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Supersensitive measurement of angular displacements using entangled photons
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We show that the use of path-entangled states of photons, having nonzero orbital angular momentum (OAM),
increases the resolution and sensitivity of angular-displacement measurements performed using an interferometer.
In the ideal case of maximally path-entangled states, the resolution of angular-displacement measurements
increases by a factor of Nl, while the uncertainty in the measurement of angular displacements scales as 1/Nl,
where N is the number of entangled photons, half of which carry, on average, an OAM of +lh̄ per photon and
the other half carry an OAM of −lh̄ per photon. We analyze measurement schemes for two- and four-photon
entangled states produced by parametric down-conversion and, by employing a 4×4 matrix formalism to study
the propagation of entangled OAM modes, obtain explicit expressions for the resolution and sensitivity in these
schemes. These results constitute an improvement over what could be obtained with N nonentangled photons
carrying an orbital angular momentum of |l|h̄ per photon.

DOI: 10.1103/PhysRevA.83.053829 PACS number(s): 42.50.Tx, 42.50.Ar, 03.67.Bg, 03.67.Mn

I. INTRODUCTION

Precision measurements are important not only for verify-
ing a given physical theory but also for possible applications of
the theory. For example, the fact that relative displacements can
be measured with subwavelength sensitivity through optical-
phase measurements has led to many useful applications in a
wide variety of fields including cosmology, nanotechnology,
metrology, and medicine.

In generic classical schemes for optical-phase measure-
ments, the sensitivity is limited by what is known as the
standard quantum limit, which scales as 1/

√
N , where N

is either the average number of photons in the coherent-
state input to the interferometer or the number of times
the experiment is repeated with a one-photon Fock-state
input [1,2]. More recent works have shown that the use of
nonclassical states of light can lead to improved sensitivity
in optical-phase measurements [3–6]. In particular, it has
been shown that an N -photon entangled-state input to an
interferometer gives rise to phase super-resolution [5,7–10],
that is, the narrowing of interference fringes by N times
compared to the fringes obtained with classical schemes at
the same wavelength. It has also been shown that with N

entangled photons the uncertainty in the estimation of optical
phase scales as 1/N , in contrast to the 1/

√
N scaling obtained

using N nonentangled photons [11,12]. The 1/N scaling is
known as the Heisenberg limit; beating the standard quantum
limit by entangled photons is known as supersensitivity.

In this paper we consider an analogous type of mea-
surement, namely, angular-displacement measurements. We
seek to determine how accurately the angular orientation of
an optical component can be measured using purely optical
methods. Specifically, we consider an optical component in
the form of a Dove prism and seek to measure its angular
orientation by determining the rotation angle induced in an
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optical beam in passing through the prism. We assume that
the prism is located in one arm of an interferometer. We thus
seek to answer the question as to how accurately the angular
displacements (rotations) introduced in a beam of light inside
an interferometer can be measured. Measurements of this sort
are generic to a broad class of problems in quantum metrology.
We explicitly analyze measurement schemes for two- and
four-photon entangled states produced by parametric down-
conversion (PDC) and compare the angular resolution and
sensitivity with those obtained using classical measurement
schemes. We find that the use of entangled photons with
nonzero orbital angular momentum increases the resolution
and sensitivity of angular-displacement measurements.

The paper is organized as follows. In Sec. II we present a
conceptual description of angular-displacement measurements
with N independent single photons and also describe how the
use of N entangled photons leads to increased resolution and
sensitivity in angular-displacement measurement. In Sec. III
we employ a 4×4 matrix formulation to study the propaga-
tion of entangled orbital angular momentum (OAM) modes
through various optical elements and illustrate schemes for
supersensitive angular-displacement measurements with two-
and four-photon entangled states produced by PDC. Section IV
presents our conclusions.

II. ANGULAR-DISPLACEMENT MEASUREMENTS:
CONCEPTUAL DESCRIPTION

A. N independent single-photon states

Consider the situation shown in Fig. 1. N independent
one-photon states with orbital angular momentum lh̄ per
photons go through a Mach-Zehnder interferometer. The two
arms of the interferometer have within them two Dove prisms
oriented at angles θ1 and θ2, respectively. A Dove prism is an
optical element that rotates a beam carrying orbital angular
momentum and also changes the sign of the beam’s OAM
mode index. Mathematically, a Dove prism introduces a phase
of π − 2lθ in the path of the beam, where l is the OAM
mode index of the beam and θ is the angle of rotation of the
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FIG. 1. (Color online) Scheme for angular-displacement mea-
surement using N independent photons. The photons have an orbital
angular momentum of lh̄ per photon and are detected by the detector
DA in mode a. DP stands for Dove prism and BS denotes beam
splitter.

prism [13]. We want to calculate the resolution and sensitivity
with which the relative angular displacement θ = θ1 − θ2 of
the two Dove prisms can be measured.

Let us represent the state of the j th single photon in the
input mode p by |1j 〉p+l

. The subscript p+l denotes the mode
label p and also the OAM mode index +l. The state of the j th
photon in the output mode a can be shown to be

|φj 〉 = 1
2 (e−2ilθ1 + e−2ilθ2 )|1j 〉a+l

. (1)

Since the photons are independent, we write the state |�〉 of
the N photons in the output port a of the interferometer as a
direct product of the state of the N individual single photons,
that is,

|�〉 =
N∏

j=1

|φj 〉. (2)

Our measurement operator is the photon-number operator N̂a

in mode a,

N̂a =
N∑

k=1

â
†
+l,k â+l,k, (3)

where â+l,k is the creation operator corresponding to the kth
photon in mode a. N̂a detects the number of photons in mode
a having an OAM of lh̄ per photon. Following Ref. [14], we
calculate the expectation value 〈N̂a〉 of the operator and the
associated uncertainty 〈�N̂a〉2 to be

〈N̂a〉 = N cos2 lθ, (4)

〈�N̂a〉2 = N

4
sin2 lθ, (5)

where θ = θ1 − θ2. The uncertainty �θ
(i)
N in the measurement

of θ is calculated as follows:

�θ
(i)
N = 〈�N̂a〉

|∂〈N̂a〉/∂θ | = 1

2
√

Nl
. (6)

Here the superscript (i) indicates that the N single photons
are independent. From Eq. (4) we find that the fringe spacing
does not depend on N and so there is no enhancement of the
resolution as a function of the number of independent photons.
However, the sensitivity increases as the uncertainty �θ

(i)
N does

depend on N and scales as 1/
√

N . This scaling is also known
as the standard quantum limit.

D
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FIG. 2. (Color online) Angular-displacement measurement using
N entangled photons. The photons in modes g and h are in the
maximally entangled state and have an orbital angular momentum of
|lh̄| per photon. The detector D is an N -photon detector.

B. N entangled photons

In this section we derive the angular resolution and
sensitivity that can be obtained with N entangled photons in
the ideal case (see Fig. 2). We consider the following entangled
state of N photons in modes g and h of Fig. 2:

∣∣ψl
N

〉 = 1
2

[|N〉g+l
|0〉h−l

+ |0〉g+l
|N〉h−l

+ |N〉g−l
|0〉h+l

+ |0〉g−l
|N〉h+l

]
. (7)

Here |N〉g+l
|0〉h−l

represents the quantum state with N photons
in mode g, with orbital angular momentum lh̄ per photon, and
zero photons in mode h, etc. Such states are the generalizations
of the N00N states, which are the path-entangled states in a
photon-number basis and which have been studied extensively
in the context of supersensitive phase measurement [2,5,7,8].
In our scheme, the N -photon entangled state passes through a
set of Dove prisms oriented at angles θ1 and θ2, respectively.
The N -photon state |ψl

N 〉 after the Dove prisms is therefore

∣∣ψl
N

〉 = 1
2 [e−2iNlθ1 |N〉g−l

|0〉h−l
+ e2iNlθ2 |0〉g+l

|N〉h+l

+ e2iNlθ1 |N〉g+l
|0〉h+l

+ e−2iNlθ2 |0〉g−l
|N〉h−l

]. (8)

We now calculate the angular resolution and sensitivity using
the following measurement operator:

ÂN = |N〉g+l
|0〉h+l g+l

〈0|h+l
〈N |

+ |0〉g+l
|N〉h+l h+l

〈N |h+l
〈0|

+ |N〉g−l
|0〉h−l g−l

〈0|h−l
〈N |

+ |0〉g−l
|N〉h−l g−l

〈N |h−l
〈0|. (9)

This operator gives a direct measure of the degree of coherence
between the N -photon states |N〉g+l

|0〉h−l
and |0〉g+l

|N〉h−l

and between the states |N〉g−l
|0〉h+l

and |0〉g−l
|N〉h+l

. The
expectation value of the above operator is

〈ÂN 〉 = cos 2Nlθ, (10)

where θ = θ1 − θ2. By comparing Eqs. (4) and (10), we find
that the resolution of the angular-displacement measurement
is N times better than the resolution that can be obtained
with N independent photons. Next, using the completeness
relation 〈Â2

N 〉 = 1, we calculate the uncertainty 〈�Â2
N 〉 in the

above measurement and find it to be 〈�Â2
N 〉 = sin2 2Nlθ . The
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uncertainty �θ in the angular-displacement measurement can
now be shown to be

�θN = 〈�ÂN 〉
|∂〈ÂN 〉/∂θ | = 1

2Nl
. (11)

We find that the angular sensitivity increases with the number
of entangled photons.

We note that to obtain the maximum resolution and
sensitivity, the state of the photons in modes g and h has
to have the generic form of Eq. (7). However, as we show in
Sec. III, in most experimental schemes, the form of Eq. (7) can
be obtained only for N = 2. For N > 2, the state in modes g

and h always ends up with some additional, unwanted terms.
Additional terms in the entangled state have detrimental effects
on both the resolution and sensitivity. Although the detrimental
effect on resolution can be overcome by choosing a suitable
detection scheme, the effect on sensitivity cannot, in general,
be overcome by the choice of the detection scheme.

III. SUPERSENSITIVE MEASUREMENT
OF ANGULAR DISPLACEMENTS

In this section we describe in detail our measurement
schemes for two and four entangled photons and derive the
expressions for the resolution and sensitivity. Our measure-
ment scheme, as depicted in Fig. 3, is based on the process of
parametric down-conversion—a nonlinear optical process in
which a pump photon at higher frequency breaks up into two
entangled photons of lower frequencies. First, we derive the
state of the OAM entangled photons produced by PDC.

A. Entangled photons produced by parametric
down-conversion

We start with the following interaction Hamiltonian Ĥ (t)
for PDC [15]:

Ĥ (t) = ε0

2

∫
V

d3r χ (2)E
(+)
0 (r,t)Ês

(−)

× (r,t)Êi
(−)

(r,t) + H.c., (12)

where V is the volume of the interacting part of the nonlinear
crystal and χ (2) is the second-order nonlinear susceptibility.

Êj
(+)

(r,t) and Êj
(−)

(r,t) are the positive- and negative-
frequency parts of the electric field, where j = s and i stand
for the signal and idler, respectively. The pump field E0 is
assumed to be strong and will therefore be treated classically.
We decompose the three electric fields in terms of field modes

PDC

a

b

s

i

g

h

BS1 BS2

Da

Db

DP(θ)

FIG. 3. (Color online) Scheme for supersensitive measurement
of angular displacement using entangled photons. θ is the angle of
rotation of the Dove prism in mode g. Da and Db are detectors set to
detect photons with OAM mode indices ±l only.

ul
p(r) carrying an OAM. These modes are characterized by

two indices l and p and carry an OAM of lh̄ per photon owing
to their azimuthal phase dependence of eilφ [16]. The index l

is referred to as the OAM mode index. The modes ul
p(r) are

assumed to have the general form

ul
p(r) = Rp(ρ,z)

eilφ

√
2π

, (13)

with Rp(ρ,z) being a complete set of orthonormal, ra-
dial modes, that is,

∑
p ρRp(ρ,z)∗Rp(ρ ′,z) = δ(ρ − ρ ′) and∫

ρ dρ Rp(ρ,z)∗Rp′(ρ,z) = δpp′ . Possible choices for ul
p(r)

include the Laguerre-Gaussian modes, but the Schmidt modes
of the down-converted field, which, in general, are not
Laguerre-Gaussian modes [17], are usually the best choice.
The three electric fields can now be written as

E
(+)
0 (r,t) = A(ω0)ul0

p0
(r)e−iω0t , (14)

Ês
(−)

(r,t) =
∑
ls ,ps

ŝ
†
ls ,ps

(ωs)u
ls∗
ps

(r)eiωs t , (15)

Êi
(−)

(r,t) =
∑
li ,pi

î
†
li ,pi

(ωi)u
li∗
pi

(r)eiωi t . (16)

Here we have assumed that the signal, idler, and pump fields are
monochromatic with frequencies ωs , ωi , and ω0, respectively.
ŝ
†
ls ,ps

denotes the creation operator corresponding to the signal
mode, having photons with the OAM mode index equal to ls
and the radial mode index equal to ps , etc. The three fields
interact for some time within the nonlinear crystal and the
state |ψ〉 of the down-converted photons after the interaction is
given by |ψ〉 = T {exp[(1/ih̄)

∫
dt Ĥ (t)]}|ψ0〉, where |ψ0〉 =

|vac〉s |vac〉i is the initial vacuum state before the interaction,
with no photons in either the signal or the idler mode. We
assume perfect frequency phase matching such that ω0 = ωs +
ωi ; the symbol T represents operator time ordering. Taking the
parametric interaction to be very weak, we then write the state
|ψ〉 in terms of a perturbative expansion [15]:

|ψ〉 = |ψ0〉 + |ψ2〉 + |ψ4〉 + · · · . (17)

The first term |ψ0〉 is the initial vacuum state, the second
term |ψ2〉 ≡ T [(1/ih̄)

∫
dt Ĥ (t)]|ψ0〉 is the two-photon state,

the third term |ψ4〉 ≡ T [−(1/2h̄2)
∫ ∫

dt dt ′Ĥ (t)Ĥ (t ′)]|ψ0〉 is
the four-photon state, etc.

We calculate the two-photon state |ψ2〉 by substituting
Eqs. (12) and (14)–(16) into Eq. (17) and obtain

|ψ2〉 =
(

ε0χ
(2)A(ω0)

2ih̄

∑
ls ,ps

∑
li ,pi

ŝ
†
ls ,ps

î
†
li ,pi

×
∫
V

d3r uls∗
ps

(r)uli∗
pi

(r)ul0
p0

(r) + H.c.

)
|vac〉s |vac〉i .

(18)

By working in the cylindrical coordinate system, using
the orthogonality relation

∫ 2π

0 dφ ei(l0−ls−li )φ = 2πδl0,ls+li , and
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taking l0 = 0 for simplicity, we arrive at the following
expression for the two-photon state:

|ψ2〉 =
∑

ls ,ps ,pi

χls ,ps ,pi
ŝ
†
ls ,ps

î
†
−ls ,pi

|vac〉s |vac〉i , (19)

where

χls ,ps ,pi
= ε0χ

(2)A(ω0)

i2
√

2πh̄

×
∫∫

ρ dρ dz Rps
(ρ,z)Rpi

(ρ,z)Rp0 (ρ,z) (20)

is the probability amplitude that the signal and idler photons
are in the modes characterized by indices l,ps and −l,pi ,
respectively. Next we consider a detection system that is
insensitive to the radial indices and is sensitive only to the
OAM mode index. In addition, we consider a class of states
|ψl

2〉 that are obtained from Eq. (19) by keeping only terms
with the OAM mode indices ±l for a given value of l. Thus we
end up with the following normalized state of two photons:∣∣ψl

2

〉 = 1√
2

(ŝ†+l î
†
−l + ŝ

†
−l î

†
+l)|vac〉s |vac〉i

= 1√
2

(|1〉s+l
|1〉i−l

+ |1〉s−l
|1〉i+l

). (21)

Here we have explicitly separated a given mode into two
different modes, one corresponding to the positive value of the
orbital angular momentum and the other corresponding to the
negative value. Thus ŝ−l represents the annihilation operator
corresponding to the s mode having an OAM of −lh̄, etc.

The next term in the expansion of Eq. (17) is the four-photon
state |ψ4〉. We evaluate this term in a similar manner and obtain

|ψ4〉 =
∑

ls ,ps ,pi

∑
l′s ,p′

s ,p
′
i

χls ,ps ,pi
χl′s ,p′

s ,p
′
i

× ŝ
†
ls ,ps

î
†
−ls ,pi

ŝ
†
l′s ,p′

s
î
†
−l′s ,p

′
i
|vac〉s |vac〉i . (22)

Again assuming a detection system that is sensitive only to the
OAM mode index and considering the class of states with the
OAM mode indices ±l, we obtain the normalized state∣∣ψl

4

〉 = 1

2
√

3
[ŝ†+l ŝ

†
+l î

†
−l î

†
−l + ŝ

†
−l ŝ

†
−l î

†
+l î

†
+l

+ 2ŝ
†
+l ŝ

†
−l î

†
−l î

†
+l]|vac〉s |vac〉i (23)

or ∣∣ψl
4

〉 = 1√
3

[|2〉s+l
|2〉i−l

+ |2〉s−l
|2〉i+l

+ |1〉s+l
|1〉s−l

|1〉i+l
|1〉i−l

]. (24)

This is the four-photon entangled state.

B. Generic scheme for supersensitive angular-displacement
measurement

In our measurement scheme, as outlined in Fig. 3, the
entangled photons produced by PDC first get mixed at the
beam splitter BS1. The photons in mode g then pass through
a Dove prism oriented at angle θ and thereby get rotated with
respect to the photons in mode h. The photons in modes g

and h are then mixed at the second beam splitter BS2 and are

BS

(a)
a+l
∧

a-l
∧

∧c+l
∧c-l

b-l
∧

b+l
∧

d-l
∧

d+l
∧

(b)

a+l
∧

a-l
∧

∧c+l
∧c-l

b-l
∧

b+l
∧

d-l
∧

d+l
∧

(c)

a+l
∧

a-l
∧

∧c+l

∧c-l

b-l
∧

b+l
∧

d-l
∧

d+l
∧

DP(θ)

FIG. 4. (Color online) Transformation of OAM modes when they
pass through (a) a beam splitter, (b) a pair of mirrors, and (c) a Dove
prism.

subsequently detected in modes a and b by detectors Da and
Db. Our aim is to determine the resolution and sensitivity with
which the rotation angle θ can be measured.

We begin by summarizing the transformation properties
of OAM modes when they pass through a beam splitter,
a pair of mirrors, or a Dove prism. We note that, upon
reflection, an OAM mode changes the sign of its mode index
and also picks up an additional phase. This additional phase
is equal to π/2 when the mode reflects from a symmetric
beam splitter and π when it reflects from a mirror. Upon
passage through a Dove prism, an OAM mode picks up an
additional phase of π − 2lθ [13], where l is the orbital angular
momentum mode index and θ is the angle of rotation of the
Dove prism. The transformation matrices corresponding to the
three optical elements can be calculated by employing a 4 × 4
matrix formulation. The beam-splitter transformation matrix
is calculated in the following way. As shown in Fig. 4(a),
let us suppose that a and b are the input modes to a beam
splitter and c and d are the output modes. The annihilation
operators corresponding to mode a are â+l and â−l , etc. Using
the standard beam-splitter operator algebra [18], we obtain the
relationship between the input and output-mode annihilation
operators and represent it as the matrix equation

⎛
⎜⎜⎜⎜⎝

ĉ+l

ĉ−l

d̂+l

d̂−l

⎞
⎟⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

0 i 1 0

i 0 0 1

1 0 0 i

0 1 i 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

â+l

â−l

b̂+l

b̂−l

⎞
⎟⎟⎟⎟⎠ = MBS

⎛
⎜⎜⎜⎜⎝

â+l

â−l

b̂+l

b̂−l

⎞
⎟⎟⎟⎟⎠ .

(25)

Here the unitary matrix MBS is the beam-splitter transfor-
mation matrix for OAM modes. In a similar manner, the
transformation matrix Mmir related to the reflections of two
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incident modes a and b into the reflected modes c and d

[Fig. 4(b)] can be shown to be

Mmir =

⎛
⎜⎜⎜⎝

0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

⎞
⎟⎟⎟⎠ . (26)

Finally, in situations in which one of the modes passes
through a Dove prism [Fig. 4(c)], rotated at an angle θ , the
transformation matrix MDP is given by

MDP(θ ) =

⎛
⎜⎜⎜⎝

0 −e2ilθ 0 0

−e−2ilθ 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (27)

The first two diagonal elements are zero due to the fact that
upon passage through a Dove prism a modes changes the sign
of its OAM mode index. We note that both Mmir and MBS are
unitary matrices. Using the transformation properties of OAM
modes as given by Eqs. (25)–(27), we express the output-mode
annihilation operators in terms of the input-mode annihilation
operators as

O = MBSMDP(θ )MmirMBSMmirI = MI, (28)

where

O =

⎛
⎜⎜⎜⎜⎝

â+l

â−l

b̂+l

b̂−l

⎞
⎟⎟⎟⎟⎠ , I =

⎛
⎜⎜⎜⎜⎝

ŝ+l

ŝ−l

î+l

î−l

⎞
⎟⎟⎟⎟⎠ .

In order to calculate the state in the output modes a and b,
we need to obtain the inverse relationship, that is, we need to
express the input-mode annihilation operators in terms of the
output-mode annihilation operators. Therefore, we invert the
above matrix equation and write it as

I = M−1O = M†O, (29)

where the last equality results from the fact that M is a unitary
matrix (M−1 = M†), with |detM| = 1, where det denotes the
determinant. Now taking the transpose of Eq. (29), we obtain

I † = O†M. (30)

We note that I † and O† are four-element row vec-
tors: I † = (ŝ†+l ,ŝ

†
−l ,î

†
+l ,î

†
−l) and O† = (â†

+l ,â
†
−l ,b̂

†
+l ,b̂

†
−l). Using

Eqs. (25)–(27), we solve Eq. (30) to obtain the following
operator relations:

ŝ
†
+l = k∗

1 â
†
−l + ik∗

2 b̂
†
+l , ŝ

†
−l = k1â

†
+l + ik2b̂

†
−l ; (31a)

î
†
+l = ik2â

†
+l − k1b̂

†
−l , î

†
−l = ik∗

2 â
†
−l − k∗

1 b̂
†
+l ; (31b)

where k1 = 1
2 (1 + e−2ilθ ) and k2 = 1

2 (1 − e−2ilθ ). With the
operator relations in Eqs. (31), we next calculate the angular
resolution and sensitivity that can be obtained with two and
four entangled photons.

C. Supersensitive measurement with two entangled photons

The normalized two-photon state |ψl
2〉 produced by PDC is

given by Eq. (19),

∣∣ψl
2

〉 =
√

1
2 (|1〉s+l

|1〉i−l
+ |1〉s−l

|1〉i+l
)

=
√

1
2 [ŝ†+l î

†
−l + ŝ

†
−l î

†
+l]|vac〉. (32)

Using the operator relations of Eqs. (31), we express the above
state in terms of the output-mode creation operators to obtain

∣∣ψl
2

〉 =
√

1
2 [(k∗

1 â
†
−l + ik∗

2 b̂
†
+l)(ik

∗
2 â

†
−l − k∗

1 b̂
†
+l)

+ (k1â
†
+l + ik2b̂

†
−l)(ik2â

†
+l − k1b̂

†
−l)]|vac〉. (33)

We note that by carrying out a similar transformation between
modes s and i and modes g and h, we can show that the state
of the two photons in modes g and h is

∣∣ψl
2

〉 = i

2
[|2〉g+l

|0〉h−l
+ |0〉g+l

|2〉h−l

+|2〉g−l
|0〉h+l

+ |0〉g−l
|2〉h+l

]. (34)

This state has the same form as the state in Eq. (7) for
N = 2; therefore, we expect this scheme to yield both
maximum resolution and sensitivity.

We now estimate the angular resolution and sensitivity
through use of the following measurement operator [9]:

Â2 = |1〉a+l
|1〉b−l a+l

〈1|b−l
〈−1|

+ |1〉a−l
|1〉b+l a−l

〈1|b+l
〈1|, (35)

which measures the probability of detecting either a photon in
mode a with the OAM mode index l and another photon in
mode b with the OAM mode index −l or a photon in mode a

with the OAM mode index −l and another photon in mode b

with the OAM mode index l. The measurement operator Â2

does not experience the complete state |ψl
2〉; the effective state

|ψl
2〉eff that Â2 experiences is obtained from |ψl

2〉 by keeping
only the terms containing â

†
+l b̂

†
−l â

†
−l b̂

†
+l . |ψl

2〉eff is given by

∣∣ψl
2

〉
eff = − 1√

2

[(
k2

1 + k2
2

)
â+l b̂−l + (

k∗
1

2 + k∗
2

2)
â−l b̂+l

]|vac〉

= − 1

2
√

2
[(1 + e−4ilθ )|1〉a+l

|1〉b−l

+ (1 + e4ilθ )|1〉a−l
|1〉b+l

]. (36)

The expectation value of the measurement operator Â2 is

〈Â2〉 = Tr
[
Â2

∣∣ψl
2

〉〈
ψl

2

∣∣] = cos2(2lθ ). (37)

We see that there is a twofold enhancement in the resolution of
angular-displacement measurements. We note that, since there
is no postselection involved in this case, the expectation value
can be as high as unity for certain values of θ , indicating that
at those values of θ the whole input state is detected at the
output. Next, using 〈Â2

2〉 = 〈Â2〉 = cos2(2lθ ), we obtain

〈�Â2〉 =
√〈

Â2
2

〉 − 〈Â2〉2 = sin(4lθ )

2
. (38)
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Therefore, the uncertainty �θ2 in the estimation of the angular
displacement is

�θ2 = 〈�Â2〉
|∂〈Â2〉

/
∂θ | = 1

4l
. (39)

By comparing the above result with Eq. (11), we see that this
yields the maximum sensitivity that can be obtained with two
entangled photons.

D. Supersensitive measurement with four entangled photons

We next consider the four-photon state |ψl
4〉 of Eq. (21),

|ψl
4〉 = 1

2
√

3
[ŝ†+l ŝ

†
+l î

†
−l î

†
−l + ŝ

†
−l ŝ

†
−l î

†
+l î

†
+l

+ 2ŝ
†
+l ŝ

†
−l î

†
−l î

†
+l]|vac〉. (40)

The propagated state in modes g and h can be shown to be∣∣ψl
4

〉 = − 1√
24

[
√

3(|4〉g+l
|0〉h−l

+ |0〉g+l
|4〉h−l

+ |4〉g−l
|0〉h+l

+ |0〉g−l
|4〉h+l

)

+
√

2(|2〉g+l
|2〉h−l

+ |2〉g−l
|2〉h+l

+ |2〉g+l
|2〉g−l

+ |2〉g+l
|2〉h+l

+ |2〉g−l
|2〉h−l

+ |2〉h+l
|2〉h−l

)]. (41)

We note that the above state does not have the same generic
form of Eq. (7). This is due to the presence of the additional
terms that are present in the second set of parentheses. We now
quantify the effect of these additional term on the sensitivity
and describe our detection scheme with the following four-
photon measurement operator Â4:

Â4 = Â
(I )
4 + Â

(II )
4 , (42)

where

Â
(I )
4 = |3〉a+l

|1〉b−l a+l
〈3|b−l

〈1|
+ |3〉a−l

|1〉b+l a−l
〈3|b+l

〈1|
+ |2〉a+l

|1〉a−l
|1〉b+l a+l

〈2|a−l
〈1|b+l

〈1|
+ |2〉a−l

|1〉a+l
|1〉b−l a−l

〈2|a+l
〈1|b−l

〈1| (43)

and Â
(II )
4 is obtained by rewriting Â

(I )
4 with the indices a and

b interchanged. The operator Â4 measures the probability of
detecting either three photons in mode a and one photon in
mode b or one photon in mode a and three photons in mode b.
The particular choice of the measurement operator is motivated
by the fact that in order to achieve super-resolution, the four-
photon measurement needs to postselect the ensemble that
consists only of the maximally entangled four-photon states,
that is, the state in Eq. (7) for N = 4.

The effective postselected state |ψl
4〉(I )

eff that the measure-
ment operator Â

(I )
4 experiences is obtained by first expressing

the state |ψl
4〉 in terms of the output-state creation operators

using the operator relations given in Eqs. (31) and then keeping
only the relevant terms. After a straightforward calculation we
obtain∣∣ψl

4

〉(I )
eff = −i√

3
[k∗

1k
∗
2 (k∗

1
2 + k∗

2
2)â†

+l â
†
+l â

†
+l b̂

†
−l

+ k1k2
(
k2

1 + k2
2

)
â
†
−l â

†
−l â

†
−l b̂

†
+l

+ k∗
1k

∗
2

(
k2

1 + k2
2

)
â
†
−l â

†
−l â

†
+l b̂

†
−l

× k∗
1k

∗
2 (k∗

1
2 + k∗

2
2)â†

+l â
†
+l â

†
−l b̂

†
+l]|vac〉. (44)

Substituting for k1 and k2, we get∣∣ψl
4

〉(I )
eff = −i

8
√

3
[
√

6(1 − e8ilθ )|3〉a−l
|1〉b+l

+
√

6(1 − e−8ilθ )|3〉a+l
|1〉b−l

+
√

2(e−4ilθ − e4ilθ )|2〉a−l
|1〉a+l

|1〉b−l

+
√

2(e4ilθ − e−4ilθ )|2〉a+l
|1〉a−l

|1〉b+l
]. (45)

The expectation value 〈Â(I )
4 〉 of the measurement operator is

calculated by substituting terms from Eqs. (43) and (45), which
yields 〈

Â
(I )
4

〉 = 1
3 sin2(4lθ ). (46)

By performing a similar calculation, we obtain 〈Â(II )
4 〉 =

1
3 sin2(4lθ ). Thus we get

〈Â4〉 = 〈
Â

(I )
4

〉 + 〈
Â

(II )
4

〉 = 2
3 sin2(4lθ ). (47)

We note the fourfold enhancement in the angular resolution.
However, we find that the maximum expectation value of
the measurement operator in this case is only 2/3, which
means that the inherent postselection of our detection scheme
is throwing away 1/3 of the input photons. The uncertainty
〈�Â4〉 is given by

〈�Â4〉 =
√

2/3 sin(4lθ )
√

1 − (2/3) sin2(4lθ ). (48)

The uncertainty �θ4 in the estimation of angular displacement
is therefore

�θ4 = 〈�Â4〉
|∂〈Â4〉

/
∂θ | =

√
1 − (2/3) sin2(4lθ )

8l
√

2/3 cos(4lθ )
. (49)

Figure 5 shows a plot of �θ4 as a function of θ for |l| = 1. The
dashed horizontal line is the minimum attainable uncertainty
[Eq. (11)] with four entangled photons for |l| = 1. We note
that, although the postselection has no effect on resolution,

θ ( radian )

∆θ
4

2.0 3.02.51.0 1.50.50.0

0.6

0.4

0.8

1.0

0.2

FIG. 5. (Color online) Plot of �θ4 as a function of θ for |l| = 1.
The solid horizontal line is the plot of �θ

(i)
4 , as defined in Eq. (6), for

four independent photons. The dashed horizontal line is the minimum
attainable uncertainty with four entangled photons, as shown by
Eq. (11).
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it causes an increase in the minimum attainable uncertainly
and thus a decrease in the maximum attainable sensitivity.
The solid straight line is the uncertainly obtained with four
independent photons for |l| = 1. We find that the uncertainty
obtained with four entangled photons is lower than that
obtained with four independent photons for a range of θ

values. The lowest uncertainty, and thus the best sensitivity, is
obtained near values of θ for which 4lθ = nπ , where n is an
integer.

IV. CONCLUSION

In conclusion, we have shown that the use of path-
entangled states of photons, having nonzero orbital angular
momentum, increases the resolution and sensitivity of angular-
displacement measurements performed using an interferome-
ter. We have found that the resolution of angular-displacement
measurements increases by a factor Nl, while the uncertainty
in the measurement of angular displacements scales as 1/Nl,
where N is the number of entangled photons and l is the

magnitude of the orbital angular momentum mode index.
Using a 4 × 4 matrix formulation to study the propagation
of entangled OAM modes, we have explicitly analyzed
measurement schemes for two and four entangled photons.
It has previously been established [19–22] that the orbital
angular momentum of light constitutes a useful degree of
freedom for applications in quantum optics and quantum
information science. The work presented here provides another
such example. The ability to detect small rotations of optical
components or of light beams themselves holds promise for
many applications both in remote sensing and for performing
fundamental studies of the propagation of light through optical
materials.
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