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Summary. — Nonlinear optics deals with phenomena that occur when a very
intense light interacts with a material medium, modifying its optical properties.
Shortly after the demonstration of first working laser in 1960 by Maiman (Nature,
187 (1960) 493), the field of nonlinear optics began with the observation of second
harmonic by Franken et al. in 1961 (Phys. Rev. Lett., 7 (1961) 118). Since then, the
interest in this field has grown and various nonlinear optical effects are utilized for
purposes such as nonlinear microscopy, switching, harmonic generation, parametric
downconversion, filamentation, etc. We present here a brief overview of the various
aspects on nonlinear optics and some of the recent advances in the field.
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1. – Introduction to nonlinear optics

Accordinǧ¡proofsAuthor please note that we have written in full the reference quota-
tions in the abstract and reordered those in the text accordingly, following the numerical
sequence. Please check, thanks to ref. [1], nonlinear optics is the study of phenomena that
occur due to the modification of material properties in the presence of light of high inten-
sity. The nonlinearity is associated with the fact that material response varies in a nonlin-
ear manner with the applied optical field. To study this effect, we consider the dependence
of the dipole moment per unit volume, or polarization P̃ (t) on the applied optical field
strength Ẽ(t). On application of the optical field, there is displacement of both electrons
and the nuclei with respect to the centre of mass of the molecule. Considering dipole ap-
proximation, an electric dipole is formed due to charge separation between the negatively
charged electron cloud and the positively charged nucleus. At optical frequencies, due to
its much larger mass, the oscillations in the nucleus are much weaker than the electronic
oscillations. Hence the nuclear contributions are far weaker than the electronic contri-
butions, at least for linear polarizability. The nonlinear susceptibility on the other hand
(manifested in terms of Raman scattering), might be comparable or even larger depending
on whether we are on or off resonance [2]. But for all practical purposes, we neglect the
nuclear contributions for simplicity in our present discussion. The bulk polarization of
the entire material is thus a vector sum of the dipole moments of all the molecules [3,4].
In a linear regime, the induced dipole also oscillates with the same frequency as the
driving field and each molecule of the material can be viewed as a harmonic oscillator.

Due to larger mass of the nucleus, these oscillations are very weak and about the mean
position of the molecules. The induced polarization in this case can be expressed as

P̃ (t) = ε0χ
(1)Ẽ(t),(1)

where ε0 is the permittivity of free space and the χ(1) is the linear susceptibility.
But for larger applied fields (comparable to inter-atomic fields) and proportionately

stronger oscillations, this approximation breaks down and the behaviour deviates from
that of a harmonic oscillator. In this anharmonic case, nonlinear terms come into play
which give rise to different frequency components in the oscillations. To account for this,
we expand the polarization P̃ (t) as a generalized power series in Ẽ(t) and include all the
nonlinear contributions as

P̃ (t) = ε0

[
χ(1)Ẽ1(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + . . .

]
,(2)

P̃ (t) = P̃ 1(t) + P̃ 2(t) + P̃ 3(t) + . . . .

The constants χ(2) and χ(3) are the second- and third-order nonlinear optical suscepti-
bilities, respectively. This is a very simplified notation and does not take into account
dispersion or losses because of the instantaneous nature of the response. Under general
circumstances when losses and dispersion are present, the susceptibilities depend on fre-
quency. If the vector nature of fields is also taken into account, then χ(1) is a tensor of
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rank 2, χ(2) a tensor of rank 3 and so on. P̃ 1(t) is called the linear polarization while
P̃ 2(t) and P̃ 3(t) are called the second- and third-order nonlinear polarizations respec-
tively. Thus, the polarization is composed of linear and nonlinear components. A time
varying nonlinear polarization is a source of newer electromagnetic field components and
hence is key to the description of nonlinear optical phenomena. This is evident in the
wave equation for nonlinear media:

�2Ẽ − n2

c2

∂2Ẽ

∂t2
=

1
ε0c2

∂2P̃NL

∂t2
.(3)

Here, the nonlinear polarization P̃NL drives the electric field Ẽ and the term ∂2P̃NL/∂t2

represents the acceleration of charges in the medium. This is consistent with Larmor’s
theorem that accelerating charges generate electromagnetic waves. It should be noted
that under certain circumstances such as resonant excitation of atomic systems or under
very high applied laser field strength, the power series representation of (2) may not
converge. Such cases are dealt with a formalism that includes the possibility of saturation
effects.

Susceptibilities may be complex or real depending on whether the nonlinear process
involves exchange of energy with the medium or not, respectively. When there is no
energy exchange between the interacting waves and the medium and the quantum state
of the medium remains unchanged in the end (there may be population transfers be-
tween real and virtual levels but they have a very short lifetime), the process is called a
“parametric process”. Examples include SHG, SFG, DFG, OPA, THG, Kerr nonlinear-
ity, SPM, XPM, FWM, etc, using standard notation that will be developed within this
chapter. When the quantum state of the medium is changed in the end, the process is
called a non-parametric process. Examples include SRS, SBS, multi-photon absorption,
saturable absorption, etc. A brief description of all these processes are provided in the
sections that follow.

2. – Second-order nonlinear optical processes

The discovery of second-harmonic generation (SHG) in 1961 by Franken et al. [5]
marked the beginning of the field of nonlinear optics. In 1965, ref. [6] reported the non-
linear light scattering in a quartz crystal generating light with frequency twice that of
the incident beam. Difference-frequency generation by a KDP crystal using non-collinear
light beams was also reported in 1965 in ref. [7]. Apart from second-harmonic gener-
ation, the effects that result from second-order nonlinearity or a non-zero χ(2) include
sum- and difference-frequency generation, optical parametric oscillation and spontaneous
parametric downconversion. Material symmetry plays a significant role in determining
the second-order response as only non-centrosymmetric materials, or materials lacking
inversion symmetry show a second-order response. This will be elaborated later. A brief
description of each of the second-order processes mentioned above is as follows.
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Fig. 1. – (a) Schematic showing SHG process. (b) Energy level diagram for SHG process.

2.1. Second-harmonic generation (SHG). – When a monochromatic laser beam of
electric field strength represented by

Ẽ(t) = Ee−iωt + c.c.(4)

is incident on a material with non-zero value of χ(2), it induces a second-order polariza-
tion given by

P̃ (2)(t) = ε0χ(2)
(
Ee−iωt + c.c.

)2
,(5)

P̃ (2)(t) = ε0χ
(2)

(
2EE∗ + E2e−2iωt + E∗2e2iωt

)
,

P̃ (2)(t) = 2ε0χ(2)EE∗ +
(
ε0χ

(2)E2e−2iωt + c.c.
)

.

The second term oscillates with a frequency 2ω and is the second-harmonic contribution
to the polarization, while the constant first term represents a static electric polarization
developed in the material (as ∂2P̃NL/∂t2 vanishes) and is called the optical rectification
term. So we see that the second-harmonic term scales quadratically with the incident
electric field. It is to be noted though that χ(2) has an order of magnitude value of
approximately 10−12 m/V, and one might thus think that this contribution is not signif-
icant. But with proper experimental conditions, very high efficiencies can be obtained
such that nearly all the incident power is converted into the second harmonic.

Figure 1b shows an energy level diagram of the SHG process. The solid line indicates
the ground state while the dotted lines indicate virtual levels. This diagram illustrates
that two photons of frequency ω are annihilated and one photon of frequency 2ω is
created. Some results of a laboratory demonstration of SHG are shown in fig. 2.

2.1.1. Mathematical description. The mathematical treatment provided here follows
those discussed in refs. [4,1] and [9]. To develop a mathematical description of SHG, we
need to derive the coupled wave equations for the incident pump field and the generated
second-harmonic field within the material. We assume that the medium is lossless at the
fundamental frequency ω1 as well as the second-harmonic frequency ω2 = 2ω1 and that
the input beams are collimated, monochromatic and continuous-wave. The total electric
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Fig. 2. – SHG from lithium niobate crystal. (a) Setup, (b) Screen output. (c) Trajectories of
the pump and the SHG [8].

field within the nonlinear medium is given by

Ẽ(z, t) = Ẽ1(z, t) + Ẽ2(z, t),(6)

where

Ẽj(z, t) = Ej(z)e−iωjt + c.c., Ej(z) = Aj(z)eikjz(7)

with kj = njωj/c and nj = [ε(1)(ωj)]1/2.
The amplitude of the second-harmonic wave A2(z) is taken to be a slowly varying

function of z when the nonlinear source term is not too large, in the absence of which
A2 is constant (as it should be for a plane-wave solution). The nonlinear polarization is

P̃NL(z, t) = P̃1(z, t) + P̃2(z, t),(8)

where

P̃j(z, t) = Pj(z)e−iωjt + c.c., j = 1, 2(9)

and

P2(z) = ε0χ
(2)E1(z)2 = ε0χ

(2)A2
1e

2ik1z.(10)

As each frequency component obeys the inhomogeneous wave equation (3), we can write
the wave equation for the second harmonic as

�2Ẽ2 −
n2

2

c2

∂2Ẽ2

∂t2
=

1
ε0c2

∂2P̃ 2

∂t2
.(11)



36 S. Choudhary and R. W. Boyd

On expanding the first term and rewriting the equation, we get

[
∂2A2

∂z2
+ 2ik2

∂A2

∂z
− k2

2A2 −
n2

2ω2
2

c2

∂2A2

∂t2

]
ei(k2z−ω2t) =(12)

−ω2
2

c2
χ(2)A1

2e2ik1z−ω2t.

We take the slowly varying amplitude approximation which allows us to neglect the first
term as it is much smaller than the second. Also, using k2

2 = n2
2ω2

2/c2, we get

2ik2
∂A2

∂z
= −ω2

2

c2
χ(2)A1

2eiΔkz,(13)

where Δk = 2k1−k2 is known as the phase or wave vector mismatch factor and is crucial
in determining the efficiency of the conversion process. It accounts for the conservation
of momentum for the SHG process when we consider the quantum mechanical picture.

For simplicity, we make the undepleted pump approximation which means that A1(z)
is taken to be constant. It is a valid approximation in most cases as at most a negligible
fraction of the pump power is transferred to the generated fields. This simplifies the
expression even further and we obtain

2ik2
dA2

dz
= −ω2

2

c2
χ(2)A1

2eiΔkz = −4ω1
2

c2
χ(2)A1

2eiΔkz.(14)

On integrating both sides over the length L of the medium, we obtain

A2(L) =
2ω1

n2c
χ(2) eiΔkL − 1

Δk
.(15)

For the case of perfect phase-matching or Δk = 0, on taking the limit Δk → 0 in the
above equation, we find

A2(L) =
2iω1

n2c
χ(2)A1

2L.(16)

The intensity is given by I2 = 2n2ε0c|A2(L)|2, where

|A2(L)|2 =
4ω1

2

n2
2c2

[
χ(2)

]2

|A1|4L2.(17)

So the SHG intensity scales quadratically with the length of the medium or crystal. For
the more general case of a nonzero Δk, we find

|A2(L)|2 =
4ω1

2

n2
2c2

(
χ(2)

)2

|A1|4L2 sinc2

(
ΔkL

2

)
.(18)
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Fig. 3. – Intensity of the second-harmonic wave versus wave vector mismatch.

In this case, the intensity of the second-harmonic wave varies with the phase mismatch
ΔkL as [sinc2(ΔkL/2)] as shown in fig. 3.

The coherence length is defined as the distance at which the output goes out of phase
with the pump wave and is given by

Lcoh =
2

Δk
.(19)

2.2. Sum frequency generation (SFG). – Sum frequency generation is a more general
situation than SHG in that the two input pump beams have different frequencies ω1 and
ω2, leading to the generation of the sum frequency ω3 = ω1 + ω2. The total electric field
associated with the input waves is given by

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c.(20)

The second-order nonlinear polarization in this case is given by

P̃ (2)(t) = ε0χ
(2)Ẽ(t)2(21)

which on substitution of the expression for electric field gives

P̃ (2)(t) = ε0χ
(2)

[
E1

2e−2iω1t + E2
2e−2iω2t + 2E1E2e

−i(ω1+ω2)t(22)

+ 2E1E2
∗e−i(ω1−ω2)t + c.c.

]
+ 2ε0χ

(2) [E1E1
∗ + E2E2

∗] .

The polarization P̃ (2)(t) can be expanded in its Fourier series and the corresponding fre-
quency components on both sides are equated to get the complex amplitudes of different
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frequency components of the nonlinear polarization

P (2ω1) = ε0χ
(2)E1

2; (SHG),(23)

P (2ω2) = ε0χ
(2)E2

2; (SHG),

P (ω1 + ω2) = 2ε0χ(2)E1E2; (SFG),

P (ω1 − ω2) = 2ε0χ(2)E1E2
∗; (DFG),

P (0) = 2ε0χ(2) [E1E1
∗ + E2E2

∗] ; (OR).

As we can see from the above equations, in the most general case of mixing between two
pump beams, we get second harmonic (SHG), sum frequency (SFG), difference frequency
(DFG) and optical rectification (OR). But all these components are not present at the
same time and it is mostly one component that is the dominant one which is determined
by the phase-matching condition (to be discussed later).

2.2.1. Mathematical description. The derivation of the coupled wave equations is similar
to that of second-harmonic generation except for the nonlinear source term which in the
case of two pump beams becomes

P̃3(z, t) = P3(z)e−iω3t, where P3(z) = 2ε0χ(2)A1A2e
−i(k1+k2)z.(24)

Also,

Ẽ3(z, t) = A3(z)ei(k3z−ω3t) + c.c., ω3 = ω1 + ω2,(25)

where

k3 =
n3ω3

c
, n3

2 = ε(1)(ω3).(26)

Note that the complex envelope A3(z) is again a slowly varying function of z in the
presence of a small nonlinear source term which would have otherwise been a constant
leading to a uniform plane-wave solution. Also, we make the undepleted pump approxi-
mation for both A1 and A2 and take them as constants in the analysis. As each frequency
component of the electric field satisfies the inhomogeneous wave equation, we write the
wave equation for the sum frequency term

[
∂2A3

∂z2
+ 2ik3

∂A3

∂z
− k3

2A3 −
n3

2ω3
2

c2

∂2A3

∂t2

]
ei(k3z−ω3t)(27)

= −2
ω3

2

c2
χ(2)A1A2e

i(k1+k2)z−ω3t

Again, making the slowly varying envelope approximation and substituting the value of
k3 = n3ω3/c, we obtain

dA3

dz
=

iχ(2)ω3
2

k3c2
A1A2e

iΔkz,(28)
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Fig. 4. – Schematic showing the process of difference frequency generation.

where Δk = k1 + k2 − k3 is the phase or wave vector mismatch factor. Integrating the
above equation along the length L of the crystal, we obtain

A3(L) =
iχ(2)ω3A1A2

n3c

eiΔkL − 1
iΔk

.(29)

The intensity of the sum frequency wave at the output of the crystal is given by I3(L) =
2n3ε0c|A3(L)|2 where

|A3(L)|2 =
2χ(2)2ω3

2I1I2

n1n2n3ε0c2
L2 sinc2

(
ΔkL

2

)
.(30)

So the sum-frequency intensity also shows a sinc2 dependence, as was observed for the
second-harmonic case. Figure 3 thus also shows the variation of sum frequency intensity
as a function of the phase mismatch factor.

2.3. Difference Frequency Generation (DFG). – In the previous section, we saw that
a difference frequency component was one of the outcomes when two beams interact in a
medium with non-zero value of χ(2). Let us now consider in detail such a situation, which
as shown in fig. 4, where two waves ω3 and ω1 interact in a lossless optical medium.

We use the undepleted pump approximation for the higher-frequency input wave ω3.
The coupled wave equations for the difference frequency wave ω2 and the lower-frequency
input wave ω1 are obtained by a method analogous to that for SFG and are as follows:

dA1

dz
=

iω1
2χ(2)

k1c2
A3A2

∗eiΔkz,(31)

and

dA2

dz
=

iω2
2χ(2)

k2c2
A3A2

∗eiΔkz,(32)

where

Δk = k3 − k1 − k2.(33)
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Fig. 5. – Spatial evolution of A1 and A2 for the case of perfect phase-matching in the undepleted
pump approximation.

On solving the above set of differential equations for the case of perfect phase-matching,
Δk = 0, we obtain

A1(z) = A1(0) cosh κz,(34)

A2(z) = i

(
n1ω2

n2ω1

)1/2
A3

|A3|
A1

∗(0) sinh κz,(35)

where the coupling constant is given by

κ2 =
χ(2)2ω1

2ω2
2

k1k2c4
|A3|2.(36)

Figure 5 shows the spatial evolution of A1 and A2 for the case of perfect phase-matching
in the undepleted pump approximation.

It is observed that both A1 and A2 show monotonically increasing growth and that
each field asymptotically experiences an exponential growth. The input field A1 retains
its initial phase and the DFG wave A2 possesses a phase that depends on both that of
the pump and of the ω1 waves. An intuitive explanation for this behavior is that the
presence of the ω2 wave stimulates the generation of the ω1 wave and vice versa. This
process of amplification of the signal wave ω1 due to nonlinear mixing resulting in the
production of an idler is known as “parametric amplification” as DFG is a parametric
process (due to the initial and final quantum-mechanical states being identical).

2.4. Optical parametric oscillation (OPO). – The previous section described the pro-
cess of parametric amplification by DFG. This gain can be used to produce oscillation
when it is supplied with the appropriate positive feedback. This can be done by placing
mirrors that are highly reflective at one or both of the signal and idler frequencies on
either side of the nonlinear medium as shown in fig. 6. If the end mirrors are reflecting
at both the signal and idler frequencies, the device is called a doubly resonant oscillator,
and if it is reflecting at either the signal or the idler frequency, then it is called singly
resonant oscillator. The OPO can be used as a source of frequency-tunable radiation for
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ωs = ω1  

χ(2)

L

ωi = ω2  ωi = ω2  

ωs = ω1  

R1, R2 R1, R2

(a) (b)

ωp = ω3  
ωp = ω3  

Fig. 6. – (a) Energy-level diagram for a parametric amplification process. (b) Schematic for an
OPO.

infrared, visible and ultraviolet spectral regions and can produce either continuous wave,
nanosecond, picosecond or femtosecond pulsed outputs.

2.5. Parametric downconversion. – The production of simultaneous photon pairs was
described as early as 1970 [10]. Also known as parametric fluorescence [11], parametric
scattering or SPDC, it is the spontaneous splitting of the pump photon ωp into signal,
ωs and idler, ωp photons such that ωp = ωs + ωi (energy conservation) and is stimulated
by random vacuum fluctuations. The emitted photons must satisfy the phase-matching
conditions due to momentum conservation, or �kp = �ks + �ki.

The emitted photon pairs are simultaneously entangled in several sets of comple-
mentary degrees of freedom. Specifically, the photon pairs can be entangled in time and
energy, in position and momentum, in orbital angular. The fact that the emitted photons
display entanglement has enormous implications for quantum information technologies.
For example, entanglement allows one to test some of the fundamental properties in
quantum mechanics such reality and non-locality. SPDC is also used to build single pho-
ton sources. Entanglement between successive pairs does not occur [12]. Figure 7a shows
the energy level diagram for this process and fig. 7b shows a typical experimental setup.

There are two different configurations for SPDC depending on whether the signal
and idler waves have the same or orthogonal polarizations; these are called type-I and
type-II configurations, respectively. For type I, the emission is in the form of concentric
cones of signal and idler beams such that each photon of an entangled pair lie opposite
to each other on the cones. In type II on the other hand, we get two separate cones for
the orthogonal polarizations and each photon of the entangled pair is found opposite to
each other on the respective cones. On the points of intersection of the two cones, we
get photons that are entangled in polarization [13].

ω

ω

ω

Fig. 7. – (a) Energy level diagram for a parametric downconversion process. (b) Schematic of
an experiment to perform coincidence counts for entangled photons.
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Fig. 8. – (a) Angle-tuned phase-matching. (b) Dispersion curves for a negative uniaxial crystal.

2.6. Phase-matching . – In the previous sections, it was explained that the efficiency of
all second-order processes depends on the crucial criterion of phase-matching. In vector
representation, it is written as

�k1 = �k1 + �k3(37)

where |�ki| = niωi/c. When we consider collinearly propagating waves in an isotropic
medium, this equation reduces to a scalar representation

n1ω1

c
=

n2ω2

c
+

n3ω3

c
.(38)

From energy conservation, we have ω1 = ω2 + ω3. In a non-dispersive medium, we have
n1 = n2 = n3 and so eq. (37) is automatically satisfied in a non-dispersive medium due
to frequency matching. But when we have a dispersive medium, the refractive indices are
not equal (and increase monotonically with frequency) which means that both frequency
and phase-matching conditions are not simultaneously satisfied and all the three waves
travel with different velocities in the medium. As a result, we cannot have phase-matching
in isotropic, dispersive media.

To compensate for the dispersion, birefringence, which is the dependence of refractive
indices on polarization of the waves and the directions with respect to the principal axes
of crystal, present in anisotropic media can be used. Hence, by properly adjusting the
crystal orientation and the wave polarizations, phase-matching can be achieved. In [14],
two ways of achieving phase-matching have been discussed: type I and type II. In type I,
both lower frequency waves have ordinary polarization while in type II, one of them
has the extraordinary polarization. Figure 8a shows how crystal angle can be tuned to
achieve phase-matching in a negative uniaxial crystal.

In the case of a uniaxial crystal, we have further two possibilities depending on whether
the ordinary refractive index or extraordinary refractive index is larger. Figure 8b shows
the dispersion curve for a negative uniaxial crystal. Table I shows the phase-matching
method for all four cases.

In cases where there is insufficient or no birefringence to compensate for dispersion,
other methods need to be applied to achieve phase-matching. The most important
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Table I. – Phase-matching methods for uniaxial crystal.

Positive Uniaxial Negative Uniaxial

(ne > n0) (ne < n0)

Type I n3
oω3 = n1

eω1 + n2
eω2 ne

oω3 = n1
oω1 + n2

oω2

Type II n3
oω3 = n1

oω1 + n2
eω2 n3

eω3 = n1
eω1 + n2

oω2

method is called quasi–phase-matching where we have a periodically poled nonlinear
crystal with the optic axis reversed at a period of less than or equal to twice the coher-
ence length Lcoh given by eq. (19). Hence every time the output goes out of phase with
the pump causing power to flow back from the output, the sign of χ(2) flips allowing
the output to grow monotonically. Figure 9b shows the quasi–phase-matched output in
comparison to perfectly phase-matched and phase-mismatched outputs.

3. – Third-order nonlinear optical processes

The third-order contribution to nonlinear polarization is given by

P̃ (3)(t) = ε0χ
(3)Ẽ(t)3,(39)

where Ẽ(t) is the total electric field. The polarization then has various frequency com-
ponents, the simplest being the third harmonic for the case of a monochromatic input.

Fig. 9. – (a) A periodically poled crystal with arrows showing the direction of optic axis.
(b) Comparison of perfect phase-matching and quasi–phase-matching.
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Fig. 10. – (a) Schematic for a THG process. (b) Energy level diagram for third-harmonic
generation.

3.1. Third-harmonic Generation (THG). – Let us consider the case of a monochro-
matic beam incident on the medium with the electric field given by

Ẽ(t) = Ee−iωt + c.c.(40)

The nonlinear polarization is then given by

P̃ (3)(t) = ε0χ
(3)

[(
E3e−3iωt + c.c

)
+ 3EE∗ (E + E∗) e−iωt

]
(41)

The first term oscillating at frequency 3ω gives the third harmonic contribution. The
energy level diagram for the process is shown in fig. 10.

3.2. Intensity dependent refractive index . – In eq. (41), the second term oscillating at
the frequency of the pump ω has the coefficient which depends on the intensity of the
pump. So this contribution leads to a refractive index which depends on the intensity of
the pump and is given by

n = n0 + n2I.(42)

It is also called the Kerr nonlinearity.
There are two ways in which this nonlinear effect becomes manifest: 1) Self-Phase

Modulation (SPM): When a strong pump beam modifies its own propagation and
2) Cross-Phase Modulation (XPM): When a strong beam modifies the propagation of
a weaker probe beam. Due to degeneracy factors associated with the coefficients, the
nonlinear refractive index due to two beams, n̄2

cross, is twice that for a single beam,
n̄2

self . By using the relation between the refractive index and susceptibility:

n2 = 1 + χeff ,(43)

where χeff = χ(1) + 3χ(3)|E|2, we find that

n2 =
3

4n0
2ε0c

χ(3)(44)

for the case of SPM.
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Fig. 11. – (a) Potential well for a non-centrosymmetric medium (b) Potential well for a cen-
trosymmetric medium.

4. – Effect of material symmetry

Material symmetry, most importantly the presence of inversion symmetry, plays a
very important role in determining the value of susceptibility. All even-order nonlinear
responses vanishes identically for centrosymmetric materials, that is, for materials that
lack inversion symmetry. Conversely, odd-order nonlinear response is in principle present
for all materials. Figures 11a and b show the potential wells that confine electrons to
their parent atom for centrosymmetric and non-centrosymmetric materials.

An intuitive explanation for this effect can be explained by examination of fig. 12,
that shows the response for linear, centrosymmetric, and non-centrosymmetric media for
a single-frequency applied field. While the response of a linear medium has the same
form as the applied field with no distortion, the nonlinear responses for both types of
nonlinear media shows significant distortion. For centrosymmetric media with potential
well as shown in fig. 12a, only odd-harmonics are present in the response. For non-
centrosymmetric media with potential well as shown in fig. 12b, both odd and even
harmonics are present. Hence, we get a second-order nonlinear response from only non-
centrosymmetric materials.

5. – Nonlinear optics with focussed Gaussian beams

The preceding sections have assumed infinite plane-wave sources for the description
on nonlinear effects. But in actual practice, we do not have infinite plane waves. The
laser beam typically is a Gaussian, and in this case we need to account for focussing
effects including that the effective interaction length is the Rayleigh range of the beam.
SHG using focussed Gaussian beams have been discussed in [15,16] and [17].

For a Gaussian beam with waist diameter w0, the Rayleigh range is

zR =
πw0

2

λ
(45)

and the peak intensity P/(πw0
2) occurs the waist The peak intensity is thus inversely
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Fig. 12. – Response of centrosymmetric or non-centrosymmetric media to a plane wave excita-
tion.

proportional to the length of the interaction region. So for maximum efficiency, the
Rayleigh range must be half the length of the medium. But ref. [18] gives a value of
L/2.84 for the confocal parameter (which is twice the Rayleigh range) for maximum
efficiency of SHG. This is because we have an additional phase mismatch of Δk = 3.2/L

due to the Guoy phase shift which needs to be compensated.

6. – Origin of third-order nonlinear response

The nonlinear susceptibility is a characteristic of any given medium, and its value
depends on the electronic and molecular structure of the material [9]. There are different
mechanisms responsible for introducing an intensity-dependent refractive index, and their
relative strengths and response times are summarized in table II.

Of the effects mentioned, the electronic polarizability is responsible for the generation
of optical harmonics and has the fastest response. In liquids, effects due to molecular
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Table II. – Typical values of nonlinear refractive index (for linearly polarized light).

Mechanism n2 (cm2/W) χ(3) (m2/V2) Response time (s)

Electronic polarization 10−16 10−22 10−15

Molecular orientation 10−14 10−20 10−12

Electrostiction 10−14 10−20 10−9

Saturated atomic absorption 10−10 10−16 10−8

Thermal effects 10−6 10−12 10−3

Photorefractive effect (large) (large) (intensity-dependent)

orientation and electrostriction dominate. Moreover, in solids with no degree of freedom
for molecular orientation, electrostriction dominates.

6.1. Quantum-mechanical explanation of nonlinear optical susceptibility . – The para-
metric nonlinear processes described in previous sections can be interpreted as a form of
wave mixing involving energy exchange among the interacting waves of different frequen-
cies. From a quantum mechanical perspective, they can be viewed as photon interaction
processes involving creation of photons of some frequency and annihilation of another.
This is represented in the energy-level diagrams illustrated previously. Thus, it involves
electron transitions between the different energy levels which may be resonant, if they
occur between real energy levels, or non-resonant, if they occur between virtual levels.
Resonant transitions leads to a very large value of the susceptibility. The density-matrix
formalism is the preferred means to derive expressions for the different orders of the non-
linear susceptibility χ(n). A perturbation expansion is used to determine the expectation
value of the induced dipole moment [9,1]. Figure 13 shows the expression and Feynman
diagrams [19,1] for the each element of χ(2), which represents a three photon interaction
process.

6.2. Non-resonant electronic nonlinearities. – Non-resonant nonlinearities arise due to
electronic transitions involving virtual levels [1] and are the weakest of all contributions
due to their off-resonance nature [1]. But these contributions are important as they are
present in all dielectric materials. They are also extremely fast with response times of
the order of 10−16 s, as the response time in this case is the time required for the atomic
cloud to become distorted due to an applied optical field. We can estimate the order of
magnitude of χ(3) in the far-off resonance case by considering the classical, anharmonic
model for an oscillator under far-off resonance excitation. The expression obtained is

χ(3) =
Ne4

ε0m3ω0
6d2

.(46)
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Fig. 13. – (a) Feynman diagrams for the electron transitions involved in a second-order process.
(b) Expression for χ(2) in terms of the transition dipole moments of the different transitions
involved.

For the typical values of N = 4 × 1022 cm−3, d = 3 × 10−10 m, and ω0 = 7 × 1015 rad/s
one finds that χ(3) � 3 × 10−22 m2/V2.

6.3. Molecular orientation effect . – Molecular orientation contribution to the third or-
der nonlinearity becomes important for anisotropic liquids i.e. liquids which have different
polarizability along different axes. When subjected to an optical field, the molecules ex-
perience a torque that twists them such that the axis with higher polarizability tends to
be aligned along the direction of the applied field. An example of such a liquid is carbon
disulfide (CS2), which is comprised of cigar-shaped (prolate spheroidal) molecule [1].

The polarizability along the molecular axis, α3 is higher than along the transverse
axis, α1. Due to this, the induced dipole moment has a much larger component along the
molecular axis than along the transverse axis and is not parallel to the applied field as
shown in fig. 14. A net torque then acts on the molecule given by �τ = �p× �E which tends
to align the molecule with the applied electric field. But thermal agitation introduces a
randomness in the molecular orientation. For a number density N temperature T , and
neglecting the local-field effects, the first- and third-order susceptibilities for the given
polarizabilities are given by

χ(1) = N

(
1
3
α3 +

2
3
α1

)
,(47)

χ(1) =
2N

45
(α3 − α1)2

kT
,(48)

where k is the Boltzmann constant. The response for this effect is slower as it takes some
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Fig. 14. – (a) The CS2 molecule. (b) Dipole moments that develop within the molecule upon
application of an electric field.

time for the molecules to align with the applied field, and the response time is of the
order of picoseconds.

6.4. Thermal effects. – Thermal contributions to the nonlinearity occur when the
incident laser power when passing through them medium is absorbed causing an increase
in temperature and a change in the refractive index of the material with temperature.
This change is negative for gases but may be either positive or negative for condensed
matter depending on the internal structure of the material [1]. It is a non-local optical
phenomenon as the refractive index change at some point depends on the laser intensity
nearby. The response time is of the order of nanoseconds and is very slow as the time
taken to change the temperature of the material can be long. Mathematically, this change
in refractive index with temperature can be expressed by the following relation:

ñ = n0 +
(

dn

dT

)
T̃1,(49)

where (dn/dT ) describes the temperature dependence of refractive index while T̃1 ac-
counts for the change in temperature due to incident laser field and obeys the heat
transport equation

(ρ0C)
∂T̃1

∂t
− κ �2 T̃1 = αĨ(r),(50)

where ρ0C denotes the heat capacity per unit volume, κ denotes the thermal conductivity
and α the linear absorption coefficient of the material.

There are a number of effects that can occur due to thermal contributions to the
nonlinearity such as the formation of thermally induced optical grating, pattern formation
etc., which have been discussed in [20-22].
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Fig. 15. – (a) Closed aperture scan schematic to measure real part of χ(3). (b) Open aperture
scan schematic to measure imaginary part of χ(3).

7. – Measurement of optical nonlinearity: Z-scan

Z-scan, first reported in [23], is a single beam technique to measure both real and
imaginary components of the nonlinear refractive index coefficient. To measure the real
(refraction) coefficient, a tightly focussed Gaussian beam is made incident on the sample
and the transmission through the nonlinear medium (assumed to be thinner than the
diffraction length of the beam) is measured at the far-field through an aperture. The
setup is shown in fig. 15.

To examine the effect of translation of the sample along the beam path, we consider a
material with a negative value of n2. We are ignoring the losses for the moment. When
the sample is far away from the focus, due to low intensity of the optical field on the
sample, there is no effect on the transmitted beam as the nonlinear contribution to the
refractive index n2I is very low. As the sample is moved from a negative z towards the
focus, a negative lensing effect on the beam takes place prior to focus and the beam diver-
gence at the aperture is reduced leading to increased transmission through the aperture.
When the sample is moved beyond the focal plane towards positive z, the negative lens-
ing effect causes defocussing at the aperture causing a decrease in transmission. This
suggests that there is a null at the focus. The transmittance as a function of sample
position for CS2 is shown in fig. 16a. The peak-valley positions are reversed if the sample
has a positive value of n2 which is the case for CS2.

When there are absorptive nonlinearities present, the transmittance curve shows
asymmetrical peak and valley distribution. The presence of multi-photon absorption
results in a larger valley while saturable absorption results in a larger peak. It is to be
noted that the nonlinear refraction effect is probed by the aperture. When the aperture
is removed from the far-field, the transmittance depends on absorption nonlinearities
and there is no effect of nonlinear refraction. The transmittance obtained for an open
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Fig. 16. – (a) Closed aperture scan result for CS2 from Bahae et al. [23]. (b) Open aperture
scan result for gold-silica composite [24].

aperture case is symmetrical with respect to the focus where the maxima (for saturable
absorption) or the minima (for multi-photon absorption) occurs. Hence, the Z-scan mea-
surement can not only be used to calculate the sign of nonlinear refraction, but the
absorption mechanism within the sample as well. Compared to the other methods of
measuring nonlinearity such as nonlinear interferometry [25, 26], degenerate four wave
mixing [27], nearly degenerate three wave mixing [28], ellipse rotation [29] and beam
distortion [30], Z-scan is a much simpler and sensitive process.

8. – Self-action effects

Self-action effects are effects in which a light beam modifies its own propagation by
means of the nonlinear response of the medium. Common self-action effisre discussed
briefly below.

8.1. Self-focussing . – When an intense beam of light modifies the optical properties of
the medium such that it is caused to come to a focus within the medium, the phenomenon
is called self-focussing of light, or catastrophic collapse [1,31]. For a positive value of n2,
a beam with a varying transverse intensity profile induces refractive index variation with
a maximum index at the centre of the beam that is larger than that at the periphery,
creating a positive lens such that the beam comes to focus within the material. This
situation results when the self-focussing effect is not compensated by diffraction or other
nonlinearities (like quintic nonlinearity due to χ(5)). Also, the beam power P must be
greater than the critical power for self-trapping, called Pcr, so that the self-focussing
effect is larger than diffraction and other defocussing effects.

Chiao et al. [32] give the following expression for Pcr assuming a circular beam of
uniform intensity and radius w0:

Pcr =
π(0.61)2λ0

2

8n0n2
,(51)
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where λ0 is the vacuum wavelength of the applied optical field. The value of Pcr depends
not only on the input beam profile, but is also different for bulk media and waveg-
uides [33]. The distance at which the intensity becomes anomalously large is called the
self-focussing length, zsf or collapse length, Lcol [31]. The expression for the self-focussing
length zsf given by Kelley is [31]

zsf =
2n0w0

2

λ0

1√
P/Pcr − 1

.(52)

Note that zsf scales with power as approximately 1/P 1/2. For sufficiently high pow-
ers though, this collapse distance scales with 1/P as was demonstrated for cw beams
propagating in CS2 [34, 35].

In the previous cases, it was assumed that the input beams have no noise. But when
noise is present, there is a second collapse threshold much greater than Pcr, called PMF,
where the input beam breaks up into multiple filaments for powers higher than PMF as
discussed by Fibich et al. in [36].

8.2. Optical solitons. – An optical soliton is any optical field that does not change its
shape (spatially or temporally) during propagation due to exact cancellation of nonlinear
and linear focussing and defocussing effects within the medium. We can have two kinds of
solitons depending on which profile, spatial or temporal, is preserved during propagation.
A spatial soliton is formed due to exact cancellation of self-focussing and diffraction,
while a temporal soliton is formed when there is cancellation of self-phase modulation
and dispersion within the medium. We may also have a spatio-temporal soliton when all
these effects balance simultaneously. We describe the spatial and temporal solitons in
the following sections.

8.2.1. Self-trapping and spatial solitons. When there is an exact balance between self-
focussing and diffraction, the beam of light propagates with a constant diameter and
the phenomenon is called self-trapping of light [32]. The power carried by the beam is
exactly equal to the Pcr, the critical power for self-trapping. Under these conditions, the
beam forms its own waveguide and propagates without spreading. The nonlinear pulse
propagation for this case is given by [1]

�T
2A + 2ik

∂A

∂z
= −2k2n2

n0
|A|2A,(53)

which is also called the nonlinear Schrödinger equation (NLSE). The first term on the
left accounts for diffraction while the term on the right accounts for self-focussing. When
A(x, y, z) varies along only one transverse dimension, say x, (or the case of a slab-shaped
beam) the solution is called a spatial soliton and is given by

A(x, z) = A0 sech(x/x0)eiγz,(54)
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Fig. 17. – Radial profile of the self-focussed beam, also called the Townes profile [32].

where x0 is the width of the field distribution of the soliton. For a cylindrical beam,
where the transverse field variation has both x and y components, there is no analytic
solution to the NLSE. The NLSE in cylindrical coordinates is written as

d2A(r)
dr2

+
1
r

dA(r)
dr

− A(r) + A3(r) = 0(55)

and the numerical solution, shown in fig. 17, is called the Townes profile [32].
In the absence of any saturation effects or plasma defocussing, this solution is not sta-

ble [37] and is susceptible to perturbations which might cause the beam to either diffract
or self-focus [38]. However, when a beam self-focusses, the on-axis component evolves
into the circularly symmetric Townes profile irrespective of the initial beam profile as
discussed in [39] and [40] and the collapsed on axis portion carries exactly Pcr power. But
for super-Gaussian beams, the beam self-focusses into a ring profile as reported in [41].

Spatial solitons can also be viewed as stationary wave packets that are localized in
space. As such, they have the unique property that their energy and momentum is
conserved even when they interact with each other leading to a number of interesting
effects like soliton fusion, fission and annihilation [37]. The first spatial soliton was
observed in a sodium vapor cell by Ashkin and Bjorkholm in 1974 [42]. Later on, spatial
solitons were also observed in CS2 in 1985 [43], in AlGaAs waveguides [44], and in nematic
liquid crystals [45].

8.2.2. Temporal solitons. When short optical pulses propagate within a non-dispersive,
nonlinear medium, it experiences a nonlinear phase shift due to the medium’s Kerr
response [1]. If we assume that response of the medium is instantaneous, then the
nonlinear phase shift experienced by an optical pulse of instantaneous pulse intensity
I(t) travelling through a medium of length L and central frequency ω0 is

φNL(t) = −n2I(t)ω0L/c.(56)



54 S. Choudhary and R. W. Boyd

This is known as self-phase modulation as a propagating optical pulse modifies its own
phase due to the medium’s nonlinearity as it propagates. This leads to spectral broad-
ening. But in most instances, we also need to take into account the dispersion within a
medium. For a pulse

Ẽ(t) = Ã(z, t)ei(k0z−ω0t) + c.c.,(57)

the pulse propagation equation for a dispersive and nonlinear medium is given by [1]

∂Ãs

∂z
+

1
2
ik2

∂2Ãs

∂τ2
= iγ

∣∣∣Ãs

∣∣∣2 Ãs,(58)

where

Ãs(z, τ) = Ã(z, t), τ = t − z

vg
,(59)

with vg being the group velocity. The second term on the left hand side of eq. (58) takes
account of group velocity dispersion while the term on the right hand side takes account of
self-phase modulation. Under proper circumstances, there can be an exact cancellation
of the pulse spreading due to the two effects and the pulse shape is preserved as it
propagates. These pulses are called temporal optical solitons. The fundamental solution
for eq. (58) is given by

Ãs(z, τ) = A0
s sech(τ/τ0)eiκz.(60)

Higher-order solutions to (58) have been discussed in [46] and [47]. Existence of temporal
solitons in optical fibre was proposed in 1973 by Hasegawa and Tappert in [48]. Since
then, many demonstrations of temporal solitons propagating over long distances have
been demonstrated in [49,50].

8.3. Small-scale filamentation. – Small-scale filamentation, also known as beam
breakup, is the breakup of an intense laser beam (with powers much higher than the
Pcr) into multiple filaments, due to amplification of modulational instabilities and noise
present in the optical wavefront by four-wave mixing [52]. The transverse intensity pro-
duced as a result may have a random distribution and reduced spatial coherence or may
have highly regular pattern as shown in fig. 18 [51].

Each of the filaments produced are almost ideal solitons, have the cylindrically sym-
metric Townes profile and carry the power Pcr [53]. Figure 19 illustrates the amplification
process of wavefront perturbations.

The field within the medium is composed of a strong on-axis component and weak,
side-modes with non-collinear but symmetric k-vectors. The variation of gain coefficient
of these side-modes with the magnitude of their wave vectors is shown in fig. 20. The peak
value of the gain coefficient occurs when the four-wave mixing process is phase-matched.
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Fig. 18. – (a) Schematic of the experimental setup used in [51]. (b) Honeycomb pattern obtained
in far-field.

Fig. 19. – Amplification of wavefront perturbations to give multiple filaments.
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Fig. 20. – Gain coefficient of side-modes vs. wave vectors.

Beam breakup into multiple filaments have been reported by many groups in [54-60].
A possible application reported in [61] suggests that loss of spatial coherence can be used
as a power limiter by reducing intensity at the focus (see fig. 21).

9. – Local-field effects

The treatment described above for calculating susceptibilities was based on macro-
scopic Maxwell equations which considers the spatial average of microscopic electric fields.
But the actual atomic transitions within the material are dependent on the local field
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Fig. 21. – (a) Small-scale filamentation in CS2. Top: near-field intensity distributions; bottom:
far-field intensity distributions with increasing pulse energy from left to right. (b) Far-field
diffraction angle vs. incident pulse energy showing a square-root variation of the angle.

which acts on the transition dipole moments associated with the material. For condensed
matter, with atomic densities of the order of 1015 atoms/cm3, the difference between the
local field and the macroscopic field becomes significant and local field needs to be con-
sidered [62]. There are different models for performing local-field corrections depending
on the optical medium under consideration. For a homogeneous medium, for example,
we multiply the local-field correction factor L to the macroscopic field to calculate the
local field. Different models applied to calculate L are: 1) the Lorentz local-field model,
2) the Onsager model, and 3) the real-cavity model. The Lorentz model and the Onsager
model are applicable for homogeneous media, with Lorentz model used specifically for
solids while Onsager model is used for polar liquids. The real-cavity model is used to
describe composite materials [62]. The Lorentz model is the most commonly used model
and is described in the following subsection.

9.1. Lorentz local field . – The Lorentz-Lorenz law gives the following expression for
the linear susceptibility [1]:

χ(1) =
Nα

1 − 4π
3 Nα

or
ε(1) − 1
ε(2) + 2

=
4π

3
Nα,(61)

where N is the number density of dipoles within the medium (assumed to be a rectangular
lattice) and α is the polarizability for a single dipole. The local field is expressed as the
sum of local-field contributions for dipoles within the assumed cavity (with radius greater
than dipole separation but less than optical wavelength), and the average macroscopic
polarization for dipoles outside the cavity. Hence, the local field Ẽloc is given (in Gaussian



Tutorial on nonlinear optics 57

Fig. 22. – Examples of nanocomposite geometries that have been used to construct materials
with enhanced nonlinear optical response [62].

units) by

Ẽloc = Ẽ +
4π

3
P̃ .(62)

Since P̃ = χ(1)Ẽ, the expression for local field is given by

Ẽloc =
ε(1) + 2

3
Ẽ.(63)

9.2. Nanocomposite materials for nonlinear optics. – Local-field effects can substan-
tially boost the nonlinear response. For example, it was shown in [4] that the expression
for the third order susceptibility with local-field effects taken into account is

χ(3)(ωk = ωl + ωm + ωn, ωl, ωm, ωn) = Nγ(3)(ωk)L(ωk)L(ωl)L(ωm)L(ωn),(64)

where γ(3) is the hyperpolarizability leading to the generation of the sum-frequency ωk

and the local-field correction factor is given by L(ωi) = [ε(1)(ω1) + 2]/3.
Composite materials are made of two or more constituents with different susceptibil-

ities, and they can alter the local field substantially depending on the choice of materials
and the configuration. Some examples of composite material structures are shown in
fig. 22. We can tailor these composites to exhibit the desired optical properties. In
fact, the composite material can possess an enhanced nonlinearity that can even exceed
those of individual materials. Especially important are nanocomposite materials; these
are nanoscale mixtures of different materials in which the individual particles are much
smaller than the optical wavelength, but nonetheless are large enough so that they can
be characterized by their own dielectric constants. Optical properties such as n2 and χ(3)
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Fig. 23. – (a) Layered geometry and experimental setup used in [63]. (b) Predicted susceptibility
enhancement curve.

of such materials are characterized by their effective or volume-averaged values. Some of
these geometries are described in the following subsections.

9.2.1. Layered composite materials. An example of a material with a layered geometry
is shown in fig. 23a. It is composed of alternating layers of materials, say a and b,
that have different optical properties and different thicknesses, which are assumed to be
much smaller than the optical wavelength. The structural properties of each constituent
are assumed to be essentially the same as for a bulk sample of such a material. The
optical properties of the composite structure are dependent on the volume average of
each constituent. For example, to enhance the contribution of material a to the nonlinear
optical response of the composite, material b, must have a larger refractive index than
material a. The enhancement of the χ(3) response occurs as a result of the non-uniform
distribution of the incident electric field between constituents a and b [64]. It was shown
theoretically [65] that to have such an enhancement, the more nonlinear material, for
instance material a, must have the smaller linear refractive index.

For p-polarized light incident on the layered composite, the effective permittivity εeff
is given in terms of the volume fractions fa and fb and the permittivities of individual
materials by [65]

1
εeff

=
fa

εa
+

fb

εb
.(65)

Moreover, for the limiting case in which component b has a vanishingly small nonlinear
response, the effective nonlinear response of the material becomes [65]

χ
(3)
eff =

∣∣∣∣εeffεa

∣∣∣∣
2 (

εeff
εa

)2

faχa
(3).(66)



Tutorial on nonlinear optics 59

For s-polarized light, the effective permittivities are

εeff = faεa + fbεb and χ
(3)
eff = faχ(3)

a .(67)

In [64], a layered geometry with alternating layers of titanium dioxide (material b) and the
nonlinear optical polymer PBZT (material a) was investigated and a maximum enhance-
ment of 35% of the third-order susceptibility was obtained which was experimentally
measured in terms of the acquired nonlinear phase-shift by a propagating laser beam.
In [63], the third-order susceptibility representing the electro-optic response of a layered
composite material made of alternating layers of barium titanate and doped polycarbon-
ate was investigated for different volume fill fractions. The predicted enhancement curve
vs. fill fraction of the polycarbonate is shown in fig. 23b. One sees that an enhancement
of the electro-optic response by a factor as large as 3.2 can be obtained.

9.2.2. Metal-dielectric photonic crystals. Metals possess a very large and fast intrinsic
nonlinear response. For example, the χ(3) value of noble metals is 106 times higher than
fused silica and has a sub-picosecond response [66]. However, it has proven difficult
to access this nonlinearity due to high attentuation associated with metals. Due to
this high attenuation, metals structures with a thickness larger than tens of nm are
non-transmitting. Attempts to circumvent this high loss using local-field effects have
been made by using colloidal metal nanoparticles [67], granular metal films [68], glasses
doped with nanoparticles [66] and metal-dielectric composites in Maxwell-Garnett [69]
and Bruggeman geometries [70,71].

It has been shown [72] that a metal-dielctric photonic crystal (MDPC) can be highly
transmissive within a certain controllable spectral range for metal thicknesses even larger
than the skin depth. Such a MDPC was proposed [73] and demonstrated [24] as a
nonlinear photonic material. It was argued [72, 73], that, since the large attenuation
of light in metals is more due to re-radiation than absorption, a method akin to Bragg
reflection can be employed to redirect the light in the forward direction. Figures 24a
and 24b compare the electric field distribution within a bulk Cu sample of thickness 40 nm
and a MDPC with alternating layers of gold and silica of thicknesses 16 nm and 98 nm
respectively, having resonance at 650 nm. Due to the resonance nature of the structure,
the nonlinearity was measured in terms of the fractional change in nonlinear transmission
and reflection and the comparison with bulk metal values is shown in figs. 24c and d.

9.3. Counterintuitive consequence of local-field effects. – In ref. [74], it was demon-
strated that local-field effects can be used for sign reversal of the nonlinear absorption
process. A colloid of metal nanoparticles in a glassy matrix showed saturable absorption,
due to local-field correction even though the metal and glass themselves showed induced
absorption. For a composite material consisting of a host material h (with permittivity
εh) and inclusions i (with permittivity εi) the effective permittivity of the medium as a
whole can be written in terms of the fill-fraction f of the inclusions

ε = εh
1 + 2ηf

1 − ηf
,(68)
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Fig. 24. – (a) Electric field distribution within bulk copper, (b) electric field distribution within
the MDPC, (c) normalized transmission measured for bulk copper and the MDPC using the
Z-scan method, and (d) measured fractional nonlinear change in reflection and transmission for
bulk copper and for the MDPC.

where

η =
εi − εh

εi + 2εh
.(69)

The third-order susceptibility can be written as

χ(3) = fqi
2|qi|2χi

(3) + qh
2|qh|2 [(1 − f) + xf ] χh

(3),(70)

where

x =
8
5
η2|η|2 +

6
5
η|η|2 +

8
5
η3 +

18
5

(η2 + |η|2)(71)

qi and qh are the local-field factors for the host and inclusions, respectively, and are given
by

qi =
ε + 2εh

εi + 2εh
,(72)

qh =
ε + 2εh

3εh
.(73)
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Fig. 25. – Normalized transmission curves obtained from Z-scan measurements showing reversal
of the sign of Im[χ(3)].

For small fill-fractions, ε � εh and qh � 1. So the effective χ(3) becomes

χ(3) = fqi
2|qi|2χ(3)

i + χ
(3)
h .(74)

Even though the sign of both contributions to χ(3) is the same, we can have cancellation
of the two at surface-plasmon resonance due to the condition

Re[εi(ωs)] = −2Re[εh],(75)

where ωs is the surface plasmon resonance frequency. The local-field factor for the
inclusions, qi, then becomes purely imaginary since qi ≈ 3Re[εh]/i Im[ε]. Thus, at the
surface plasmon resonance, qi

2 < 0. If χ
(3)
i and χ

(3)
h have the same sign, for a particular

fill-fraction f we have sign reversal of χ(3).
Physically, we have a phase-difference between the field within inclusion and the ex-

ternally applied field which is essentially given by the phase of qi. This phase-difference
becomes π/2 at surface plasmon resonance making qi imaginary. This phase-shift occurs
due to coupling of the p-polarized component of incident light with arbitrary polarization
into surface-plasmons at resonance. If χ

(3)
i and χ

(3)
h have the same sign, the sign-reversal

occurs at two fill-fractions f , as can be seen from eq. (74). But only the lower fill-fraction
is feasible as higher values of f lead to higher nonlinear absorption. In [74], a col-
loid of gold in 1, 1′, 3, 3, 3′, 3′-hexamethylindotricarbocyanine iodide (HITCI) (a reverse-
saturable absorber), methanol and water showed this sign-reversal in Im[χ(3)] which can
be seen in fig. 25 showing open-aperture Z-scan traces. Curves 1-5 have a valley indicating
reverse-saturable absorption, whereas 6-9 have a peak, showing saturable absorption.
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10. – Nonlinear plasmonics

Reasons for using plasmonic response in the context of nonlinear optics and photonics
include the following:

1) Strong local-field enhancement: Surface plasmon polaritons (SPP) and localized
surface plasmons (LSP) can provide very strong local-field enhancements [75].

2) Ultrafast response: Plasmonic excitations can respond on the scale of femtoseconds,
making ultrafast signal processing possible [76].

3) Plasmon resonances are very sensitive to the dielectric constant of surrounding
media [77]. This fact allows for the tailoring of the plasmonic response.

4) Sub-wavelength dimensions: At the nanoscale, plasmonic structures have very sub-
wavelength dimensions and phase-matching is not important. Thus the nonlinear
optical signal is emitted in all directions, irrespective of the propagation direction
of the incident field and is incoherent [78].

Limiting factors to plasmonic responses are ohmic and radiative losses, which not only
reduce the propagation length of SPP but also the local-field enhancement.

SHG using plasmonic structures has been achieved using different configurations. The
very first example employed SHG from surface enhancement using roughened silver sur-
faces [79] where there was considerable enhancement of the SHG signal compared to a flat
surface. Other methods employing surface enhancement have been reported in [80, 81].
Third-harmonic generation due to surface enhancement has also been reported in [82].
SHG from individual nano-particles such as gold nano-spheres [83], nano-cones [84], nano-
apertures [85] and nano-cups [86] have also been reported. Structured plasmonic surfaces
which are non-centrosymmetric like arrays of split ring resonators (SRR) [87], arrays of
L-shaped nano-antennas [88] have also been reported to have enhanced SHG.

The intrinsic nonlinear response of SPPs has been explored [89] for gold films. These
results showed a strong wavelength dependence of the nonlinear refraction as well as in-
crease in the nonlinear absorption with larger pulse durations. This increase in nonlinear
absorption was attributed to the “hot-electron” effect or “Fermi-smearing” mechanism,
which is a kind of thermal effect with a sub-picosecond response.

11. – Slow and fast light

The group velocity of light is the velocity of propagation of the envelope of a light
pulse. It can be represented mathematically as vg = c/ng where we have introduced the
group index [90]

ng = n + ω
dn

dω
,(76)

where n is the refractive index and ω is the frequency of light. The phase velocity is the ve-
locity with which points of constant phase of an optical field propagate within the medium
and is equal to c/n. When light propagates in a medium for which the group velocity vg

is much smaller than the speed of light in vacuum, that is, for vg � c, the phenomenon is
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Fig. 26. – Dispersion curves for absorption and gain resonances.

called slow light. Fast light occurs when the group velocity becomes larger than c, which
is also called superluminal propagation, or when vg is negative, which is also known as
backward propagation. From the expressions for the group index and group velocity, it is
clear that a higher group index results in a lower group velocity, which is possible if the
value of dn/dω is large and positive, which is possible in the case of normal dispersion.
For fast light, dn/dω must be large and negative, which is possible for anomalous disper-
sion [91,92]. Thus, resonant systems having an absorption (gain) resonance can be used
to achieve slow (fast) light. To examine this argument more fully, let us consider the plots
of the absorption, gain α and refractive index n vs. ω as shown in fig. 26. The motivation
is distortion-free propagation of pulses through media with different group indices.

At the resonance, the absorption (gain) has a maxima and due to Kramers-Kronig
relations, the refractive index makes a transition from maxima (minima) to minima
(maxima). This steep transition results in a large value of dn/dω and consequently in
a lower or higher group velocity depending on the sign of dn/dω. For resonances in an
atomic vapor, this group index can become as large as 104. But close to resonance the
absorption also becomes large, and the slow (fast) is no longer easily measurable. The
first experimental observation of slow light and fast light in resonant systems with negli-
gible pulse distortion was by Carruthers and Bieber in 1969 [93]. But these results were
limited by the presence of strong resonant absorption. To counteract the effect of large
absorption, many schemes have been employed such as electromagnetically induced trans-
parency (EIT) [94], coherent population oscillation (CPO) [95-98], stimulated Brillouin
scattering (SBS) [97-99], stimulated Raman scattering (SRS) [100] and couple resonator
pptical waveguides (CROWs) [101]. A very important experiment using Bose-Einstein
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condensates achieved slow light with group velocity of 17 m/s using EIT [94]. EIT was
first described theoretically by Harris et al. [102] and is a technique in which, under
the influence of a large saturating optical field, the material is rendered transparent to
resonant laser light. In the experiment of Hau et al. [94], the nanokelvin temperatures of
the sample caused reduced Doppler broadening making the dispersion curve very steep
leading to such a low group velocity. EIT was also used later by Budker et al. in a Rb
vapor cell to achieve group velocities as low as 8 m/s [103]. Smilar technique was used
later to achieve “stopped-light” [104].

Similarly, electromagnetically induced absorption has been used to achieve superlumi-
nal propagation, or fast light in [105] with group velocity of −c/23 000. Since slow light
has possible applications for tunable optical delays, optical memories, and data storage,
a slow light source at room temperature is desirable. Some techniques to achieve slow
light at room temperatures are described in the following subsections.

11.1. Slow light using SBS . – Slow light using SBS in single-mode optical fibres at
telecommunication wavelengths has been demonstrated [97, 99]. In this case, we have
counterpropagating signal waves (ω) and pump waves (ωp) within the fiber, and the
maximum delay is produced when the signal frequency corresponds to Brillouin resonance
frequency, i.e. ω = ωp−ΩB , where ΩB is the Brillouin frequency. Due to a lowered group
velocity, one observes a delay in the pulse propagation time, which can be adjusted by
varying the intensity Ip of the pump beam. The SBS process is a gain process in which
the generated Stokes wave undergoes amplification by means of its coupling with the
pump wave and an acoustic wave [1, 47]. Mathematically, the signal intensity variation
with pump and signal is expressed as

dIs

dz
= −gIsIp where g = g0

(ΓB)
ΓB + 2i(ω − ωp)

.(77)

Here g is the complex gain factor associated with the SBS process. The nonlinear re-
fractive index n2 thus depends on the imaginary part of g from which the propagation
vector, ks, and subsequently the group velocity can be calculated as vg = (dks/dω)−1.
The transit time difference for a medium of length L can be subsequently calculated, as
discussed in ref. [91]. Figure 27 shows the temporal evolution of Stokes pulses for a given
gain value and different pulse lengths. There are several limiting processes that limit
the observed delay, such as higher-order dispersion effects for very short pulse lengths,
gain saturation for very high input Stokes pulse intensities, and spontaneous Brillouin
scattering for very high gain values.

11.2. Slow light by coherent population oscillations. – Coherent population oscillations
are a quantum effect that lead to the creation of a spectral hole in the absorption profile of
a probe beam passing through an appropriate medium. These population oscillations are
a periodic modulation of the ground state populations at the beat frequency δ between
the pump and probe waves. For δ ≤ (1/T1), with T1 being the population relaxation time,
these population oscillations have a significant magnitude. This method of introducing a
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Fig. 27. – Temporal evolution of Stokes pulses for (a) 63 ns duration pulse, (b) 15 ns duration
pulse.

spectral hole in a homogeneously broadened absorption spectrum was first predicted by
Schwartz and Tan in [106] and was demonstrated by Hillman et al. for the case of a ruby
crystal pumped by an Ar ion laser [107]. Slow light using this method of introducing
a spectral hole was demonstrated in a ruby crystal where group velocities as low as
57.5± 0.5 m/s was observed in [96]. Here, a laser input at 514.5 nm from an Ar ion laser
with pulse duration of the order of 1 ms was amplitude modulated to create frequency-
shifted pump beams which were then focussed tightly within the crystal. A very narrow
spectral hole of linewidth (HWHM) 35.8 Hz was observed which broadens with increased
power. It is this narrow dip in the absorption profile that leads to very large values of

Fig. 28. – Normalized input and output pulse intensities for different pulse durations.
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Fig. 29. – Left: Conceptual prediction of superluminal propagation. Right: Laboratory results
of Bigelow et al. (2003) [95].

dn/dω and hence very low group velocities. Figure 28 shows the different pulse delays
with increased pulse durations.

Coherent population oscillations have also been used to achieve superluminal propa-
gation in alexandrite due to formation on an anti-hole (increased absorption in a narrow
spectral region) [95]. The superluminal response obtained in laboratory is shown in
fig. 29.

11.3. Slow and fast light in Erbium-Doped Fibre Amplifiers (EDFAs). – Slow and
fast light has been successfully demonstrated [98] using the nonlinear optical response of
EDFAs. The mechanism is that of coherent population oscillations (CPOs) involving the
erbium ground-state population. Because of the widespread use of EDFAs in telecom-
munications, a slow-light source using EDFA has many potential important applications.
Also, the use of fibre allows longer interaction lengths causing even larger delays. The
width of the spectral hole is determined by the frequency of the population oscillations.
Figure 30 shows the dependence of the fractional pulse advancement on both modulation
frequency and on laser power.
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Fig. 30. – Dependence of fractional pulse delay after propagation through EDFA on the pump
frequency and power.

12. – Spontaneous and stimulated light scattering

Until now, we have dealt with parametric processes which involve light-by-light scat-
tering. We will now discuss inelastic scattering of light by various material media. Light
scattering occurs due to fluctuations and inhomogeneities in optical properties of the
medium. A completely homogeneous medium cannot scatter light into directions other
than the exact forward direction, as a consequence of complete destructive interference
that occurs in other directions [108]. Scattering into the forward direction is fully coher-
ent and is the origin of the index of refraction [109].

Figure 31 illustrates this concept where we see that if the density of the material is
uniform, the contribution due to molecules in volume dV1 exactly cancels that due to
molecules in dV2 in all other directions except forward, while for a non-uniform material
density, these contributions do no exactly cancel out. Light scattering can be classified

Fig. 31. – Light scattering in a material medium.
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Fig. 32. – (a) A general light scattering experiment, (b) Spectrum of the scattered light showing
source of various frequency components.

as stimulated or spontaneous depending on whether or not the fluctuations responsible
for the scattering are induced by the incident laser field.

Let us next consider the most general case of a light scattering experiment as shown
in fig. 32a. When we examine the spectrum of the scattered light, as shown in fig. 32b, we
find contributions from different scattering mechanisms such as Rayleigh, Raman, Bril-
louin and the distant wing of the Rayleigh line. The frequency components of scattered
light which are lower (higher) than that of the incident field are called Stokes (anti-
Stokes) [1]. Raman scattering occurs due to interaction of light with the vibrational
modes of molecules of the medium and is equivalent to scattering from optical phonons.
Brillouin scattering occurs due to scattering of light from propagating density waves or
sound waves and is equivalent to scattering from acoustic phonons. Rayleigh scattering
on the other hand occurs due to static or non-propagating density fluctuations and is
quasi-elastic in nature as it induces no frequency shift. Rayleigh-wing scattering occurs
in anisotropic molecules due to fluctuations in molecular orientation and due to a very
rapid reorientation of molecules, has a very broad spectrum. Table III states the typical
linewidth, frequency-shifts, relaxation times and gain for the different light scattering
processes.

12.1. Stimulated light scattering . – Spontaneous light scattering is a weak process and
the efficiency is quite low even for condensed matter. Stimulated processes on the other
hand can be highly efficient. Also, the emission from spontaneous scattering is in the
form of a dipole, while that for a stimulated light scattering is in the form of a narrow
cone in the forward or the backward direction [1]. Conceptually, there are two separate
configurations for studying stimulated light scattering [1]:

1) The generator configuration: In this case, only the pump beam is applied externally
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Table III. – Typical values of parameters for different light scattering processes.

Process Shift (cm−1) Linewidth (cm−1) Relaxation Time (s) Gain (m/MW)

Raman 1000 5 10−12 5 × 10−5

Brillouin 0.1 5 × 10−3 10−9 10−4

Rayleigh 0 5 × 10−4 10−8 10−6

Rayleigh-wing 0 5 10−12 10−5

to the scattering medium, and the Stokes signal wave and phonon wave are created from
noise within the medium. This process is shown in fig. 33a. For stimulated Brillouin
scattering (SBS), the Stokes wave is amplified in all directions except in the exact forward
direction, although it is usually observed only in the backward direction due to maximum
spatial overlap with the pump in this case. Conversely, for stimulated Raman scattering
(SRS), the Stokes signal is emitted in both the forward and backward directions.

2) The amplifier configuration: In this configuration, as shown in fig. 33b, both the
pump and a weak Stokes seed signal are applied externally to the medium, and both
the Stokes signal and the phonon waves are amplified. A strong coupling between the
Stokes beam and pump occurs only when the frequency of the seed is close to the Stokes
frequency of the generator case.

Hellwarth in [110] has explained the fundamental relation between spontaneous and
stimulated light scattering in terms of the photon occupation numbers in different field
modes. He argues that the probability per unit time PS for a photon to be emitted into
Stokes mode S is given by

PS = DmL(mS + 1),(78)

where mL is the mean number of photons per mode in the incident laser field, mS is the
number of photons in the Stokes mode and D is the proportionality constant that depends

Fig. 33. – (a) Generator configuration for SBS; (b) amplifier configuration for SBS.
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on the physical properties of the medium. From this assumption, one can deduce that
the rate of change of the number of photons in a given Stokes mode for a wave traveling
in the positive z direction with velocity c/n is given by

dmS

dz
=

1
c/n

DmL(mS + 1).(79)

For the case of spontaneous emission, the occupation number in Stokes mode can be
assumed to be much smaller than unity and the solution of eq. (79) becomes

mS(z) = mS(0) +
1

c/n
DmLz.(80)

Hence, the Stokes intensity increases linearly with the length of the Raman medium. For
the case of stimulated scattering, the number of photons contained in the Stokes mode
can be assumed to be much larger than unity, which leads to the prediction

mS(z) = mS(0)eGz where G =
DmL

c/n
,(81)

where G is the Raman gain coefficient. Thus, the Stokes intensity for a stimulated
scattering case increases exponentially with z. The significance of this result is that Hell-
warth was able to obtain an equation that relates the gain coefficient G of the stimulate
process to the quantity D that quantifies the efficiency of the spontaneous process. For
this reason, Hellwarth’s result is sometimes said to show that for any spontaneous light
scattering process there is a stimulated analog.

12.1.1. Stimulated Brillouin scattering (SBS). Spontaneous Brillouin scattering was first
predicted theoretically in 1918 by Mandelstam [111] and then later independently by
Brillouin [112] in 1922. Gross [113] provided the first experimental evidence of Brillouin
scattering in crystals and liquids. Figure 34 shows the scattering of an incident laser
beam of frequency ωL with a travelling pressure (or density wave) i.e. a sound wave of
frequency Ω.

Due to the acoustic wavefronts travelling away from the incident laser wave, the
scattered light is shifted downward in frequency leading to a Stokes wave with frequency
ωS = ωL−Ω. The interference of this pump wave and the Stokes wave leads to a wave of
frequency ωL −ωS which is of course equal to Ω and thus the acoustic wave is reinforced.
This acoustic wave further beats with the incident laser field leading to Stokes wave and
so on. This situation leads to a kind of positive feedback system which under proper
circumstances leads to amplification of both the Stokes wave and the acoustic wave
exponentially [1]. There are two different mechanisms for Stokes wave amplification due
to the acoustic wave and the laser field:

1) Electrostriction: In the presence of a high optical intensity, materials have the
tendency to become more compressed, leading to increased density. Here, the
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Fig. 34. – Scattering of an incident laser beam with sound wave.

interference between the Stokes wave and the laser field leads to fringes of high and
low light intensity which show density variation due to electrostriction and hence
lead to a propagating density wave or acoustic wave.

2) Optical Absorption: In regions of high optical intensity, heat generation can cause
material expansion leading to decreased density on those regions. This process also
leads to the generation of an acoustic wave.

Let us consider the case of an SBS generator as shown in fig. 33a. From the phonon
dispersion relation ΩB = |qB |v and momentum conservation, we get the expression for
Brillouin frequency as

ΩB =
2v
c/nω1

1 + v
c/n

.(82)

Since nv/c is very small for most cases, we can approximate the Brillouin frequency as

ΩB =
2v

c/n
ω1.(83)

For the case of an SBS amplifier, the Stokes frequency ω2 is determined by the lab-
oratory settings and the acoustic wave frequency is given by Ω = ω1 − ω2. In a sense
the Stokes frequency ω2 is arbitrary, but the acoustic wave is efficiently excited only
when the Stokes seed frequency is chosen such that Ω lies within the Brillouin linewidth
ΓB. If we consider the coupled-amplitude equations for the SBS amplifier case, we see
that there is no phase mismatch term, indicating that SBS is a pure gain process and is
automatically phase-matched. Hence, we can write the coupled-intensity equations as

dI1

dz
= −gI1I2,(84)

dI2

dz
= −gI1I2,(85)
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Fig. 35. – Real and imaginary parts of Raman susceptibility.

where g is the SBS gain factor given by

g = g0
(ΓB/2)2

(ΩB − Ω)2 + (ΓB/2)2
, g0 =

γ2
eω2

nvc3ρ0ΓB
.(86)

For a constant pump intensity, the output intensity for a medium of length L is given by

I2(z) = I2(L)egI1(L−z).(87)

12.1.2. Stimulated Raman scattering (SRS). C.V. Raman discovered the spontaneous
Raman scattering in 1930 [114]. Stimulated Raman scattering occurs when the incident
optical field within a medium interacts with the vibrational modes of molecules. Let
us consider the simplest, classical explanation of SRS as discussed in [115], where each
vibrational mode is described by a simple harmonic oscillator with time-varying inter-
nuclear distance as q̃(t), resonance frequency ωv, damping constant γ and equilibrium
inter-nuclear separation as q0. The equation of motion can be written as

d2q̃

dt2
+ 2γ

dq̃

dt
+ ωv

2q̃ =
F̃ (t)
m

(88)

with F̃ (t) being the restoring force and m the reduced nuclear mass. It is assumed that
the optical polarizability depends on the inter-nuclear separation q̃(t) according to

α̃(t) = α0 +
(

∂α

∂q

)
0

q̃(t),(89)

where α0 is the equilibrium polarizability. Oscillations in the molecular coordinate q̃(t)
lead to periodic modulations in the polarizability with time which in turn leads to vari-
ation in the refractive index with time as

ñ(t) =
√

ε̃(t) = [1 + Nα̃(t)]1/2
.(90)

This modulation in refractive index with time forms frequency sidebands on the trans-
mitted light with frequency ±ωv. These frequency sidebands then beat with the incident
laser field to generate a Stokes wave with frequency ωS = ωL − ωv and modulate the
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intensity at the same frequency. This modulated intensity in turn coherently excites the
molecule to oscillate at ωv. From the expression for the polarizability α in eq. (89), we
can derive the expression for Raman susceptibility which is given by

χR(ωS) =
ε0(N/6m)(∂α/∂q)0

2

ωv
2 − (ωL − ωS)2 + 2i(ωL − ωS)γ

.(91)

The real and imaginary parts of Raman susceptibility are shown in fig. 35. The valley
of the imaginary part of susceptibility denotes the Raman resonance.
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