




















than those obtained for a Gaussian pump. However, that geometry consisted of an input beam
traveling perpendicular to the crystal axis innon-critical phasematching, and showed only longi-
tudinal or transverse phasematching, but not both concurrently. As this is significantly different
from oursuper-critical phasematching, it is worth again considering whether Bessel beams can
enhance SHG efficiency.

Appendix A1

We consider here the case of Type-I degenerate phasematching. Fig. 7 shows the simulated
probability densities|ΦBG |2 for the signal and idler, whereΦBG is defined as in Eq. (5). The
pump opening half-angleθp was set to 28.8◦ inside the crystal. In the standard Type-I geometry,
this is the phasematching angle that would produce signal and idler photons collinear with the
pump beam. In contrast, for a Bessel-Gauss pump the resulting SPDC output distribution is a
single supercone that is at all points collinear with the pump cone.

Fig. 7. Probability densities for Type-I degenerate downconversion in a 500µm -thick
BBO crystal for a pump beam wavelength of 405 nm, and signal and idler wavelength of
810 nm. Since for degenerate phasematching|ks(i) | is fixed, θs(i) andφs(i) completely
determine the signal and idler wavevectors. In turn, the position of the photons after the
crystal determines these angles, so these plots are given in the crystal frame (x,y) at z=20cm
after the crystal exit face. Plots (A), (B), and (C) give (A) the probability density for the
signal photon,P(ks); (B) the probability density for the idler photon,P(ki ); and (C)P(ks)
+ P(ki ), which is proportional to the photon flux. Plots (a), (b), and (c) are produced from
plots (A), (B), (C), respectively, by plotting alongy = 0.

This output distribution can be understood by superposing the typical Type-I SPDC outputs
for each Gaussian beam in the pump distribution in Eq. (5). Each of these Gaussian beams
produces collinear signal and idler photons. Consequently, only one supercone is produced
containing both signal and idler photons. For Type-I phasematching, the signal and idler are
emitted with ordinary polarizations. When these outputs are superposed for all Gaussian beams
in the pump distribution, the resulting polarization distribution is azimuthal. This polarization
distribution is shown in Fig. 8.
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Fig. 8. Expected output for Type-I collinear downconversion with a conical pump beam cen-
tered on the optic axis (z). The signal and idler photons are produced in a single supercone
centered on the optic axis.

The Type-I phasematching angle is below the angle of total internal reflection for BBO at
405 nm; however, there is still significant refraction at the crystal face so a reduction in the
free-space opening angle of the pump beam is required. The pump beam can be focused into
the crystal using a similar setup as in Fig. 6.

Appendix A2

The output distributions shown in Figs. 2 and 7 were calculated in Matlab and took 8 days
to run on a core i5 processor. For most of the work below we follow the work of Ref. [15].
We start with a 750 by 750 grid of (x,y) positions, with a range large enough to accommodate
all pump, signal, and idlerk-vectors. That is, from−0.25 m to 0.25 m. We then calculate the
downconversionamplitudes for each Gaussian beam in the pump distribution in Eq. (5). We then
sum these amplitudes, squaring the result to give the total probability density. The procedure
for a single Gaussian pump beam is given below, comprising Eqs. (7) to (20). Starting with the
grid of (x,y), anglesθs(i) andϕs(i) were calculated for the signal and idler photons as follows:

θs = tan−1
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ϕs = tan−1
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, ϕi = ϕs + π, (8)

whereθs ,i andϕs ,i are the angles shown in Fig. 1, and are defined relative to the optic axis, and
z is set to be 0.2 m.

The components of the propagation directionssp/s/i for the pump, signal, and idler, were
calculated fromθ andϕ as follows:

sα,x = sin(θα) cos(ϕα), sα,y = sin (θα) sin (ϕα), sα,z = cos (θα), (9)

whereα = p, s, i. Additionally, the crystal principal indices of refractionnx , ny , andnz were
calculated for the pump, signal, and idler photons. The Sellmeier equations for BBO were ob-
tained from [15]. The extraordinary and ordinary indices of refraction are then:
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whereα = p, s, i and
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The extraordinary or ordinary indices were assigned to the signal and idler photons depending
on which type of phasematching, Type-I or Type-II, was chosen. We can then determine the
k-vector components for the pump, signal, and idler as follows:

kα, j = 2π
Nαsα, j

λα
, (14)

in which α = p, s, i and j = x , y, z. The direction vector components [sx , sy , sz ] are defined
with respect to the optic axis, so thesek-vectors are given in the crystal frame. Thek-vector
mismatches in the crystal frame of reference are then given by Eq. (15):

∆k j = ks , j + ki , j − kp , j , (15)

where j= x,y,z. So far, we have worked in the crystal frame because it is convenient to have
a consistent frame of reference for plotting. However, due to the non-paraxial nature of the
Bessel-Gauss pump beam, we have chosen to calculate the phasematching amplitudes in the
local pump frame (x′, y′, z′) for each paraxial Gaussian beam in the pump distribution (see Fig.
1). To do so, we first convert thek-vector mismatches from the crystal frame (x, y, z) to the
pump frame (x′, y′, z′). The transformations between these coordinate systems are given by:
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The transformation from thek-vector mismatches in the crystal frame to thek-vector mis-
matches in the pump frame is then given by:

∆kx ′ = ∆kx cos(θp) cos(ϕp) + ∆ky cos(θp) sin(ϕp) − ∆kz sin(ϕp), (17)

∆ky′ = −∆kx sin(ϕp) + ∆ky cos(ϕp), (18)

∆kz′ = ∆kx sin(θp) cos(ϕp) + ∆ky sin(θp) sin(ϕp) + ∆kz cos(θp). (19)

Thesek-vector mismatches are substituted into Eq. 20:

ΦG(k0
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in which∆kx ′ , ∆ky′ , and∆kz′ are thek-vector mismatches in thex’, y’, andz’ directions. Here,
Loptic is the length of the optical path through the crystal. That is,Loptic = Lcrystal/ cos(θp), where
Lcrystal is the crystal length as measured along its normal. Eq. (20) gives the complex amplitude
ΦG(k0

p , ks , ki ) to generate a signal and idler photon atks andki , respectively, from a Gaussian
pump beam centered onk0

p . The first exponential in Eq. (20) corresponds to phasematching
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transverse to the central pumpk-vector. Similarly, the sinc term corresponds to phasematching
in the longitudinal direction. The last exponential determines the phase. The corresponding
probability is given by|ΦG(k0

p , ks , ki)|2.
The plots shown in Figs. 2 and 7 were produced from the above calculations, with the distinc-

tions between these plots given as follows:
Figures 2(a) and 7(a) give the marginal probability densities for the signal for Type-II and

Type-I downconversion, respectively. The amplitude to produce a signal atks was first calcu-
lated for a single central Gaussian pumpk-vectork0

p . For each value ofks ,ΦG was determined
for all idler k-vectors in the grid. This calculation was then performed for all centralk-vectors
in the pump distribution, and the outputs were then summed to give the amplitude to produce a
photon at our value ofks given a Bessel-Gauss pump. We have now determined the amplitude
ΦBG(ks , ki ), given by:

ΦBG(ks , ki ) ∝
∑

ϕp

ΦG(k0
p(ϕp), ks , ki ), (21)

where we have approximated the integral overk0
p in Eq. (5) with a sum over 750 values ofk0

p

with ϕp ranging from 0 to 2π. The marginal probability density for the signal photon is then
obtained by taking the absolute square of this amplitude:

P(ks) =
1
N

∑

ki ,x ,ki ,y

|ΦBG(ks , ki)|2∆ki ,x∆ki ,y , (22)

in which N is a normalization factor such that
∑

ks
P(ks)∆ks = 1. An identical procedure was

used to determine the marginal probability densitiesP(ki ) for the idler photon, shown in Figs.
2(b) and 7(b).
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