 50 times,

and then averaged. If there is excessive turbulence, the accumu-
lated idler counts will have dropped. Therefore, Bob only keeps
the coincidence measurements whose corresponding idler counts
are near the optimal value, i.e., when there is little to no turbu-
lence. Otherwise, he discards his measurement. As a target beam,
the idler photon helps to sift out turbulence-affected pairs,
decreasing the quantum bit error rate and thereby increasing
the amount of securely transmitted information per sifted photon.

It is important to note that despite sending two photons across
the link simultaneously, our scheme is still immune to photon-
number-splitting attacks since the idler photon does not contain
any of the polarization or OAM information of the signal photon.
Apart from being able to monitor the turbulence, the only other
information that the idler photon contains is timing information
for heralding purposes, which could alternatively be communi-
cated over a classical channel. Therefore, even if an eavesdropper
had full access to the idler photon, she would not be able to access
the signal information. A full security proof would be able to take
into account the signal and idler photons, including bounds on
possible side information of this particular setup. However, this is
beyond the scope of this work and will be further investigated in
the future.

3. TURBULENCE CHARACTERIZATION

To characterize the Ottawa intracity free-space link, we investi-
gate the turbulence by evaluating its characteristic properties, such
as the atmospheric structure constant C2 and the Fried parameter
ro [30-32]. We do so by sending a Gaussian-shaped laser beam
(850 nm) over the 0.3 km long link and record its arrival position
with a CCD camera. Because atmospheric turbulence changes on
a millisecond time scale, short-term exposure images can reveal
beam wandering, which is caused by fast-moving air cells, each
having slightly different pressures, and thus small differences in
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Fig. 3. Simulated encryption of an image with structured photons. (a) Experimentally measured probability-of-detection matrices, P¥ = |{a|B)|?,
where o, f = {y, ¢}, for 2D (top row) and 4D (bottom row) structured photons with turbulence. These matrices have the corresponding bit error rates of

Q?° = 5% and QP = 11%, respectively. (b) Image of the Parliament of Canada that Alice encrypts and sends to Bob through a classical channel using
their shared secret key. (c) Alice discretizes her intended image (left column) with & levels, where d is the encryption dimension, such that each pixel
corresponds to three single photons (RGB values, leading to #° colors per pixel) that she sends to Bob. Using the experimentally measured probability-of-
detection matrices (a), Alice then adds the shared secret key, generated from a BB84 protocol, on top of her discretized image to encrypt it (middle
column). Bob decrypts Alice’s sent image with his shared key to recover the image (right column). Implementing a 4-dimensional state clearly allows the
ability to send more information per photon, where, in the ideal case, Alice can send twice the amount of information with respect to 2-dimensional states.
However, due to noise present in the channel, we experimentally obtain an increase of 1.51 in the amount of information sent by Alice with respect to the

case of 2-dimensional states. Image credit: Norman Bouchard.

refractive indices. The stronger the turbulence and the larger the
distance of the link, the larger are the deflections from the optical
axis. The latter can be deduced by taking an average over many
short-term exposure images, which effectively leads to an atmos-
pherically broadened Gaussian beam profile. During different
measurement nights, we record 500 short exposure images
(0.07 ms each), from which we calculate a Fried parameter
between 18 cm and 41 cm, which corresponds to an atmospheric
structure constant C? ranging from around 2.5 x 107> m™/3 to
6.4 x 10716 m2/3, assuming Kolmogorov theory for atmospheric
turbulence. Hence, the link shows moderate turbulence effects on
the transmitted light fields.

4. RESULTS AND DISCUSSION

In QKD, a secret key may be established between Alice and Bob
with a secret key rate, defined as the number of bits of secret key
established divided by the number of sifted photons, given by
R(Q) = log,(d) - 2h(Q), where Q is the quantum bit error rate
and A(-) is the Shannon entropy in dimension . Hence, there is a
threshold value of Q above which a nonzero shared secure key
cannot be generated. In dimension 2, this threshold value is
the well-known Q2P = 11.0%, while it almost doubles to
Q4P = 18.9%, in dimension 4 [5]. This clearly exhibits the
robustness of high-dimensional quantum cryptography.

We perform a 4-dimensional BB84 protocol under different
atmospheric conditions. Probability-of-detection matrices for
the 4-dimensional structured photonic states, {|w)’} and {|p)/}
with = 2, of the BB84 protocol are shown in Fig. 3(a) (bottom
row). In dimension 4, from the raw probability-of-detection
matrix, the quantum bit error rate is Q = 14%, and is below
the threshold value of Q{P, resulting in a positive corresponding
secret key rate of R = 0.39 bits per sifted photon. Thus, without
any corrections, a securely transmitted high-dimensional key can
be established. By considering the idler as a target beam, which

accounts for turbulence, the quantum bit error rate is reduced to
Q*P = 11% with a secret key rate of R® = 0.65 bits per sifted
photon. The secret key rate is lower than the maximum theoreti-
cal value of 2 bits per sifted photon, which is due to imperfections
in transmission.

For a comparison, we perform a BB84 protocol with two-
dimensional structured photons in the MUBs of |{) =
{(L-1) £ [R 1))/+/2} and [&) = {(|L,-1) £ iR 1))/+/2};
see Fig. 3(a) (top row). A quantum bit error rate and secret
key rate of Q*® = 5% and R*P = 0.43 bits per sifted photon
were obtained, respectively, using the target as compensation.
Indeed, R*P is larger than R?D, showing the potential for trans-
mitting more secure information per sifted photon in higher
dimensions. This is visually shown in Fig. 3(c) (top and bottom
rows): the image that Alice sends Bob [Fig. 3(b)] can be discre-
tized with more steps in dimension 4 (bottom row) as compared
to dimension 2 (top row). Due to turbulence, the quantum bit
error rate for dimension 4 on many nights was above QiP.
An example of one of these nights is shown in the
Supplement 1 with a calculated quantum bit error rate of
= 27% calculated from the probability-of-detection ma-

ncnsy

trix. However, allowing for two-way classical communications,
the tolerable error bit rate increases to 31.5% > Qnmsy in dimen-
sion 4 [33] (see Supplement 1).

5. CONCLUSION

We have shown the feasibility of increasing the secure data trans-
mission rate using high-dimensional quantum states compared to
bidimensional states despite a noisy channel. Indeed, protocols
based on higher-dimensional states are more advantageous
in noisier channels because the security threshold can tolerate
more errors. This paves the road toward high-dimensional
intracity quantum cryptography via quantum key distribution.
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In addition, our results lay the groundwork for intracity quantum
teleportation with structured photons, which is an essential com-
ponent of a free-space quantum network. We anticipate that these
demonstrations can be extended over longer distances provided
with adequate active turbulence monitoring and compensation.
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1. MUTUALLY UNBIASED BASIS {IH,0),1H,=),|V,{),|V, =)}, and the two sets of MUBs {ly)'} and
] . .
Given a set of bases «y, . .., @, of dimension d, they are said to be mu- {le)’} were generated by the following matrices,
tually unbiased with respect to one another if they satisty the following
condition, 1000
. 01 0 0
, ; sijp Vi=i , My = :
Vailar) P = {{j vizp o P€0Ln) jefl2, .d) 0 00 1 0
(SD 00 0 1
For dimensions where d is a power of a prime, d + 1 mutually unbiased
bases (MUBs) can be found. For 2-dimensional quantum key distri- 1 i |
bution (QKD) protocols, photons can be encoded using polarization .
and orbital angular momentum (OAM). We represent states of light ME = 1 1 io-1 , (S3)
that have a particular polarization and OAM value using a compound ! 211 41 i
ket notation. In this way, if a photon has a certain polarization IT and 1 1
- i i

carries ¢ units of OAM, it is written as |I1, £).
The two MUBs of dimension 2 are given by,

i 1 following states:
= {— (L,-O+IR +8), — (IL,-0) - IR, +)) ¢, g
{1} {\/E(l >+ )) \/-(l )= ))} i
i { 1 (L~ + iR +0)) (L —0)— IR, +£>)} ) = {IH,-I—f),IH,—f),IV,-i-f) vV.=0},
{1’y = {—= (UL -O+IilR,+ ,— —i ; 1
¢ V2 Vi ) = {22000+ R -0). = (L0~ R-0).
(S2) ‘/_ \/_
In  dimension 4, the natural basis is  |k) € TOL -0 +IR.0), 7“[‘ -0~ |R’€>)}'

such that |¢)' = M |k and |g)) = M [k). This results in the

S4

(S5)
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:
Theory Experimental waveplate angles are given in (S8).
1
= - state | HWP
a - -~ |§>l 0°
o 2
=~ =~ 19 +45° (S8)
< < —
2 = o | +22.5°
ey {en e e )2 | —22.5°
= =~ The MUBSs in dimension 4, {Iw)i } and {Igo)j } are generated by sand-
= = wiching a g-plate between either HWPs or QWPs. If photons pass left
) to right through the following optical elements, the waveplate angles
= - - that Alice uses to generate {|y)'} are given in the (S9), and {|p)/} in
= s (S10).
{wl ol @l ol 0 state | QWP before QP | QWP after QP

Fig. S1. Visualization of MUBs in d=2 and d=4 Theoretical
probability-of-detection matrices (left column) for dimensions 2
and 4 using Eq. (S2) and Eqs. (S4-S5) by applying Eq. (S1). The
probability-of-detection matrices as measured in the laboratory (right
column) give bit error rates of 0.83% and 1.83% in dimensions 2

(¢ =2)and 4 (£ = 2), respectively.

Figure S1 shows a visual representation of the 2D (top row) and
4D (bottom row) MUBs using Eq. (S1), comparing the theoretical
probability-of-detection matrix to the experimental one as measured in
the laboratory, i.e. without the intra-city link. The quantum bit error
rate is calculated as one minus the average of the on-diagonal elements.
The calculated quantum bit error rates from the experimentally mea-
sured matrices are 0.83% and 1.83% in dimensions 2 (£ = 2) and 4
(€ = 2), respectively.

2. GENERATION OF IMPLEMENTED MUBS IN D = 2
AND 4

In order to create structured photons possessing both polarization and
OAM, we utilize patterned liquid crystal devices known as g-plates.
Q-plates coherently couple spin (i.e. polarization) to orbital angular
momentum such that £ = +2¢, where ¢ is the topological charge of the
liquid crystal distribution. The action of a g-plate is as follows:

gq—plate

IL,0) —— IR +2q), (S6)
g—-plate
R,0) —— |L,—2¢q). (87

Since g-plates are linear devices, a photon in a superposition of |L, 0)
and |R, 0) will be mapped to a state in a superposition of |R, +2¢g) and
|L, —2¢g). Thus, just as waveplates are used to transform polarization
states on the Poincaré sphere, waveplates in combination with a g-plate
perform the same transformations on a hybrid OAM-Poincaré sphere.

The MUBS in dimension 2, {|{ Y} and {|§)j } are generated using
the sequence of a half-wave plate (HWP) followed by a g-plate. The

Iyt -45° -45°
Iy +45° +45° (89
55 —45° +45°
v +45° -45°

state | HWP before QP | HWP after QP

l)! 0° 0°
lp)? +45° 0° (S10)
lp)? 0° -
o) +45° -

Bob uses the same waveplate angles, but mirrors the sequence of
waveplates as Alice has in order to project his received photons onto a
particular state.

3. EXPERIMENTAL DATA

Coincidence counts are accumulated per 200 ms. For each of Bob’s
measurements, he records fifty data points. Bob obtains a probability-
of-detection matrix by averaging the data points for each measurement
and then normalizing over each state that Alice sends. The states that
Alice sends and the states that Bob projects onto are labelled on the
left and top, respectively, of each matrix below.

Normalized raw data for probability-of-detection matrix in dimen-
sion 2 as measured across the intra-city link using a g=1/2-plate, as
shown in Fig. 3a of the main text (top row):

W X & X
1)) [0.971 0.029 | 0.421 0.579

1> |0.062 0.938]0.677 0.323 11
5% l0.731 0.269 | 0.959 0.041
16> 10459 0541 |0.068 0.932
Target corrected data from (S11):
X ke A
12! [0.972 0.028 | 0.351 0.649
2
1> ]0.050 0.950 | 0.653 0.347 S12)

167 l0.725 0.275 | 0.961 0.039
16> 10463 0.5370.069 0.931
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Normalized raw data for probability-of-detection matrix in dimen-
sion 4 as measured across the intra-city link:

Yl 3wl 2wl Yl Nl el el el
|lp)1 0918 0.019 0.051 0.012|0.252 0.245 0.275 0.228
|¢/>3 0.020 0.937 0.038 0.005|0.190 0.192 0.312 0.306
|zp)2 0.012 0.156 0.816 0.012 | 0.279 0.277 0.289 0.155
|l//>4 0.149 0.009 0.018 0.824|0.152 0.195 0.384 0.269
|rp>1 0.319 0.125 0.325 0.231|0.869 0.039 0.064 0.029
|<p)2 0.252 0.217 0.239 0.292 | 0.038 0.822 0.042 0.098
|(p)3 0.185 0.177 0.447 0.191 | 0.065 0.027 0.872 0.037
|<,a>4 0.207 0.205 0.381 0.208 | 0.030 0.134 0.036 0.800

Target corrected data from (S13), as shown in Fig. 3a of the main
text (bottom row):

Yl 3wl 2wl Yl Nl el el el
|W>1 0.924 0.035 0.011 0.031|0.272 0.232 0.254 0.243
|l//>3 0.024 0.960 0.012 0.004 | 0.197 0.213 0.260 0.330
|zp)2 0.005 0.052 0930 0.013|0.239 0.301 0.301 0.159
|¢/>4 0.049 0.004 0.029 0918 | 0.094 0.242 0.433 0.232
|<p)1 0.376 0.108 0.321 0.195|0.874 0.033 0.065 0.028
|<p)2 0.273 0.197 0.255 0.275|0.035 0.825 0.045 0.096
|(p)3 0.200 0.132 0.511 0.157 | 0.060 0.016 0.889 0.035
|<p>4 0.186 0.163 0.365 0.287 | 0.026 0.129 0.043 0.803

Normalized raw data for probability-ofdetection matrix in dimen-
sion 4 on a turbulent night:

Ml 3@l 2l Yl Yol Xl el Xl
|n,0>' 0.741 0.032 0.043 0.184 | 0.370 0.168 0.364 0.098
|1//)3 0.096 0.722 0.138 0.044 | 0.120 0.432 0.221 0.228
|l//>2 0.043 0.177 0.755 0.025|0.276 0.247 0.197 0.281
Iz//)4 0.101 0.041 0.047 0.811|0.122 0.433 0.332 0.113
|¢,o)1 0.126 0.471 0.197 0.206 | 0.707 0.051 0.144 0.098
|g0)2 0.211 0.234 0.352 0.203 | 0.110 0.694 0.079 0.117
|t,0)3 0.265 0.285 0.259 0.191 | 0.195 0.056 0.632 0.117
|g0)4 0.478 0.146 0.185 0.191 | 0.048 0.103 0.075 0.775

4. NUMERICAL APPROACH FOR THE SECRET KEY
RATE CALCULATION

Here we use a numerical approach to calculate the secret key rate for
the MUBs in the current experiment that are shown in Egs. (S3-S5).
The secret key rate calculation below relies on the dual optimization
problem that has recently been introduced as an efficient numerical
approach for unstructured quantum key distribution [1]. The main
result in [1] indicates that the achievable secure key rate is lower
bounded by the following maximization problem,

K > g — H(ZA|ZB), (S15)
where
© := max [— ZZ};R(?)Z/]; -1 7], (S16)
z j
and
— - =
R(/l).*exp(—ﬂ—/%l"). (517)

(S14)

(S13)

Here Z4 (Zp) denotes the measurement performed by Alice (Bob)
to derive the raw key, and 7 = {y; := Tr(papl;)} are determined
through average value of experimental measurements.

For the generalized BB84 in dimension d = 4 with two MUBs, the
experimental constraints can be summarized to

Key-map POVM:  Zy = {lg)(yl.for i=1---d =4} (SI8)
Constraints: (1) = 1 (S19)

(Ex)=20 (S20)

(Ez) =0 (821)

where Ez (x) are coarse-grained error operators in Mg () MUBs and
defined as
Ex =1-

) (] ® )] (S22)

d=4
i

d
Ez=1-

=4

o) (el ® ) (el (S23)
1
Eqs. (S4) and (S5) show the definition for [i)’ and |@) basis states.

Figure S2 shows the numerical result of the optimization problem
in Eq. (S15) with MUBSs in Egs. (S4,S5) in comparison with the theo-
retical key rates in [2, 3]. This numerical approach may be extended to
find secret key rate per signal with two-way classical communications
to tolerate higher qubit error rates [4].

2
1
0
0 005 01 015 02
o

Fig. S2. Secret key rate per signal for BB84 in d=4 with 2 MUBs
Solution to the numerical optimization problem in Eq. (S15) are
shown for different values of average error rates (red dots). As it can
be seen, the numerical optimization saturates the bound and shows a
good agreement with the theory from [2, 3]. For more details on the
numerical approach see [1].
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