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Abstract: We propose a method for directly producing radially and azimuthally polarized
photon pairs through spontaneous parametric downconversion (SPDC). This method constitutes
a novel geometry for SPDC, in which a radially polarized Bessel-Gauss pump beam is directed
into a nonlinear crystal, with the central propagation direction parallel to the crystal axis. The
phasematching conditions are controlled by changing the opening angle of the pump beam; as
the crystal axis cannot be tuned, we refer to this process assuper-critical phasematching. We
model and plot the spatial and polarization output distributions for Type-I and Type-II super-
critical phasematching.
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1. Introduction

Beams displaying radial and azimuthal polarizations have drawn great interest for their unique
properties and uses in applied and fundamental optics. Radially polarized light beams have
polarizations aligned radially toward the beam propagation axis. They produce a strong lon-
gitudinal electric field with a focal spot below the diffraction limit under tight focusing [1, 2].
Azimuthally polarized beams have polarizations at all points orthogonal to the beam radius.
When focused, they produce a strong longitudinal magnetic field [3]. These two polarization
modes are mutually orthogonal and display cylindrical symmetry about the beam axis. Radially
and azimuthally polarized photons have gained increased interest in the quantum regime for ap-
plications in quantum information, such as alignment-free QKD [4,5], single photon spin-orbit
non-separable states [6], superdense coding and quantum communication [7], as well as in the
classical regime in optical data storage and optical lithography. When used along with standard
TEM00 modes in mode-division multiplexing they have been shown to increase the bandwidth
of telecommunications channels [8,9].

For propagation in free space, radially and azimuthally polarized Bessel-Gauss beams are
solutions to the vectorial form of the paraxial wave equation [10]. These beams have a transverse
profile given by the Bessel function of the first kind, J1, multiplied by a Gaussian factor, since
ideal Bessel beams are not physically achievable. They are desirable in optical applications
because they exhibit non-diffracting propagation with an improved depth of focus over Gaussian
beams [11, 12]. It is key to our modeling that a Bessel-Gauss beam can be decomposed into a
distribution of Gaussian spatial mode beams with their central wave-vectors along the surface
of a cone [13].

We are interested in producing radially and azimuthally polarized photon pairs through spon-
taneous parametric downconversion (SPDC). This is an optical process that occurs within aχ(2)

nonlinear crystal, in which one pump photon spontaneously decays to produce two photons at
lower frequencies. These two photons, commonly referred to as signal and idler, are correlated
in position and momentum, and time and energy due to momentum-energy conservation [14].
Conservation of energy dictates that the frequencies of the two downconverted photons must
add up to the pump frequency:

ωp = ωs +ωi . (1)

Here,ωp , ωs , andωi are the frequencies of the pump, signal, and idler photons, respectively.
In this paper we will restrict our attention to a CW pump laser, i.e. in effect, a single frequency.
Downconverted photons may be produced with somek-vector mismatch∆k:

ks + ki − kp = ∆k. (2)

Here,kp , ks , andki are any set of pump, signal, and idlerk-vectors. When∆k is zero, we have
perfect phasematching, i.e. momentum conservation.

In this paper, we focus on Type-II phasematching (a discussion on Type-I phasematching
can be found in Appendix A1). In Type-II phasematching, the signal and idler polarizations are
orthogonal. The downconverted photons may be emitted in different directions or, in the case
of collinear downconversion, in the same direction. The wavelengths and emission directions
of these photons depend on the angle of the pump beam relative to the optic axis of the crystal,
and are constrained by the conservation rules given above in Eqs. (1) and (2). In the opposite
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process, sum-frequency generation, the amount of light produced is critically sensitive to the
angle of the crystal. Hence, this type of phasematching is calledcritical phasematching.

We propose a novel geometry for SPDC that will produce photon pairs with one radially po-
larized and one azimuthally polarized photon. The pump is a radially polarized Bessel-Gauss
beam that is focused into the crystal such that its cone axis is parallel to the crystal optic axis.
The opening angle of the pump cone is chosen such that the centralk-vector of each Gaussian
beam in the pump distribution satisfies the phasematching conditions in Eq. (2). In this geom-
etry, phasematching is achieved by adjusting the pump cone angle or, if possible, the crystal
temperature. Since even the crystal angle cannot be adjusted anymore, we refer to this process
assuper-critical phasematching. In this paper, we model the spatial and polarization properties
of the generated photon pairs.

2. Geometry and notation

In this section, we fully describe the proposed geometry for super-critical phasematching. We
define the crystallographic axes byx, y, andz, as shown in Fig. 1, wherez is the optic axis (we
restrict our analysis to a uniaxial crystal). We consider degenerate phasematching, i.e. the signal
and idler wavelengths are the same.

As mentioned in the introduction, a Bessel-Gauss pump beam, BG(k), can be thought of as a
distribution of Gaussian beams around a cone [13]:

BG(k) ∝
∫ 2π

0
e−w2

p(k−k0
p(ϕp))2/4dϕp , (3)

k0
p ,x(ϕp) = |k0

p | sin(θp) cos(ϕp), k0
p ,y(ϕp) = |k0

p | sin(θp) sin(ϕp), k0
p ,z = |k0

p | cos(θp) (4)

where each of these Gaussian beams has a centralk-vector given byk0
p(ϕp) (with components

k0
p , j

for j = x , y, z) , wp is the 1/e2 spatial full-width of the pump beam,θp is the opening
half-angle of the cone, andϕs(i) is the azimuthal angle. Thus, the cone axis is parallel to the
z-axis the crystal. Decomposing the Bessel-Gauss beam into this distribution has the advantage
that each Gaussian beam may be treated in the paraxial approximation, whereas the full Bessel-
Gauss beam can be non-paraxial if the cone angle is large. We use a proportionality symbol in
Eq. (3) and later in the paper since we will impose an overall normalization later.

The k-vectors of the signal and idler photons are denoted byks andki , respectively. The
emission directions of these photons are characterized by two angles,θs(i) andϕs(i), of spherical
coordinates. The first,θs(i), is measured between thek-vector of the signal(idler) photon and
thez-axis of the crystal. The azimuthal angle,ϕs(i), represents a rotation from thex-axis in the
transverse plane of the crystal. The angles of the pump, signal, and idler photons are defined in
the crystal frame of reference, that is, with respect tox, y, andz. These angles are shown in Fig.
1.

We also define a rotated local frame given byx′, y′ andz′. Here, local means that the axes
are defined with respect to the central pumpk-vectork0

p of a Gaussian beam in our distribution
in Eq. (3), such thatz′ is in the same direction ask0

p . They′ axis is in the plane ofz andz’. The
x′ axis is perpendicular to this plane. Consequently, the local frame rotates in the integral in Eq.
(3). That is, for every value of the integrand the axes are aligned azimuthally (x′) and radially
(y′) with respect toz. Conversely, the axesx, y, z are stationary with respect to the crystal, as
they are defined with respect to the optic axis of the crystal. The coordinate transformations
betweenx, y, z andx′, y′, z′ are given in Eq. (16) from Appendix A2, and are from Ref. [15].

As an example, we consider a negative uniaxial crystal (e.g.β-barium borate (BBO)) in
which the only phasematched process occurs for an extraordinarily (e) polarized pump beam.
Extraordinary polarization is defined to be in the plane formed by a beam’s wavevectork and
the crystal optic axisz, whereas ordinary (o) polarization is orthogonal to this plane. In terms of
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our local frame, the pump polarization is alongy′. Asy′ is aligned radially with respect toz, the
extraordinary polarized Gaussian beams in the pump distribution in Eq. (3) form a Bessel-Gauss
beam that is radially polarized.

Fig. 1. The geometry of super-critical phasematching. Thex, y, and z axes are the crystal-
lographic axes, wherez is the optic axis. The pump (blue) is comprised of a conical dis-
tribution of Gaussian beams, each with centralk-vectork0

p(ϕp), whereϕp is the azimuthal
angle. The pump beam cone axis is along the crystal axisz, and the opening half-angle of
the cone isθp . The signal (idler), shown in green (red), is emitted withk-vectorks(i). The
signal (idler)k-vector is characterized by two angles:θs(i), the half-cone opening angle,
measured between the signal (idler)k-vector and thez axis; andϕs(i), the azimuthal angle.
We also introduce a local frame, denoted byx’, y’, and z’, wherez’ is defined along the
centralk-vector,k0

p , of each Gaussian beam. The other axes are aligned azimuthally (x’)
and radially (y’) with respect toz.

3. Simulation results

We give a brief description of our methods here; a full description of our calculations can be
found in Appendix A2. In this section, we simulate the outputk-vector distributions of the down-
converted photons for a super-critically phasematched Bessel-Gauss pump beam. This type of
beam can be strongly non-paraxial, which means standard methods for modeling the output dis-
tribution can be difficult to apply. Instead, we begin by modelling the output from a single Gaus-
sian pump centered onk0

p(ϕp). That is, we model the complex amplitudeΦG(k0
p(ϕp), ks , ki)

for the signal and idler photons to have wavevectorsks andki . Then we superpose these am-
plitudes similar to in Eq. (3) to find the total complex amplitude output from a Bessel-Gauss
pump:

ΦBG(ks , ki) =
1
√
N

∫ 2π

0
ΦG(k0

p(ϕp), ks , ki)dϕp , (5)

The scaling,
√
N ensures that the joint probability distribution|ΦBG |2 is normalized. In [15],

Boeuf et al. demonstrate that the complex amplitudeΦG can be expressed as :

ΦG(k0
p(ϕp), ks , ki) ∝ exp















−w2
p(∆k2

x ′ + ∆k
2
y′

)

4















sinc

(

Loptic∆kz′

2

)

exp













iLoptic∆kz′

2













, (6)

in which ∆kx ′ , ∆ky′ , and∆kz′ (given in Appendix A2) are thek-vector mismatches in the
x′, y′, andz′ directions. Here,Loptic is the length of the optical path through the crystal. That
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is, Loptic = Lcrystal/cos(θp), whereLcrystal is the crystal length as measured along its normal.
The first exponential term and sinc term give the square root of the phasematching function
from [15], and the second exponential term gives the phase.

Fig. 2. Marginal probability density (P(ks), P(ki )) for Type-II degenerate down-
conversion. The pump cone half-angle is 41.8◦ in a 500µm-thick BBO crystal. The pump
beam wavelength is 405 nm and the signal and idler wavelengths are 810 nm. Since for
degenerate phasematching|ks(i) | is fixed,θs(i) andφs(i) completely determine the signal
and idler wavevectors. In turn, the position of the photons after the crystal determines these
angles, so these plots are given in the crystal frame (x,y) at z=20cm after the crystal exit
face. Plots (A), (B), and (C) give (A) the probability density of generating a signal photon
atks , (B) the probability density of generating an idler photon atki , and (C)P(ks)+P(ki ),
which is proportional to the photon flux. Plots (a), (b), and (c) are produced from plots (A),
(B), and (C), respectively, by plotting alongy = 0.

The pump cone half-angleθp is set to 41.8◦ inside a 500µm thick BBO crystal. This crystal
thickness ensures that the sinc width in Eq. (6) is sufficiently large to capture in a numerical
simulation, and the angle,θp , is the angle for Type-II degenerate collinear phasematching at
405 nm for a typical SPDC geometry. This value of the pump angle corresponds to a typical
angle used to produce photons within the sensitivity range of silicon detectors while still hav-
ing a pump at a typical laser wavelength. More specifically, with a pump wavelength of 405
nm and in the case of degenerate SPDC, the signal and idler wavelengths are 810 nm. All of
these parameters are typical in an SPDC experiment. Thus, every Gaussian beam in the pump
distribution satisfies phasematching conditions within the BBO crystal. Each Gaussian pump
beam has a 1/e2 spatial full-width of 84µm. We have made the assumption that the pump, sig-
nal, and idler photons are each at a single wavelength, which is reasonable if the pump beam
has a sufficiently narrow bandwidth.

Rather than plotting the joint probability density|ΦBG(ks , ki)|2 for signal and idler, which is
made difficult by computation power limitations, we plot the marginal probability distribution
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for the signalor idler photon. For example, we plotP(ks) =
∫ ∫

|ΦBG |2dki ,xdki ,y . The results
are shown in Fig. 2. The resulting output distribution shows three concentric circles which we
call “supercones" (for reasons that will be apparent later). Signal photons are produced along
the innermost and central supercones, and idler photons are produced along the central and
outermost supercones.

Implicit in our calculations are the polarization properties of the signal and idler photons.
In Type-II phasematching, one downconverted photon (signal) is extraordinarily polarized and
the other photon (idler) is ordinarily polarized. Thus for eachk0

p(ϕp) in Eq. (5) the signal is
polarized alongy′ and the idler is polarized alongx′. It follows that the signal output supercones
are polarized radially and the idler output supercones are polarized azimuthally with respect to
the z-axis. However, there is an effect that may degrade the signal and idler’s polarization. In
the supercone each point arises from a small but finite range of pump angles,∆φp . Taking into
account the Type II cone thickness, we quantitatively estimate∆φp . For example, for a point
in the overlapping signal and idler supercones∆φp will vary by 0.8◦. This will also be the
variation in polarization angle around the nominal polarization (e.g. radial) of the generated
photons. This small effect will be further diminished since Eq. (5) sums over that variation. We
conclude that, to an excellent approximation, the generated photons have radial and azimuthal
polarizations.

At this point, we do not include the effect of refraction at the input or output crystal face.
If the the input and and output faces are perpendicular to thez-axis then Snell’s law would
imply that the opening anglesθ in free space outside the crystal will be greater than those
inside. The overall shape of the distributions shown in Fig. 2 would be retained, but refraction
would increase the radii of the rings. This refraction will need to be taken into account for the
experimental realization of this work. Because the phasematching angle is chosen to produce
a signal and idler collinear with the pump, the large incidence angle at the crystal output face
would cause the signal and idler to be separated in angle by 2.9◦, which would cause them to
spatially separate as they propagate. However, this is simple to precompensate by changing the
phasematching angle so that they are generated inside the crystal with a 2.9◦ angular separation.
Propagating across the crystal, this itself will cause a spatial walkoff. But, this effect is small
compared to the pump focus width and can, thus, be neglected. These concerns are addressed
further in Section 6.

In summary, by pumping with a Bessel-Gauss beam parallel to the crystal’s optical axis one
can generate radially and azimuthally polarized photon pairs in cylindrically symmetric spatial
modes. It is important to note, these supercones are not the cone-like output distributions nor-
mally associated with critically phasematched SPDC. Namely, the supercones are cylindrically
symmetric about the crystal’s optical axisz, whereas the latter are centered on the pump axis
z′. However, to understand how these supercones come about, in the next section we start by
considering the typical output distributions for critically phasematched SPDC.

4. Expected output

In this section, we give a geometric argument for the spatial distributions for the signal and idler
photons shown in Fig. 2. We do this by considering Type-II critical phasematching of a single
Gaussian beam in the pump distribution in Eq. (3). By considering only a single Gaussian pump
we revert to the standard geometry for SPDC, in which the pump beam travels at an angleθp to
the crystal’s optical axis.

The phasematching conditions for this Gaussian pump beam may be met by a range of signal
and idler emission angles. In the simulation, we considered the case whereθp is set to 41.8◦.
For degenerate SPDC with a 405 nm pump this produces an idler and signal output cone at 810
nm, each meeting tangentially at the pumpk-vector,k0

p . We call these the standard Type-II
cones.
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If we consider one such Gaussian pump beam, labelled by its central k-vectork0
p in Fig.

3(a), then the signal and idler photons produced by this Gaussian beam will be generated along
the standard Type-II cones, shown in Fig. 3(b). We can then take this standard Type-II SPDC
output and apply the superposition principle to arrive at the expected output distribution for
a Bessel-Gauss pump. In more detail, this output can be visualized by taking the two standard
Type-II cones and rotating them around the crystal optical axis (z-axis), as illustrated in Fig. 3(c).
Rotation of the idler standard cone results in two larger and concentric cones, now centered on
thez-axis. These are the supercones we observe in Fig. 2. Similar supercones are produced by
the rotation of the signal standard cone, one with the same diameter as the inner idler supercone
and the other with a smaller diameter. Photon pairs may be produced in the regions between
these supercones, but with lower probability, as can be seen in the profiles in Fig. 2.

Fig. 3. Spatial (a) and polarization (c) distributions for degenerate Type-II super-critical
phasematching. The polarization distribution in (b) is the typical distibution for a single
Gaussian pump beam. When this output is summed over all the Gaussian beams in the
Bessel-Gauss pump distribution in Eq. (3), the resulting intensity and polarization distribu-
tions become those of (a) and (c). The signal photons (green) are generated with radial
polarizations and the idler photons (red) are generated with azimuthal polarizations.

In this section, we have shown that the supercones seen in the simulation results have an in-
tuitive geometric origin that can be understood by considering the standard output distributions
for Type-II phasematched SPDC. Here, we only discussed as an example the case in whichθp
is set to 41.8◦. Different pump cone half-angles will change the diameter and intersection of
the standard Type-II SPDC output circles. Using our intuitive geometric argument, one would
expect more supercones to appear, two for each standard cone.

Up to this point, we have only discussed the signal and idler marginal probability densities.
In the next section, we examine the signal and idler joint probability density.

5. Correlations

One method to determine the correlations between the signal and idler photons is to calculate
the full 4d signal and idler probability density|ΦBG(ks , ki)|2. This would be achieved by cal-
culating the phasematching amplitude in Eq. (5) using 4d matrices ofϕs , θs , ϕi , θi to give the
phasematching amplitude for all possible combinations of these emission angles for the signal
and idler. However, this calculation would be prohibitively large, so we instead simulate the
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probability density for the signal photon given the idler photon is found alongϕi = 45◦. We
limit our discussion to the overlapping signal and idler supercone. That is,θi is chosen to be at
the peak probability of this supercone. The results are shown in Fig. 4.

Fig. 4. Signal photon probability density for Type-II degenerate collinear downconversion
with a fixed idler emission direction. Idler angles are fixed atθi = 41.8◦ andϕi = 45◦.

The resulting signal conditional probability density has a FWHM width of 7.9 mm in the
y′ direction (azimuthal), which is 1.3% of the circumference of the signal supercone. In thex ’
direction (radial), the conditional probability density has a width of 2.7 mm, which is 39% of
the supercone FWHM thickness. Switching the role of signal and idler, these parameters are the
same. It is evident that signal and idler emission directions are strongly correlated:ks eqalski

to within the phasematching uncertainty set by Eq. (6). Both photons appear in the same spot in
the overlapping supercone.

The strong correlations in the simulation imply that the full signal-idler two-photon wavefunc-
tion is highly entangled both in polarization and in spatial mode. In this situation, the position
of, say, the idler photon reveals the position of the signal. In quantum mechanics, the presence
of this "which-position" information requires absence of coherence between positions. Conse-
quently, one cannot consider either photon, by itself, to be in a Bessel-Gauss quantum state,
which would require coherence across the supercone. In particular, focusing the idler or signal
photon supercone will result in a much broader distribution than what one would expect from
Bessel-Gauss mode of this diameter. This is despite the fact that the marginal probability densi-
ties (Fig. 2) and polarizations (Fig. 3) of the signal and idler appear similar to those of radially
and azimuthally polarized Bessel-Gauss modes, respectively.

On the other hand, applications in quantum information rely on entanglement and also on
the symmetry of the overall two-photon state. This is why we expect that the highly-entangled
cylindrically symmetric two-photon states that this geometry produces to have many uses in this
area.

6. Feasibility of experimental realization

The construction of a super-critically phasematched SPDC source will require consideration of
refraction at the crystal face. While the axis of the pump cone is perpendicular to the crystal
face, its opening angle, and hence its incidence angle, can be large. For the scenario discussed
above, the opening half-angle of the pump cone isθp = 41.8◦ inside the crystal. This is larger
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than the angle of total internal reflection for BBO, which is 38◦ at 405 nm. To circumvent this
problem, we suggest two means of reducing the angle of the pump beam relative to the crystal
face.

The first of these is to cut each face of the crystal as an axicon. That is, the crystal would
be a double-sided cone with an apex full-angle of 90◦. This reduces the pump beam angle to
5.1◦ relative to the surface of the crystal, as shown in Fig. 5. However, the pump angle is still
quite large, 39.9◦ relative to thez-axis, so another 90◦ axicon is required to direct a diverging
Bessel-Gauss pump beam (opening angle 3◦) into the crystal. The pump beam is focused into
the crystal when it passes through this axicon. An axicon is also placed at the exit face of the
crystal to reduce the angle of the emitted cones of pump, signal, and idler photons.

Fig. 5. Proposed setup to reduce the pump opening angle in air. Angles are calculated for
Type-II degenerate SPDC from 405 nm to 810 nm. The pump beam angle is reduced by
two means: (a) a crystal cut as a double-sided 90◦ axicon, and (b) two 90◦ axicons placed
tip-to-tip with the crystal at the entry and exit faces. The pump beam is focused into the
crystal as it passes through the first axicon. The second axicon reduces the angle of the
output beams as they exit the crystal.

However, this method is not ideal because the cut of the crystal is not conventional and may be
difficult to fabricate. Another method is to reduce the phasematching angle,θp , by performing
Type-II downconversion at a longer pump wavelength. To achieve the same standard Type-II
geometry as discussed in Section 2 but for SPDC from 775 nm to 1550 nm, the phasematching
angle isθp = 28.7◦. This is less than the angle of total internal reflection for BBO, which avoids
the need for an unusual crystal shape. However, due to refraction at the crystal face the pump
beam must be focused into the crystal at an angle of 51.8◦ to meet phasematching conditions
inside the crystal. This focusing angle is difficult to achieve, but can be reduced by affixing two
90◦ axicons back-to-back on either side of the crystal, as shown in Fig. 6. The index of glass
is similar to that of BBO so the pump beam does not refract significantly when entering the
crystal through the axicon. Thus, a pump beam that is focused at 25.7◦ relative to the horizontal
is sufficient to produce an angle of 28.7◦ inside the crystal. The axicon affixed to the exit face
of the crystal similarly reduces the exit angles of the pump, signal, and idler supercones.

The use of periodically poled KTP was also considered as a means of reducing the entry
angle into the crystal for Type-II phasematching. This would require that the crystal be poled
with the optical axis parallel to the beam propagation axis; however, current poling methods
only allow for the optical axis to be perpendicular to the direction of propagation. KTP is also
biaxial, which means that the crystal principal indices of refraction in thex- andy- directions
are not exactly equal at a given wavelength. As a result, the pump azimuthal angleϕp would
affect the phasematching conditions and the cylindrical symmetry would be lost.
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Fig. 6. Proposed setup to reduce the pump opening angle in air for Type-II degenerate
SPDC from 775 nm to 1550 nm: (a) a BBO crystal, placed between (b) two 90◦ axicons,
which are affixed back-to-back on either side of the crystal. The required opening angle of
the pump in air is 25.7◦; without the axicons at the crystal face this angle would be 51.8◦.

An additional experimental consideration is the polarization of the pump beam. Due to the dif-
ficulty in producing a radially polarized pump beam, it may be advantageous to instead produce
a circularly polarized Bessel-Gauss beam with an OAM value of±1, the sign being opposite to
the handedness of the polarization. This beam has equal azimuthal and radial polarization com-
ponents. Only the radial component will contribute to the production of photon pairs because
this is the extraordinary component of the pump beam. As a result, the contributing intensity
will be half that of the total intensity.

7. Conclusion

We have described a novel, cylindrically symmetric geometry for spontaneous parametric down-
conversion with the aim of producing radially and azimuthally polarized photon pairs. The
pump beam is a radially (or alternatively, circularly) polarized Bessel-Gauss beam, which can
be thought of as a distribution of Gaussian beams with centralk-vectors forming the surface of
a cone. The pump beam is focused into a nonlinear crystal such that the cone axis is along the
optical axis of the crystal.

We numerically simulated the output distributions of the signal and idler photons. The pho-
tons emerge along cylindrically symmetric (about the optical crystal axis) distributions which
we call supercones. The signal photons will be emitted with radial polarizations and the idler
photons will have azimuthal polarizations. The photons exhibit strong correlations such that
the signal and idler appear in the same location in the central supercone. Consequently, the
associated two-photon wavefunction is strongly entangled both in polarization and in spatial
mode.

While not the focus of this paper, this beam geometry could potentially improve the efficiency
of the reverse process, second harmonic generation (SHG), in which two photons combine to
produce one photon at a higher frequency. As this requires the presence of two photons, the
efficiency of SHG depends quadratically on the intensity of the beam. Focusing the beam more
tightly to increase this intensity causes the beam to diffract more quickly, so the crystal length is
limited by the Rayleigh range of the beam [16]. Bessel beams may provide improved conversion
efficiencies over Gaussian beams due to their non-diffracting properties, in that they maintain
a high peak intensity over larger distances [17]. Attempts have been made to experimentally
test this idea. In particular, truncated Bessel beams were used to pump Type-I phasematching
in lithium triborate [18]. In that paper, measured conversion efficiencies were slightly lower
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than those obtained for a Gaussian pump. However, that geometry consisted of an input beam
traveling perpendicular to the crystal axis innon-critical phasematching, and showed only longi-
tudinal or transverse phasematching, but not both concurrently. As this is significantly different
from oursuper-critical phasematching, it is worth again considering whether Bessel beams can
enhance SHG efficiency.

Appendix A1

We consider here the case of Type-I degenerate phasematching. Fig. 7 shows the simulated
probability densities|ΦBG |2 for the signal and idler, whereΦBG is defined as in Eq. (5). The
pump opening half-angleθp was set to 28.8◦ inside the crystal. In the standard Type-I geometry,
this is the phasematching angle that would produce signal and idler photons collinear with the
pump beam. In contrast, for a Bessel-Gauss pump the resulting SPDC output distribution is a
single supercone that is at all points collinear with the pump cone.

Fig. 7. Probability densities for Type-I degenerate downconversion in a 500µm -thick
BBO crystal for a pump beam wavelength of 405 nm, and signal and idler wavelength of
810 nm. Since for degenerate phasematching|ks(i) | is fixed, θs(i) andφs(i) completely
determine the signal and idler wavevectors. In turn, the position of the photons after the
crystal determines these angles, so these plots are given in the crystal frame (x,y) at z=20cm
after the crystal exit face. Plots (A), (B), and (C) give (A) the probability density for the
signal photon,P(ks); (B) the probability density for the idler photon,P(ki ); and (C)P(ks)
+ P(ki ), which is proportional to the photon flux. Plots (a), (b), and (c) are produced from
plots (A), (B), (C), respectively, by plotting alongy = 0.

This output distribution can be understood by superposing the typical Type-I SPDC outputs
for each Gaussian beam in the pump distribution in Eq. (5). Each of these Gaussian beams
produces collinear signal and idler photons. Consequently, only one supercone is produced
containing both signal and idler photons. For Type-I phasematching, the signal and idler are
emitted with ordinary polarizations. When these outputs are superposed for all Gaussian beams
in the pump distribution, the resulting polarization distribution is azimuthal. This polarization
distribution is shown in Fig. 8.
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Fig. 8. Expected output for Type-I collinear downconversion with a conical pump beam cen-
tered on the optic axis (z). The signal and idler photons are produced in a single supercone
centered on the optic axis.

The Type-I phasematching angle is below the angle of total internal reflection for BBO at
405 nm; however, there is still significant refraction at the crystal face so a reduction in the
free-space opening angle of the pump beam is required. The pump beam can be focused into
the crystal using a similar setup as in Fig. 6.

Appendix A2

The output distributions shown in Figs. 2 and 7 were calculated in Matlab and took 8 days
to run on a core i5 processor. For most of the work below we follow the work of Ref. [15].
We start with a 750 by 750 grid of (x,y) positions, with a range large enough to accommodate
all pump, signal, and idlerk-vectors. That is, from−0.25 m to 0.25 m. We then calculate the
downconversionamplitudes for each Gaussian beam in the pump distribution in Eq. (5). We then
sum these amplitudes, squaring the result to give the total probability density. The procedure
for a single Gaussian pump beam is given below, comprising Eqs. (7) to (20). Starting with the
grid of (x,y), anglesθs(i) andϕs(i) were calculated for the signal and idler photons as follows:

θs = tan−1













√

x2 + y2

z













, θi = −θs , (7)

ϕs = tan−1
(

x

y

)

, ϕi = ϕs + π, (8)

whereθs ,i andϕs ,i are the angles shown in Fig. 1, and are defined relative to the optic axis, and
z is set to be 0.2 m.

The components of the propagation directionssp/s/i for the pump, signal, and idler, were
calculated fromθ andϕ as follows:

sα,x = sin(θα) cos(ϕα), sα,y = sin (θα) sin (ϕα), sα,z = cos (θα), (9)

whereα = p, s, i. Additionally, the crystal principal indices of refractionnx , ny , andnz were
calculated for the pump, signal, and idler photons. The Sellmeier equations for BBO were ob-
tained from [15]. The extraordinary and ordinary indices of refraction are then:

Nα,e =


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1/2

(10)
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Nα,o =


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, (11)

whereα = p, s, i and
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2
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C =
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2
α,z

+
s2
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α,xn

2
α,z
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α,z

n2
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2
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. (13)

The extraordinary or ordinary indices were assigned to the signal and idler photons depending
on which type of phasematching, Type-I or Type-II, was chosen. We can then determine the
k-vector components for the pump, signal, and idler as follows:

kα, j = 2π
Nαsα, j

λα
, (14)

in which α = p, s, i and j = x , y, z. The direction vector components [sx , sy , sz ] are defined
with respect to the optic axis, so thesek-vectors are given in the crystal frame. Thek-vector
mismatches in the crystal frame of reference are then given by Eq. (15):

∆k j = ks , j + ki , j − kp , j , (15)

where j= x,y,z. So far, we have worked in the crystal frame because it is convenient to have
a consistent frame of reference for plotting. However, due to the non-paraxial nature of the
Bessel-Gauss pump beam, we have chosen to calculate the phasematching amplitudes in the
local pump frame (x′, y′, z′) for each paraxial Gaussian beam in the pump distribution (see Fig.
1). To do so, we first convert thek-vector mismatches from the crystal frame (x, y, z) to the
pump frame (x′, y′, z′). The transformations between these coordinate systems are given by:
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The transformation from thek-vector mismatches in the crystal frame to thek-vector mis-
matches in the pump frame is then given by:

∆kx ′ = ∆kx cos(θp) cos(ϕp) + ∆ky cos(θp) sin(ϕp) − ∆kz sin(ϕp), (17)

∆ky′ = −∆kx sin(ϕp) + ∆ky cos(ϕp), (18)

∆kz′ = ∆kx sin(θp) cos(ϕp) + ∆ky sin(θp) sin(ϕp) + ∆kz cos(θp). (19)

Thesek-vector mismatches are substituted into Eq. 20:

ΦG(k0
p , ks , ki) = exp


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)
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(
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2

)

, (20)

in which∆kx ′ , ∆ky′ , and∆kz′ are thek-vector mismatches in thex’, y’, andz’ directions. Here,
Loptic is the length of the optical path through the crystal. That is,Loptic = Lcrystal/ cos(θp), where
Lcrystal is the crystal length as measured along its normal. Eq. (20) gives the complex amplitude
ΦG(k0

p , ks , ki ) to generate a signal and idler photon atks andki , respectively, from a Gaussian
pump beam centered onk0

p . The first exponential in Eq. (20) corresponds to phasematching
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transverse to the central pumpk-vector. Similarly, the sinc term corresponds to phasematching
in the longitudinal direction. The last exponential determines the phase. The corresponding
probability is given by|ΦG(k0

p , ks , ki)|2.
The plots shown in Figs. 2 and 7 were produced from the above calculations, with the distinc-

tions between these plots given as follows:
Figures 2(a) and 7(a) give the marginal probability densities for the signal for Type-II and

Type-I downconversion, respectively. The amplitude to produce a signal atks was first calcu-
lated for a single central Gaussian pumpk-vectork0

p . For each value ofks ,ΦG was determined
for all idler k-vectors in the grid. This calculation was then performed for all centralk-vectors
in the pump distribution, and the outputs were then summed to give the amplitude to produce a
photon at our value ofks given a Bessel-Gauss pump. We have now determined the amplitude
ΦBG(ks , ki ), given by:

ΦBG(ks , ki ) ∝
∑

ϕp

ΦG(k0
p(ϕp), ks , ki ), (21)

where we have approximated the integral overk0
p in Eq. (5) with a sum over 750 values ofk0

p

with ϕp ranging from 0 to 2π. The marginal probability density for the signal photon is then
obtained by taking the absolute square of this amplitude:

P(ks) =
1
N

∑

ki ,x ,ki ,y

|ΦBG(ks , ki)|2∆ki ,x∆ki ,y , (22)

in which N is a normalization factor such that
∑

ks
P(ks)∆ks = 1. An identical procedure was

used to determine the marginal probability densitiesP(ki ) for the idler photon, shown in Figs.
2(b) and 7(b).
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