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We demonstrate a direct relationship between tunneling delays in a one-dimensional potential barrier and the
delays observed in frustrated total internal reflection. Expressions relating the group delays in these two cases
have been formulated in the past [A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 3283 (1994)], but only
for certain limits of the normalized particle energy E/V0. Here, we derive a single expression relating these
two group delays that is valid for arbitrary particle energy by decomposing the group delay into dwell-time and
self-interference components. This decomposition also explains why the predicted delay differs in the limiting
cases observed by Steinberg and Chiao.
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I. INTRODUCTION

The delay experienced by a particle tunneling through
a barrier has been a topic of scrutiny for the better part
of a century [1–4]. The traditional definition of the group
delay τg acquired when tunneling through a barrier of length
L is calculated by the method of stationary phase and is
frequently called the phase time or Wigner time. The group
delay can surprisingly become shorter than the “equal time”
c/L, suggesting superluminal transit of the tunneled particle.
Other definitions, including a “semiclassical time” and “dwell
time,” have been proposed to try and resolve this apparent
paradox [5].

More recently, Winful has provided an interpretation of
tunneling delays that emphasizes the cavity-like nature of the
phenomenon [6]. He emphasizes the recognition of tunneling
as a quasistatic process and the interpretation of the group
delay as a cavity lifetime rather than a transit time. His analysis
decomposes the group delay into two more fundamental
components: the dwell time τd and the self-interference delay
τi . The dwell time represents the average time spent in the
barrier by a particle and is reminiscent of a collision time [5].
The self-interference delay represents additional delay caused
by the interference of the incident and reflected parts of the
particle wave function in front of the barrier and is proportional
to reactive stored energy.

The group delay in the case of two-dimensional (2D)
tunneling of electromagnetic waves in frustrated total internal
reflection (FTIR), has been worked out by several authors
for the simple case of a glass-air-glass geometry [7–9]. The
similarities between the 2D tunneling and one-dimensional
(1D) tunneling problems have also been noted [10]. Steinberg
and Chiao performed the first one-to-one mapping of the
two-dimensional FTIR problem onto the one-dimensional
quantum-mechanical problem but found that the mapping
could only be completed by approximation in two limits of
the one-dimensional particle energy E and barrier potential
V0, namely, E � V0 and E � V0 [8]. Curiously, the mapping
was qualitatively different for the two limits of particle
energy.

In this paper we will demonstrate that, by utilizing the
dwell-time and self-interference-delay decomposition of Win-
ful, we can derive a more accurate mapping between the 2D
and 1D tunneling problems. This mapping produces results
consistent with those of Steinberg and Chiao in the appropriate
limits but is no longer limited to those special cases. Rather, our
expression provides a complete description of the process for
any value of 1D particle energy E and illustrates the changes
that occur between the limiting cases observed previously. We
feel that our interpretation provides a deeper physical insight
into the tunneling phenomenon.

We will begin by presenting an overview of prior work
mapping 2D tunneling onto the 1D tunneling problem and
reviewing the canonical definitions of the dwell time and
self-interference delay. These definitions will then be used
to perform a decomposition of the 2D tunneling delay for TE
and TM boundary conditions and to demonstrate that such a
decomposition leads to a one-to-one mapping between the 2D
and 1D tunneling delays. Finally, we will discuss a practical
issue that dictates which portions of the group delay can
and cannot be measured in the double-prism FTIR geometry
proposed in [8].

II. PREVIOUS WORK

The 1D tunneling problem is thoroughly covered in [11].
The system is shown in Fig. 1. A particle of energy E is
incident from a region of zero potential energy (region I) upon a
barrier of potential energy V0 that extends from x = 0 to x = L

(region II). The potential energy returns to V = 0 for x > L

(region III). The stationary state wave functions in each region
are found from the time-independent Schrödinger equation
and have the following form:

�I(x) = eikx + Re−ikx, (1a)

�II(x) = Ce−κx + Deκx, (1b)

�III(x) = T eikx. (1c)

In these equations we have explicitly defined the particle
wave vector k in regions I and III (iκ in region II) in the usual
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FIG. 1. Schematic diagram for one-dimensional barrier tunnel-
ing. A particle of energy E approaches a barrier of potential V0. ψ is
the wave function in each region.

fashion, with E = h̄2k2/2m and κ = √
2m(V0 − E)/h̄ for a

particle of effective mass m. Finding the coefficients R, T , C,
and D is a straightforward exercise in algebra. We will quote
the results, continuing to use a notation similar to that given
in [11,12] for consistency:

R = − i�′

g
sinh κL, (2a)

T = e−ikL

g
, (2b)

C =
(

1 − ik

κ

)
eκL/2g, (2c)

D =
(

1 + ik

κ

)
e−κL/2g, (2d)

where several parameters have been defined as follows to
simplify the notation:

� = 1

2

(
κ

k
− k

κ

)
, (3a)

�′ = 1

2

(
κ

k
+ k

κ

)
, (3b)

g = cosh κL + i� sinh κL. (3c)

A spatially localized wave packet is constructed from a
narrow band of stationary states. The group delay, which
measures the time between the arrival of the wave-packet peak
at x = 0 and its appearance at x = L, can then be calculated
by applying the method of stationary phase. The group delay
in transmission τgt is calculated by taking the energy derivative
of the transmission phase shift,

τgt = h̄
dφ0

dE
, (4)

where φ0 = φt + kL and φt = arg(T ). A similar expression
can be found for the group delay in reflection,

τgr = h̄
dφr

dE
,

where φr = arg(R). It can be shown that for a symmetric
barrier, τgt = τgr [13–15]. We will use τg to represent the
group delay calculated with this Wigner phase-time method
for a symmetric barrier.

The transmission phase φ0 can be calculated from T as
given in (2b), yielding

φ0 = − arctan(� tanh κL).

Δy

L

θ

n1 n1n2

ΨI =(eikxx + Re-ikxx)eikyy

ΨII = (Ce-κx + Deκx)eikyy

ΨIII=(Teikxx)eikyy

y

x

FIG. 2. (Color online) Schematic diagram for two-dimensional
barrier tunneling.

Differentiating this phase with respect to energy and simplify-
ing gives us an expression for τg in terms of k, κ , m, and L,

τg = mL

h̄k

cos2 φ0

2

×
[(

κ

k
+ k

κ

)2 tanh κL

κL
+

(
1 − k2

κ2

)
sech2κL

]
. (5)

To draw analogies between the 1D tunneling problem and
FTIR, Steinberg and Chiao consider a system such as that
shown in Fig. 2. A slab of material with index n2 and width
L is sandwiched between two regions of material of index n1.
In [8], Steinberg and Chiao consider a glass-air-glass system
with n2 = 1; however, it will be convenient for us to keep
this medium arbitrary for later calculations. We will label
regions I, II, and III from left to right as in the one-dimensional
calculation, with region II acting as the barrier region. A photon
is incident on the interface between regions I and II with angle
θ to the surface normal at position x = 0, y = 0. The dashed
lines in Fig. 2 represent the planes y = 0 and y = �y.

For total internal reflection to occur, Snell’s law requires
that n1 sin θ > n2, or equivalently that θ > θc where θc =
arcsin (n2/n1) is the critical angle. In such a situation, the
majority of the wave will be reflected with a lateral Goos-
Hänchen shift of �y, while a small portion will tunnel to the
other side and be transmitted, again with a lateral shift �y.

The electric field of a TE-polarized (perpendicular to the
plane of incidence) plane wave can be represented in regions
I–III as

E(x,y,t) = E(x,y,t)ẑ = ψ(x)eikyy−iωt ẑ,

where we have implicitly defined k2
i = (niω/c)2 = k2

ix + k2
iy

and taken advantage of the continuity of ky across the barrier to
eliminate the extra subscript. Substitution of this form into the
Helmholtz equation demonstrates that the solutions of ψ(x)
in the 2D problem are identical to those given in Eq. (1) with
k → kx . However, in the 2D problem kx and κ are given in
terms of the refractive indices n1 and n2 as well as the incidence
angle θ :

k2
x = ω2

c2
n2

1 cos2 θ for I, III, (6a)

κ2 = ω2

c2

(
n2

1 sin2 θ − n2
2

)
for II. (6b)
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TABLE I. Coefficient equivalences.

Wave vector 1D 2D

k2
x 2mE/h̄2 n2

1ω
2

c2
cos2 θ

κ2 2m(V0 − E)/h̄2 ω2

c2
(n2

1 sin2 θ − n2
2)

Continuity of Ez across the boundary forces ψ(x) to
be continuous, and with the assumption that the relative
permeability μr = 1, continuity of By forces ∂ψ(x)/∂x to be
continuous. Thus, in this special case, the boundary conditions
are identical to those of the Schrödinger equation for the 1D
problem. As a result, the previous expressions for R, T , C,
and D apply to the two-dimensional problem as well with the
proper choice of kx and κ . This equivalence between the 1D
and 2D problems is summarized in Table I.

The transmitted phase is then � = φt + kxL + kyy − ωt ,
with φt defined as before. In two dimensions, the stationary
phase approximation dictates that the gradient of the phase
in k space should vanish. This gradient can be taken with
respect to the magnitude and direction of the k vector, giving
two constraint equations that describe the evolution of the
wave-packet peak,

∂�

∂ω

∣∣∣∣
θ

= 0, (7a)

∂�

∂θ

∣∣∣∣
ω

= 0. (7b)

Substituting � into the first equation and using our earlier
definition of φ0, we can write an expression for the time t =
τγ and position y = �y at which the peak first appears in
region III,

τγ = ∂φ0

∂ω

∣∣∣∣
θ

+ n1

c
�y sin θ. (8)

Equation (8) clearly shows that there are two contributions
to the electromagnetic group delay τγ . The first term is the
frequency derivative analog to (4) and represents the time
delay due to the tunneling in the x direction. The second term
can be interpreted as the time delay due to the Goos-Hänchen
shift �y, which can be related to the angular dispersion of the
transmitted phase ∂φ0/∂θ by substitution of � into (7b),

�y = c

n1ω cos θ

∂φ0

∂θ

∣∣∣∣
ω

. (9)

Steinberg and Chiao then proceed to decompose the partial
derivatives ∂φ0/∂ω and ∂φ0/∂θ in terms of derivatives in E

and V0 from the 1D problem. By considering cases where
∂V0/∂ω and ∂E/∂ω vanish, they find relations between the
2D group delay τγ and the 1D group delay τg . Rather than
reproduce the entire derivation, we simply summarize their
results below.

In the low-energy limit E � V0, analogous to grazing
incidence in the 2D problem, several approximations lead to

the relationship

τγ ≈ n2
1h̄ω

mc2
τg.

By inspection, if the particle effective mass is chosen such that
mc2 = n2

1h̄ω, the delays for the 1D and 2D problems become
identical. If instead one considers the “critical” limit (E ≈
V0) or the “semiclassical” limit (E > V0) and makes slightly
different approximations, the group delay can be expressed as

τγ ≈ n2
2h̄ω

mc2
τg.

In [8], the n2
2 is omitted as that work considers an air

gap (n2 = 1). It is also noted that in the semiclassical
regime the stationary-phase approximation may break down
due to multiple reflections. However, it may remain valid
at sufficiently high energies (E � V0) or for less abrupt
potential differences (e.g., an apodized barrier) where multiple
reflections are suppressed or become less important.

III. DWELL TIME AND SELF-INTERFERENCE DELAY

The 1D group delay can also be developed using a
variational method outlined in [11,16]. This method makes
use of a dwell time τd as defined in [5].

τd =
∫ L

0 |�(x)|2dx

jin
, (10)

where jin = h̄k/m is the incident particle flux. While this
dwell-time definition is an integral over a stationary state,
it can be shown to be equivalent to an integration of the
time-dependent wave function �(x,t) (normalized to unity)
over the barrier region and over all times [17,18]. Since we
have expressions for �(x), C, and D within the barrier, we
can evaluate τd directly from Eq. (10), yielding

τd = mL

h̄k

cos2 φ0

2

×
[(

1 + k2

κ2

)
tanh κL

κL
+

(
1 − k2

κ2

)
sech2κL

]
. (11)

It is clear that, while strikingly similar, τd �= τg derived with the
phase-time approach. The relationship between τg and τd can
be calculated from the time-independent Schrödinger equation
for �(x) [11], yielding

τg − τd = −h̄ Im(R)
∂

∂E
(ln k) ≡ τi . (12)

This extra delay τi has been termed the self-interference delay,
as it arises out of the overlap of incident and reflected waves
in region I. We can put it in a simpler form by evaluating the
energy derivative,

τi = − Im(R)

kjin
, (13)

which has a form reminiscent of a one-dimensional scattering
cross section. Using our calculated expression for R, we can
evaluate τi explicitly,

τi = mL

h̄k

cos2 φ0

2

(
1 + κ2

k2

)
tanh κL

κL
, (14)
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FIG. 3. (Color online) Group delay, dwell time, and self-
interference delay as a function of normalized particle energy E/V0

for a simple one-dimensional barrier. The delays are normalized to
the equal time τ0 = L/v0, with v0 = h̄γ /m and γ = √

2mV0/h̄. This
equal time is the delay a particle of energy V0 would experience when
propagating through a distance L in free space. The barrier height in
this plot is defined by γL = 3π .

from which it is clear that the sum of τi and τd as calculated
with the dwell-time definition does indeed equal τg calculated
with the phase-time method.

Figure 3 shows all three delay times as a function of normal-
ized particle energy. At low energies (E � V0), where most of
the particle is reflected and R � T , the self-interference delay
is the dominating component of the group delay. As particle
energy increases, τi steadily decreases, while the dwell time
τd increases, eventually becoming the primary component at
around E = V0/2. At particle energies near E = V0 or larger,
where the reflected component is weak, the dwell time is the
primary component of the group delay. When the particle
experiences a transmission resonance, the self-interference
delay becomes zero, consistent with a vanishing reflection
coefficient.

In the electromagnetic analog to tunneling, the dwell time
is defined by average stored energy and input power rather
than number of particles,

τd = 〈U 〉
Pin

,

where U and Pin are both averaged over a full cycle of
the electromagnetic wave. The stored energy includes both
electric and magnetic contributions, which need not be equal
for an arbitrary structure. A similar expression for the self-
interference time can be arrived at through the variational
theorem,

τi = 〈Um〉 − 〈Ue〉
Pin

,

where Um and Ue are the magnetic and electric contributions
to the time-averaged stored energy. Note that this expres-
sion assumes plane-wave propagation in region I; Winful
demonstrates this calculation for a one-dimensional waveguide
geometry in [6] and finds an additional dispersive factor

in the result. In that work, he also demonstrates that these
definitions lead to results consistent with the phase-time
method. However, to our knowledge, this decomposition into
dwell-time and self-interference-delay components has not
previously been applied to the 2D tunneling problem.

IV. DWELL TIME DECOMPOSITION OF 2D TUNNELING

The extension into two dimensions introduces an additional
complication to the derivation of the tunneling delay. In
the FTIR system, the incident light now has two distinct
polarization states, and slight differences in the boundary
conditions cause minor variations in the results. In most cases,
these effects are very weak, and the TE derivation suffices to
develop intuition. Most authors choose to deal with only the
TE case [7,8,10,19], though several address the differences
in passing [20] or directly [9]. We have developed a unified
derivation that can properly represent either polarization state
without difficulty.

To find a solution that is valid for either polarization, one
may take the expressions for �(x,y) in (II) and use the TM
boundary conditions to solve for C, D, R, and T in terms of
the quantities k, κ , n1, n2, and L. The necessary modifications
can then be identified by comparing these results to those of
the TE case. In the following sections, we will summarize this
process by comparing the two sets of boundary conditions and
presenting a modified notation that successfully satisfies either
set of boundary conditions.

A. TE boundary conditions

For an incident TE wave, the electric fields involved are

EI = E0(eikxx + Re−ikxx)eikyy−iωt ẑ, (15a)

EII = E0(Ce−κx + Deκx)eikyy−iωt ẑ, (15b)

EIII = E0(T eikxx)eikyy−iωt ẑ, (15c)

where again we will refer to the components in parentheses
as ψ . The boundary conditions are obtained by enforcing
continuity of the transverse components of E and H, which for
the TE case are Ez and Hy , at x = 0 and x = L. Continuity
of Ez dictates that ψ is continuous, while continuity of Hy

requires continuity of ∂ψ/∂x. These four conditions are iden-
tical to the boundary conditions on � for the one-dimensional
problem and successfully demonstrate a one-to-one mapping
of the two-dimensional problem to the one-dimensional case.
Thus, the solutions presented earlier in the paper for the
one-dimensional problem also successfully address the 2D
TE problem.

B. TM boundary conditions

In the TM case, we instead focus on the magnetic field H,
which has only one component, Hzẑ. The magnetic fields in
each region can be expressed in a similar fashion to the TE
case,

HI = H0(eikxx + Rme−ikxx)eikyy−iωt ẑ, (16a)

HII = H0(Cme−κx + Dmeκx)eikyy−iωt ẑ, (16b)

HIII = H0(Tmeikxx)eikyy−iωt ẑ. (16c)
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The boundary conditions are still derived from the con-
tinuity of all transverse components of E and H, but in the
TM case these components are Hz and Ey . Continuity of Hz

again enforces continuity of ψ . However, in the TM case the
continuity of Ey enforces the continuity of (1/ε)(∂ψ/∂x) at
each interface, or equivalently (1/n2)(∂ψ/∂x) for a lossless
material. While the conversion from ε to n2 implicitly assumes
that the materials in all regions are lossless, the results should
retain validity for very weakly lossy materials.

The difference in boundary conditions prevents us from
using the results presented earlier to properly characterize
the TM case. However, we will now show that with a slight
modification to Eqs. (2) and (3), we can produce a solution
that satisfies both TM and TE boundary conditions.

C. Generalized solution

This additional complication in boundary conditions can be
easily accommodated with the introduction of a factor Mij ,

Mij ≡
{

n2
i /n2

j if TM polarized,

1 otherwise (TE, 1D),

which represents the refractive index contrast of the in-
terface. Another way to interpret Mij is the ratio of the
intrinsic impedances of medium j to medium i, or Mij =
(η2

j /η
2
i )(μi/μj ). Since our barrier is symmetric, we need only

concern ourselves with M12 = 1/M21. This definition of Mij is
equivalent to the factor m found in [20,21] or the encapsulation
of n1 and n2 into the particle effective mass in [9].

If we evaluate the boundary condition expressions for
the TM case, we find the following expressions for �m,
�′

m, gm, Rm, Tm, Cm, and Dm, where the subscript m is
used to clearly differentiate these quantities from their one-
dimensional counterparts:

�m = 1

2

(
M12κ

kx

− kx

M12κ

)
, (17a)

�′
m = 1

2

(
M12κ

kx

+ kx

M12κ

)
, (17b)

gm = cosh κL + i�m sinh κL, (17c)

Rm = − i�′
m

gm
sinh κL, (17d)

Tm = e−ikxL

gm
, (17e)

Cm =
(

1 − i
kx

M12κ

)
eκL/2gm, (17f)

Dm =
(

1 + i
kx

M12κ

)
e−κL/2gm. (17g)

The expressions for Rm, Tm, and the factor gm are
unchanged from the one-dimensional case apart from using
the updated definitions of �m and �′

m. The expressions for
Cm, Dm, �m, and �′

m now include factors of M12, though they
simplify to the old expressions when M12 → 1 (as for the TE
case).

With these redefinitions, we now have a general set of
expressions for Rm, Cm, Dm, and Tm based on the boundary

conditions of our two-dimensional tunneling problem that is
valid for both TM and TE situations. For consistency, we
will continue to use τd and τi to refer to the dwell time and
self-interference delay of the one-dimensional calculation. We
can now proceed with explicit calculation of the dwell time, the
self-interference delay, and the group delay for 2D tunneling.
In the same fashion as τγ , we will use Greek subscripts to
indicate the electromagnetic versions of the dwell time and
self-interference delay, τδ and τι, respectively.

D. Dwell time

The general definition of dwell time from Eq. (10) is, in the
notation of our two-dimensional problem,

jinτδ =
∫ L

0
|ψ(x)|2dx,

where jin = c/n1 remains the incident particle flux and
ψ(x) now replaces the one-dimensional wave function �(x).
Because of the translational symmetry in the y dimension,
the integration is still performed only over x. Another way
to interpret this is that any effect on the dwell time due to
the addition of the y dimension is implicitly included in the
calculation because as ky varies, so do kx and κ .

If we evaluate this integral using the expression for ψ in
region II and substitute our expressions for Cm and Dm into
the result, we can put the expression for the dwell time in a
more recognizable form.

jinτδ = L
cos2 φ0

2

[(
1 + k2

x

M2
12κ

2

)
tanh κL

κL

+
(

1 − k2
x

M2
12κ

2

)
sech2κL

]
.

Note that this is the same expression we have for τd in Eq. (11),
but with additional factors of M12 to support two-dimensional
TM boundary conditions. In fact, we can write both τd and τδ

in a slightly simpler form by using our definitions of �, �
′
,

�m, and �
′
m and the 1D particle flux j (1D)

in = h̄k/m:

τd = L cos2 φ0

j
(1D)
in

k

κ

[
�′ tanh κL

κL
+ �sech2κL

]
,

τδ = L cos2 φ0

jinM12

kx

κ

[
�′

m
tanh κL

κL
+ �msech2κL

]
.

So the definition of dwell time carries over very well to the
two-dimensional electromagnetic case. The only differences
are an additional factor of 1/M12, the replacement of � and
�′ with �m and �′

m, respectively, and of course a different
definition of jin than in the 1D particle case. If we approximate
�m ≈ � and �′

m ≈ �′, which is valid when M12 is close to 1,
we can relate τδ to τd ,

τδ = j (1D)
in

M12jin
τd . (18)

Note that while this equation requires the mentioned approx-
imation for the TM case, it is identically true for the TE case
since M12 = 1.
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E. Self-interference delay

To express τι, we start with the definition in Eq. (13) with
kx substituted for k,

τι = − Im(Rm)

kxjin
.

We will later see that this definition is reasonable, as it gives
us exactly the same result as the phase-time development of
τγ would suggest. For the moment, it will suffice to observe
that the energy derivative in (12) could be represented as a
frequency derivative in the electromagnetic case and leads
to a factor of 1/vgroup. Since our materials are only weakly
dispersive for the photon bandwidths we are interested in,
we can approximate this as n/c, or 1/vphase. Substitution of
Im(Rm) = −�′

m cos2 φ0 tanh κL yields

τι = L

jin

cos2 φ0

2

(
1 + κ2

k2
x

)
tanh κL

κL
,

which is identical to Eq. (14). In this case, the only difference
between τi and τι is the choice of jin such that

τι = j (1D)
in

jin
τi, (19)

using the same definitions of jin and j (1D)
in as in (18).

F. Group delay

The phase of the transmitted field at x = L is still � = φt +
kxL + kyy as before. Any variation due to the polarization state
is encapsulated in φt . If we evaluate Eqs. (7) and eliminate y,
we are left with

τγ =
(

∂φ0

∂ω

)
θ

− tan θ

ω

(
∂φ0

∂θ

)
ω

. (20)

We desire to evaluate these partial derivatives of φ0 in order to
represent τγ in terms of the dwell time τδ and self-interference
delay τι. It is slightly easier to do so if we expand the two
derivatives in terms of kx and κ derivatives. This process is
algebraically tedious but straightforward; as such we will only
summarize the results.(

∂φ0

∂θ

)
ω

=
(

∂φ0

∂κ

)
kx

(
∂κ

∂θ

)
ω

+
(

∂φ0

∂kx

)
κ

(
∂kx

∂θ

)
ω

= −kxjin tan θ (M12τδ + τι).(
∂φ0

∂ω

)
θ

=
(

∂φ0

∂κ

)
kx

(
∂κ

∂ω

)
θ

+
(

∂φ0

∂kx

)
κ

(
∂kx

∂ω

)
θ

= −κ2jin

kxω
M12τδ + kxjin

ω
τι.

Substituting these into (20) and simplifying, we get our
expression for τγ ,

τγ = jinω

kxc2

[
M12n

2
2τδ + n2

1τι

]
. (21)

This result demonstrates the decomposition of the group delay
τγ into two components, one proportional to the dwell time
τδ and one proportional to the self-interference delay τι. We
can relate τγ directly to τd and τi through Eqs. (18) and (19).

If we make those substitutions along with the particle flux
j (1D)

in = h̄kx/m, we find

τγ = h̄ω

mc2

[
n2

2τd + n2
1τi

]
. (22)

This is a surprisingly simple mapping of the two-dimensional
problem in k, θ , n1, and n2 onto the one-dimensional problem.
In addition, it is applicable for arbitrary E and V0 as implicitly
defined by n1, n2, k, and θ in Table I,

V0 = h̄2ω2

2mc2

(
n2

1 − n2
2

)
, (23a)

E = V0
n2

1 cos θ

n2
1 − n2

2

. (23b)

Note that due to the approximation made in (18), Eq. (22)
is only strictly valid for the TE geometry. In the TM geometry,
it provides accurate results as long as τd � τi and exhibits the
same qualitative behavior as the TE case for any choice of
input parameters but begins to become numerically inaccurate
when τd is the dominant delay contribution.

As a final confirmation, let us compare our results to those
found in Steinberg and Chiao’s analysis of this problem in
[8]. In Eq. (21) of that paper, they define V0 and E in terms
of n, θ , and ω. The situation considered in their paper is a
glass-air-glass system for which n1 = n and n2 = 1. Under
those conditions, our expressions (23a) and (23b) match theirs
exactly. Note that their method of deriving τγ by breaking the
phase derivatives in θ and ω down into derivatives in V0 and E

is entirely equivalent to our derivation, giving identical results.
Our general expression for τγ also matches theirs in the

limits they consider. In the low-energy or “deep-tunneling”
limit (kx � κ or E � V0), the bulk of the delay is due to the
self-interference delay τi . Thus τd → 0 and τg → τi , in which
case (22) simplifies to

τγ = n2
1h̄ω

mc2
τi,

in agreement with their result. Similarly, in the critical limit,
where k � κ or E ≈ V0, τi → 0, and τd becomes the dominant
contribution to group delay. This is also true in the Wentzel-
Kramers-Brillouin (WKB) or semiclassical limit, where E >

V0 and κ becomes imaginary. Under either of those conditions,
(22) simplifies to

τγ = n2
2h̄ω

mc2
τd,

again in complete agreement with their results since n2 = 1.
They also observed that with a specific choice of effective

mass for the photon, the one-dimensional tunneling delay
seen by a massive particle will be identical to the tunneling
delay seen by a photon. In the deep-tunneling limit (grazing
incidence for the photon), the effective mass needs to be chosen
such that mc2 = n2

1h̄ω, while in the critical and semiclassical
limits that effective mass is reduced to mc2 = h̄ω. Our
expression clarifies this difference by demonstrating that the
appropriate expression in this limit is mc2 = n2

2h̄ω.
Our expression also provides intuition for why the effective

mass changes. In the deep-tunneling limit, the particle delay is
primarily due to self-interference before the barrier interface.
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In other words, the photon spends more time in a cavity-
like state within a region of material with refractive index
n1. A similar argument shows that photons in the critical and
semiclassical limits spend more time in the barrier region,
which has a refractive index n2.

Perhaps a more intuitive way to see this is to consider
energies. In the cavity interpretation of tunneling, the delay is a
representation of the amount of stored energy in the evanescent
cavity. The energy density of an electromagnetic field is u =
1
2 (E · D + B · H), which will be proportional to n2h̄ω for a
photon of frequency ω in a medium of index n. So we see
that in any of the limits considered, the photon group delay
τγ is simply the equivalent one-dimensional particle delay τg

scaled by a ratio of energies: the energy of the photon and
the rest mass of the particle mc2. More generally, Eq. (22)
could be interpreted as an energy-weighted average delay, in
which each delay term is weighted by the permittivity of that
region to properly account for the difference in energy density
between a massive particle and electromagnetic waves.

It is interesting that both the TE and TM cases map
to the one-dimensional problem according to (22), despite
having different boundary conditions. If we stick with
the electromagnetic breakdowns τδ and τι, however, this
is not the case. To demonstrate this, we substitute the
electromagnetic particle flux jin = c/n1 into Eq. (21) to find

τγ =
[
M12

n2
2

n2
1

τδ + τι

]
.

For the TM case, τγ = τδ + τι, which perfectly mimics the
one-dimensional result τg = τd + τi . The TE case differs only
in the multiplicative factor n2

2/n2
1 in front of τδ . Surprisingly,

in this form the TM case seems more similar to the one-
dimensional result despite having different boundary condi-
tions, as all of the dependence on n1 and n2 is encapsulated in
the constituent delays τδ and τι.

Another interesting observation we may make here is that a
photon of arbitrary polarization undergoing FTIR will “break
up,” as its TE and TM components will experience different
amounts of dwell time. Since n2 < n1 for the usual FTIR
case, this suggests that the TE component will experience less
total delay than the TM component as long as τδ is significant
compared to τι. This results appears consistent with the delays
measured in [22].

V. FTIR IN A DOUBLE-PRISM GEOMETRY

The theoretical treatment presented in the previous section
addressed the general case of tunneling delay in a glass-
dielectric-glass geometry and is consistent with the usual
treatment of the topic [7–9]. However, this treatment assumes
the glass regions are infinite in transverse extent, which is not
representative of experimental reality. The usual experimental
implementation mimics that proposed in [8,10], which is a
system of two prisms separated by an air gap. The theory
presented in the literature thus far does not accurately reflect
the experimental measurements one can obtain in this system
because the practical issue of coupling into and out of the
double-prism system is generally overlooked or ignored.

To illustrate this discrepancy, we present Fig. 4, which
shows a simple diagram of total internal reflection (TIR) at

Δy

glass

region II

Δy sinθθ

FIG. 4. (Color online) TIR at the interface between an equilateral
prism and a dielectric slab. The Goos-Hänchen shift �y causes a
change in the glass propagation length, which has ramifications for
an experimental measurement of tunneling delay in the double-prism
geometry.

the interface between an equilateral prism and a slab of an
arbitrary dielectric or conducting material. If the second region
were filled with a perfectly conducting material, the light
would reflect along the dashed red line, with no Goos-Hänchen
shift �y. However, if region II is air, we observe TIR
with a nonzero Goos-Hänchen shift, and the reflected beam
propagates through a smaller length of glass. The difference
in propagation distance is simply �y sin θ . Thus, the delay we
measure experimentally in an FTIR configuration is not the τγ

derived in the previous section and in the bulk of the literature,
but

τγ,meas = τγ − n�y sin θ/c. (24)

By inspection of Eq. (8), we see that

τγ,meas =
(

∂φ0

∂ω

)
θ

. (25)

As discussed in Sec. II, the term ∂φ0/∂ω describes the delay
contribution from the propagation in the x direction, while
the suppressed term τγ,unmeas = n�y sin θ/c describes the
contribution from the y direction, or Goos-Hänchen shift. This
is perhaps more clearly seen by considering the explicit form
of this partial derivative, as derived earlier:

τγ,meas = jin

kxω

[
k2
xτι − κ2M12τδ

]
. (26)

Note that below the critical angle κ = ik2x and −κ2 = k2
2x ,

where we have used k2x to represent the x component of the
propagation vector in the second material. One can express the
“unmeasurable” portion in a similar fashion,

τγ,unmeas = jin

kxω

[
k2
y(τι + M12τδ)

]
. (27)

We can also express the measurable and unmeasurable portions
in terms of the one-dimensional delays τd and τi using
Eqs. (18) and (19).

τγ,meas = h̄

mω

[
k2
xτi − κ2τd

]
, (28a)

τγ,unmeas = h̄

mω

[
k2
y(τi + τd )

]
. (28b)
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In other words, apart from a constant factor, the “measur-
able” portion of the delay is a weighted average of the dwell
and self-interference delays, with each component weighted
by the x component of the wave vector in the appropriate
region. The unmeasurable portion is the complementary
expression, the average as weighted by the y component
of the wave vector, which is the same in each region. If
we assume normal incidence (Fabry-Pérot operation) and
substitute kx = n1ω/c and κ = in2ω/c into Eq. (28), τγ,meas

bears a striking resemblance to Eq. (22). This is expected, as
the Goos-Hänchen shift dominates the total photonic delay
τγ in the tunneling regime but becomes negligible in the
Fabry-Pérot regime.

Equations (25)–(27) suggest that the double-prism system
is incapable of directly measuring delay variations caused by
the Goos-Hänchen shift. Any delay incurred through the ky

component is identically compensated by a reduction in glass
propagation length. Note that this is true for any value of the
prism apex angle; for these examples we have used equilateral
prisms, but the same result is obtained for right-angle prisms,
rhombi, or any other arbitrary polygon. While we have only
shown normal incidence at the exterior prism faces, the result
is the same for non-normal incidence, as the boundaries of the
system must always be defined by planes normal to the input
and output wave vectors.

There is a considerable practical significance to this
observation, as the Goos-Hänchen shift is responsible for the
majority of the predicted delay τγ . For a realistic device,
τγ may be on the order of picoseconds at a Fabry-Pérot
resonance, but τγ,meas is smaller by a factor of 100 [23]. Similar
discrepancies can be observed in the barrier region.

This practical issue has been overlooked in the majority
of the literature [7,9,10,24]. Haibel and Nimtz appear to have
mentioned this effect in passing, stating that “The measured
time was obtained by properly taking into consideration the
beam’s path in the prism” [25]. However, they make no
further mention of the fact and do not provide experimental
delay data for further scrutiny. In addition, they state that
their experiments were performed under conditions where
the Goos-Hänchen shift approaches its asymptotic value,
which suggests that their experimental measurements should
be identically zero. This is a curious omission given their
conclusion that the observed delay was entirely due to the
Goos-Hänchen contribution.

Rather than fault this result as a failing of the double-
prism system, we may perhaps consider this a “feature.” By
eliminating the ability to measure variations that occur in
the y dimension, we are able to isolate the variations that
occur due to the x direction. One could argue that such a
measurement allows us to more directly probe the evanescent
(i.e., “tunneling”) aspects of FTIR and thus more intimately
observe its relationship to the one-dimensional problem.

It should be noted here that this separation into measurable
and unmeasurable parts is specific to a time-domain measure-
ment scheme, though it should be applicable to any direct
measurement of time delay in such a structure. The FTIR
phenomenon provides other observable quantities that can be
exploited to make indirect measurements that are correlated to
delay values according to theory [22,26].

VI. CONCLUSIONS

In this paper, we have recast the traditional two-dimensional
FTIR problem in terms of a cavity model, with the total group
delay divided into self-interference and dwell-time terms.
Once expressed in these terms, the 2D problem maps directly
to the one-dimensional quantum-mechanical problem in a
very simple fashion. In this form, the mapping is valid for
arbitrary particle energy E and barrier height V0, as defined
in terms of n1, n2, θ , and k by formal similarity between
the time-independent Schrödinger equation and the Helmholtz
equation. Furthermore, we have shown that our more general
version simplifies to match previous predictions in the special
cases considered by Steinberg and Chiao in [8].

In addition, this interpretation of the tunneling delay
phenomenon gives us physical insight into the process. Con-
ceptually, it breaks the process down into delays due to cavity-
like effects in the tunneling region and the region of incidence.
It also suggests that this is not an arbitrary decomposition,
but rather that the dwell time and self-interference delays are
physically meaningful quantities that may even be able to be
tested and measured individually.

Finally, we have identified a peculiarity of the double-prism
FTIR system that has not yet been satisfactorily addressed in
the literature. The suppression of the �y contribution in the
measurable portion of the tunneling delay in this system leads
to differences between τγ,meas and τγ that are large enough to be
easily verified by experimental measurements. The elimination
of the transverse contributions caused by the Goos-Hänchen
shift provides a deeper connection to the one-dimensional
problem, as it isolates the longitudinal contributions that are
characteristic of tunneling. By explicitly working out these
relationships, we have identified a second possible mapping
between the two problems.
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