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Abstract Here, we present recent developments in the field of quantum imaging
focusing on the high dimensionality aspects of single and biphoton imaging. We dis-
cuss some systems that have a “quantum advantage” over classical counterparts. We
highlight some recent experiments in single-photon image discrimination, large alpha-
bet quantum key distribution and image buffering.

Keywords Quantum optics · Quantum communication · Quantum imaging ·
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1 Introduction

Quantum information science has made great strides over the last two decades. Moti-
vated by technologies that cannot be replicated classically, such as provably secure
communication [1–3] and factoring large numbers into their primes [4] with the use of
quantum computers [5–8], there has been great interest in determining those systems
where there is a “quantum advantage”. Researchers in the field of quantum imaging
have sought to determine those advantages for imaging (see for example the review
by Kolobov [9]). While the field of quantum imaging has many subfields, this review
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926 J. C. Howell et al.

will focus on imaging with single photons or biphotons. Further, the high informa-
tion capacity of the single and biphotons will be shown to be useful in increasing the
information capacity of a quantum key distribution system.

“Single photon imaging” almost sounds like an oxymoron. How can a single photon
carry an image and even if it can, how can it be measured? Quantization of the electro-
magnetic field shows that the elementary unit of energy, “the photon,” can have infinite
information capacity at zero temperature (no thermal noise photons [10]). However,
for fundamental and practical reasons, the amount of information that can be extracted
from the photon has usually been limited to much less than a bit, let alone the Mona
Lisa. From a fundamental perspective, the space-time modes of the quantization are
not usually related to the space-time characteristics of a detector used to measure the
photons. For example, the plane-wave decomposition of the field is a useful mathe-
matical construct, but it not possible to measure. However, if one possessed a detector
that could detect all plane-wave modes, the photon, even if it occupied all modes,
would only be measured in a single eigenmode of that detector. It would then require
an ensemble of identical photons to determine a single photon’s state. The implication
is that an infinite number of photons are needed to determine the image written on the
photon. We see then that we must use nonstandard methods for determining single
photon images, as well we must ascertain the advantages of single photon imaging
versus traditional classical methods.

Claude Shannon’s discussion of information theory [11] gives us a theoretical
framework with which to study the image or information capacity of a single photon.
Shannon showed that the entropy is a direct measure of information. Consider an ide-
alized detector with unit quantum efficiency, 100% fill factor and a square 2-D array of
form factor 1 cm2 with square pixels roughly equal in size to a photon at the diffraction
limit (≈µm2). Let us also assume that a photon has a uniformly distributed probability
distribution over the detector array (i.e., it is equally likely to be measured by any of
the pixels). The quantum entropy is then S = −T r[ρ log2 ρ] = −∑

i,j pij log2 pij ,

where pij = 1
N2 is the probability of finding the photon in the ith column and jth row

pixel of the detector and ρ is the density matrix for the photon. Using the numbers
just described, the quantum entropy is 26.6 or equivalently the photon has a measur-
able capacity of approximately 27 bits in the transverse degree of freedom. In other
words, excluding the time and frequency domains, the transverse single photon image
for the idealized detector of standard form factor has an upper limit of about 27 bits
worth of measurable information. If the detector has far fewer pixels (e.g., a 32 × 32
single photon avalanche pixel array corresponding to 10 bits), the entropy is greatly
reduced. This context-dependent entropy determined by the detector, places an up-
per limit on the measurable transverse information capacity of the system, regardless
of the photon’s actual information content. Unfortunately, once again, even though
there are potentially 27 bits worth of measurable information, we cannot determine
the transverse profile of the photon in a single measurement using this traditional
technique. To determine the image, we must integrate over a large number of events
before we it is possible determine the transverse profile of the photon. On the other
hand, it is this uncertainty that leads to the possibility of having very large alphabets in
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Single and biphoton imaging 927

quantum communication. In other words, it is possible to have up to 27 bits of usable
information per photon for quantum communication purposes.

Much of quantum information has focused on the spin-like behavior of two-level
systems such as the polarization states of a photon. However, as shown above, the
dimensionality of the vector spaces can be much larger. An important example [12–
14] is the use of the orbital angular momentum states, such as Laguerre-Gauss modes.
They form an infinite basis owing to the fact that angular momentum has no upper
bound, implying there is no limit to the information content that can be carried by a
single photon. Other examples of the large information content of quantum light fields
exist as well [15–18]. Moreover, it has recently been shown that the entanglement
between two photons generated by the process of parametric down conversion can
exist in a high-dimensional Hilbert space; entanglement between two qudits was dem-
onstrated for both d = 3 and d = 6 with transverse position-momentum entangled
biphotons [19], and d = 1024 with energy-time entangled biphotons [20].

In this brief review, we will discuss techniques for extracting the image encoded
on a single photon in Sect. 2, consider a high dimensional quantum key distribution
scheme in Sect. 3 and discuss a quantum buffer for single photon images in Sect. 4.

2 Single photon image discrimination

We have seen that a 2-D array of photon counters used for extracting an image from
a single photon bears little fruit. However, using holographic matched filtering it is
possible to determine the image encoded on a photon in a single or very few measure-
ment events. Matched filtering is a powerful method for improving the information
readout in detection. It was first developed to optimize the signal to noise ratio for
a signal in a noisy background [21]. A filter is considered to be matched when it’s
impulse response h(x, y) is given by s∗(−x,−y) for an input signal s(x, y). The filter
maximizes the cross-correlation

|h(x, y) � s(x, y)|, (1)

where � denotes convolution [22]. Optically, such a filter can be realized using the
Vander Lugt optical correlator [23]. A Vander Lugt correlator consists of three planes
of interest (P1, P2 and P3) and two lenses each of focal length f . The planes P1 and
P2 are separated by 2f with a lens placed at the midpoint. The same relationships hold
for planes P2 and P3 and the second lens. The lenses give scaled Fourier transforms of
the fields in P1 and P2 in planes P2 and P3, respectively. A matched filter is placed in
plane P2. The optical correlator behaves as follows. A signal with transverse spatial
pattern s(x, y) is found in P1. In P2, we have a scaled Fourier transform of the signal
S(fx, fy), which passes through the filter with transfer function H(fx, fy)e

−ifyk1 .
Immediately after P2, the field is given by

U2(fx, fy) = S(fx, fy)H(fx, fy)e
−ifyk1 . (2)
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Since the Fourier transform of the product of two functions is the convolution of the
Fourier transforms, P3 gives the squared modulus of the cross-correlation pattern of
the signal with the filter impulse response, thus obtaining the desired matched filter.
The phase term e−ifyk1 is used to give a correlation spot in P3 displaced from the
origin. When H(fx, fy) = S∗(fx, fy), it can be seen that the resultant field from P2
is a plane wave, which leads to a small correlation spot in P3. If the filter’s transfer
function differs from S∗(fx, fy), the correlation spot reduces from its peak value and
broadens. In this context, the input signal is the single photon image. If the correlator
is matched to the photon image, there is a high probability that the photon will be
deflected to the correlation spot corresponding to that image.

The Vander Lugt optical correlator can be improved in several ways. Horner showed
that a phase-only filter can increase the Horner efficiency (the amount of light in the
correlation spot versus the input signal light) and improve the discrimination [24].
A phase-only hologram eliminates the amplitude component of the transfer function
and only keeps the phase. The discrimination efficiency can be further improved by
eliminating the low spatial frequency components (high-pass filter) by blocking the
low spatial frequencies in the filter (e.g., by overexposing a hologram).

To gain a better understanding of single-photon image discrimination, we will put
image discrimination and matched filtering in a quantum mechanical formalism. Quan-
tum mechanically, the ability to discriminate between single-photon images can be
accomplished with a suitable basis transformation. We represent the ith single-photon
image by

|ϕi〉 =
∫

dx ϕi(x)|1x〉 (3)

where |1x〉 = 1
(2π)2

∫
dk eik·x|1k〉. |1k〉 = â

†
k|0〉 is a single-photon Fock state in the

kth mode. An operator of the form

M̂ =
∑

i

|1ki
〉〈ϕi | (4)

will transform the ith image into the ki th mode for detection as long as

〈ϕi |ϕj 〉 = δij (5)

for all images. Detection of a photon in the plane-wave mode uniquely determines the
detected image. Equation (3–5) represent orthogonal state discrimination for single-
photon images.

Implementing the transformation of Eq. (4) in the laboratory is fairly difficult, but
may be approximated reasonably well with holograms. For thin multiplexed holo-
grams exposed sequentially with object and reference fields of the form oi(x) =
Ai(x) exp[−iφi(x)] + c.c., and ri(x) = r exp[iki · x], where Ai(x) (φi(x)) is the
transverse amplitude (phase) function, the hologram has a transmission function of
the form,
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t (x) = β
∑

i

Ti |ri(x) + oi(x)|2 (6)

= t0(x) + β
∑

i

TirAi(x)
[
ei(φi (x)+ki ·x) + c.c.

]
(7)

Here we have taken r, Ai , and φi to be real. t0(x) contains all the terms that are not
diffracted into any of the ±ki directions, β is a material dependent exposure param-
eter, and Ti is the exposure time for the ith object/reference pair. Illuminating the
developed hologram with the j th image diffracts a portion of the field into the positive
ki directions,

uj (x) = β
∑

i

TirAj (x)Ai(x)ei(φj (x)+φi(x)+ki ·x). (8)

If

Aj(x)Ai(x) = δijA
2
i (x) (9)

then uj (x) does not contain any field amplitude which is diffracted in the +ki �=j

direction. As long as the spatial bandwidth of the j th object is much smaller than the
separation of the reference modes, kj − ki �=j , the light in in the vicinity of the kth

j

mode can be collected and detected, uniquely identifying the image.
Broadbent et al. [25] and Malik et al. [26] recently demonstrated single-photon

discrimination using matched-filtered holograms. They showed that if an image is a
member of a pre-established basis set, it is possible to determine which image is car-
ried by the photon by passing the photon through a hologram matched to the image.
This procedure should be contrasted with the earlier work (e.g., [27]), in which an
image was impressed upon a single-photon, but the image was read out in a statistical
fashion, one pixel at a time, and thus required an ensemble of events to reproduce
the image. That work also established that the individual photons carrying the image
could be delayed significantly by passing them through a highly dispersive (slow-light)
medium without destroying the image content of the photon.

The basic idea of the Broadbent et al. [25] and Malik et al. [26] work is illus-
trated in Fig. 1. A multiple-exposure hologram is formed (parts a and b) using two
different transmission objects with reference beams applied from different directions.
A single photon (part c) passes through one of the two objects and allow it to fall
onto the hologram constructed by the procedure shown in parts (a) and (b). This pho-
ton will then diffract into one of two output directions depending upon which image
was impressed onto the photon. This procedure is well known in optical information
processing [28,29], is related to the more general method of matched filtering [21].
The general methods used in classical image discrimination apply equally well to
quantum mechanical light fields. Whereas [12] used simplex holograms to measure
single-photon orbital angular momentum states, the present work demonstrates that
arbitrary image states from a known basis set may be distinguished by performing
a single measure with a multiplexed hologram. In the conceptual example shown in
Fig. 1, the basis set consists of only two images. The experimental results demonstrate
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object A or B hologram

output wave 
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unknown
image
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reference
(plane wave)

holographic
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(a)  exposure 1 (b)  exposure 2

 single-photon readout(c)

Fig. 1 Concept of the experiment. A multiple-exposure hologram (shown for two exposures) is formed as
shown in parts (a) and (b) of the figure. c An image is impressed onto a single-photon and the form of the
image is determined by diffraction from the hologram

proof-of-principle experiments which distinguish between 2 or 4 orthogonal images.
However, much larger sets of images (orthogonal or nonorthogonal) can be used. In
the classical field of matched filtering, as many as 10,000 images have been exposed
onto a single hologram [30].

A schematic of the Broadbent et al. [25] experimental setup is shown in Fig. 2.
Part (a) shows the setup for writing the hologram and part (b) shows the setup for the
single-photon readout. For this experiment, stencils of the yin and yang symbol as
objects A and B respectively were chosen because of their vanishing spatial overlap.
The hologram is a thick angularly multiplexed, phase transmission hologram and is
made using PFG-01, a fine-grained red-sensitive silver halide emulsion on a glass plate
substrate. The emulsion has a peak light sensitivity of about 100 μ J/cm2 at 630 nm.

A HeNe laser (λ = 632 nm) was used as the light source for recording the holo-
grams. The HeNe laser is split at a non-polarizing beamsplitter (NPBS) into object
and reference beams. Each beam has a power of ∼300 µW after the NPBS. The object
beam passes through the object stencil and is imaged onto the hologram recording
medium with a 50 mm focal length lens, along with one of the two reference beams.
A precision translation stage allows us to reproducibly place either object A or B in
the object plane. The reference beam is sent to a mirror mounted on a rotation stage
which sets the direction of the reference beam. During the exposure, object A (B) is
illuminated and the hologram is exposed with reference beam A (B) for 350 ms as set
by an electronically controlled shutter.

The characterization of the holograms is as follows. Parts (a) and (b) of Fig. 3 show
the quality of the reconstructed images when the hologram is read out by a plane-wave
reference beams. Parts (c) and (d) show the diffracted beams when the hologram is
illuminated by one of the image-bearing beam. The nature of these results is described
by a model of the holographic process. The holographic recording material is illumi-
nated simultaneously by an object wave of field strength O(x) and a reference wave
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Fig. 2 Single-photon
image-discrimination laboratory
setup. a Biplex holograms are
exposed using a HeNe laser and
an electronically controlled
shutter. For each exposure a
rotation stage selects one of the
two reference beams, and a
translation stage switches
between the two stencils A and
B. b During the
image-discrimination phase of
the experiment, heralded single
photons are sent through either
stencil A or B and are detected
at either detector A or B.
TCSPC = time-correlated
single-photon counter

TCSPC

A

B

Trig.

BiBO

HeCd
Laser

Hologram

A B

HeNe
Laser

Shutter

Hologram

(a)

(b)

A B

Fig. 3 a and b Hologram
readout for a plane-wave read
beam. c and d Hologram readout
with an image-carrying read
beam

 read beam
(plane wave)

(a)

hologram

 read beam
(plane wave)

(b)

reconstructed
image
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(c)
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input

input

output
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of field strength R(x) so that the total field at the hologram is E(x) = O(x) + R(x).
After development, the transmission t (x) of the hologram is proportional to the local
optical intensity, so that t (x) ∝ |O(x) + R(x)|2 or that

t (x) ∝ |O(x)|2 + |R(x)|2 + O(x)R∗(x) + O∗(x)R(x). (10)

In the conventional holographic reconstruction process, the hologram is illuminated
with a wave identical to the reference wave R(x) used in writing the hologram so that
the field leaving the hologram is given by Eout(x) ∝ R(x)t (x) or by

R(x)|O(x)|2 + R(x)|R(x)|2 + O(x)|R(x)|2 + O∗(x)R2(x). (11)

The third term in this expression is the one leading to standard holographic reconstruc-
tion, and if R(x) is nearly uniform across the aperture of the hologram we see that
this term just reproduces the amplitude distribution O(x) of the original object. Such
behavior can be seen in parts (a) and (b) of Fig. 3, where the reconstructed images are
accurate replicas of the stencil objects. If, however, the hologram is illuminated by
a replica of the structured object beam O(x), as in the case of holographic matched
filtering, the situation is more complicated. It is found that Eout(x) ∝ O(x)t (x) or by

O(x)|O(x)|2 + O(x)|R(x)|2 + O2(x)R∗(x) + |O(x)|2R(x) (12)

In this case, the fourth term is the one leading to the diffracted output beam implying
the transverse structure of the object beam will be imprinted onto the diffracted beam.
This behavior is apparent in the data shown in parts (c) and (d) of Fig. 3. Quantitatively,
a peak diffraction efficiency of about 24% (19%) for objects A (B) is measured, and
the cross-talk between them is negligible.

The image-discrimination phase of the experiment is performed with the setup of
Fig. 2b. The object beam is created by heralded single photons emitted by spontaneous
parametric down conversion (SPDC). A 10- mm-long BiBO crystal cut for collinear
type-I phase matching is angle tuned to produce degenerate biphotons at 650 nm. The
biphotons are separated from the pump beam and are sent to a nonpolarizing beam
splitter (NPBS). One output port of the NPBS is coupled directly through a multimode
optical fiber to a photon detector which serves as a trigger, heralding the presence of a
photon, hereafter called the image photon, in the other output port. The image photon
passes through the stencil and hologram along the same path as when the hologram
was exposed. After diffracting from the hologram, the image photons are coupled
through multimode fibers to detectors A or B. All three detectors used in the experi-
ment are Perkin Elmer single-photon counting module (SPCM) detectors. Detection
events are counted with a PicoQuant PicoHarp 300, a time-correlated single-photon
counter (TCSPC).

When stencil A (B) is used as the object, the image-discrimination photons are
diffracted by the hologram into the direction of reference beam A (B). Coincidences
between the heralding photons and the image-discrimination photons are measured
for the four object–detector combinations: (1) A–A, (2) A–B, (3) B–A, and (4) B–B.
The total number of coincidences for 54 min of integration are reported in Table 1.
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Table 1 Image-discrimination results showing the total number of raw coincidences (C), accidental coin-
cidences (A), and C/A ratio for each object–detector combination. Also shown are the heralding photon
and image discrimination photon singles rates, sh and sid . Background rates are bh 	 1000 ± 32 Hz,
bid,A = 420 ± 20 Hz, and bid,B = 249 ± 16 Hz. 1/R
t represents the maximum possible C/A ratio as
discussed in the text

Ob.-Dt. C A C/A sh sid 1/R
t

A-A 5738 ± 75 337 ± 18 16.99 ± 0.95 437 kHz 473 Hz 143 ± 3
A-B 185 ± 14 201 ± 14 0.93 ± 0.09 522 kHz 252 Hz N/A
B-A 289 ± 17 287 ± 17 1.01 ± 0.08 444 kHz 414 Hz N/A
B-B 4401 ± 66 229 ± 15 19.24 ± 1.30 511 kHz 273 Hz 210 ± 5
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Fig. 4 Graphical display of image-discrimination results. Total number of raw coincidences (C), accidental
coincidences (A), and C/A ratio for each object–detector combination

For better visualization, these results are also shown graphically in Fig. 4. Raw coin-
cidences are the number of coincident events generated within the 500 ps coincidence
window. Coincident events arise from coincidences between the herald/image-dis-
crimination photons as well as random coincident events between (a) a background
count and a heralding photon, (b) a background count and an image-discrimination
photon, (c) two background counts, or (d) two uncorrelated photons from a multi-pair
event. By counting the number of image-discrimination photons that arrive 20 ± 0.25
ns after the heralding photons we can measure the number of accidental coincidences
arising from events (a)–(d) above. The single-event count rates are ∼500 k counts
per sec for the trigger and ∼450 counts per sec (∼250 counts per sec) for detector
A (B) (see Table 1). In practice, the high degree of loss in the image-discrimination
arm implies that the accidental coincidences are dominated by coincidences between
background counts and heralding photons.

The system fidelity can be quantified in terms of the ratio of true coincidences NAA
(NBB) to false coincidences NAB (NBA). The ratio fA = NAA/NAB (fB = NBB/NBA)
is found to be 31.2 (15.2), demonstrating that object A can be distinguished from B
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with a confidence level of ∼96.8% (93.4%). It is evident from the data in Table 1 that
nearly all of the false events, NAB and NBA, can be attributed to accidental coinci-
dences (because the C/A ratios for the A–B and B–A object–detector combinations are
approximately unity). The system fidelity can therefore be increased by improving the
C/A ratios for the A–A and B–B object–detector combinations. The C/A ratios can be
improved by increasing the total collection efficiency in the image-discrimination arm
or by using detectors with reduced dark counts for the image-discrimination photon.
The low collection efficiency in the image-discrimination arm is due to a combina-
tion of reflection losses at lenses, mirrors and beamsplitters, transmission losses at the
image mask and hologram, coupling losses from coupling a highly multimode image
into a multi-mode optical fiber, and alignment issues caused by using different laser
wavelengths for the hologram exposure, single-photon generation, and single-photon
alignment.

For many applications, a much larger basis set, possibly including non-spatially
separated, or more generally, non-orthogonal images, would be desirable. Image dis-
crimination of non-orthogonal images using numerical correlation methods has been
investigated by [31] where he showed that distinguishing nearly identical images with
a confidence level of 97% requires about 250 photons. For a basis set involving non-
orthogonal images the principles of unambiguous state discrimination in large Hilbert
spaces [32] may be applied to design a hologram which optimally discriminates images
in the basis set. Limits to the number of images that can be discriminated in a hologram
are set by issues such as cross talk, which tends to increase with the number of stored
images, and diffraction efficiency, which tends to decrease with the number of stored
images.

3 Large entropy quantum key distribution from biphotons

As pointed out earlier, a single photon can have very high entropy. The entropy is
the measure of usable information in the photon. Essentially, it is a measure of the
uncertainty of where and when the photon will be measured. This uncertainty can be
exploited for secure quantum communication. For polarization states, the maximum
entropy of a single photon corresponds to a single bit, since there are two possible out-
comes. However, we can explore the much larger dimensional spaces of the transverse
or longitudinal domains. We can make use of this entropy for increasing the dimen-
sionality and ultimately, the information throughput in a quantum key distribution
(QKD) scheme.

Quantum key distribution has continued to progress toward the goal of practical
and provably secure key distribution operating at high bandwidths and over large dis-
tances [33]. Achieving high bandwidths over large distances remains a challenge to
researchers, and it is for this reason that recent studies have focused on the possibil-
ity of increasing the information content of each transmitted quantum state by using
states with higher dimensionality d [12,15,17,19,34,35], i.e. qudits instead of qubits.
Higher dimensional quantum states also have the attractive properties of an increased
sensitivity to eavesdropping and a decreased sensitivity to noise [36,37].
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Consider the unnormalized biphoton state

|�〉∝
∫

dt1dt2A(t1,t2)B(t1,t2)e
−i

ωp
2 (t1+t2)â

†
1(t1)â

†
2(t2)|0〉, (13)

where ωp is the down-conversion pump frequency and a
†
i (ti ) is the photon creation

operator in mode i at time ti [38]. After passing through spectral filters, a Gaussian

correlation function A(t1, t2) = e
− (t1−t2)2

4τ2 provides a good approximation for the bi-
photon temporal correlation function, where the correlation time τ is on the order of
∼100 fs, as determined by the 10 nm bandwidth of the spectral filters. The biphoton
temporal correlation function A(t1, t2) can be understood as the correlation between

the time at which the two photons exit the nonlinear crystal. Also, B(t1, t2) = e
− (t1+t2)2

16T 2

represents the biphoton envelope function, where the biphoton envelope T is given
by the coherence time of the pump photon of frequency ωp that was destroyed in
the creation of the entangled biphoton. The biphoton coherence time is on the order
of ∼500 ns corresponding to the inverse laser linewidth. For mathematical simplicity

it is straightforward to show that for T 
 τ,A(t1, t2)B(t1, t2) 	 e
− (t1−t2)2

4τ2 e
− t21

4T 2 .
The Schmidt number, or number of information eigenmodes, of Eq. (13) is given by
K ∼ T/τ [39,40].

Suppose that a party, Alice, sends another party, Bob, one photon of the entangled
state discussed above, and keeps the other photon under her control. Suppose now
that an eavesdropper, Eve, makes a positive operator value measurement (POVM) on
the arrival time of the photon sent to Bob [41]. We model Eve’s measurement as a
projective filter function, M̂e = ∫

dtf (t, TE)a
†
e (t)|0〉〈0|ae(t), where f (t, TE) is a

general filter function and TE is related to the resolution of Eve’s POVM. A gaussian

filter function f (t, TE)=e
− t2

4T 2
E gives

|�M 〉 ∝ e
− (t1−t2)2

4τ2 e
− t21

4

(
1

T 2 + 1
T 2
E

)

â
†
1(t1)â

†
2(t2)|0〉, (14)

which represents the biphoton wavefunction after Eve’s POVM. For TE � T we get
( 1
T 2 + 1

T 2
E

) ∼ 1
T 2

E

, which gives us K ∼ TE/τ . This implies that Eve’s POVM results

in a decrease in the Schmidt number; eavesdropping has decreased the number of
information eigenmodes.

It has been shown that the Franson interference visibility [42] can be used as a
Bell-type entanglement measure for energy-time entanglement [43,44]. We find that
the Franson fringe visibility, along with the known path mismatch, can also be used
to measure the biphoton envelope width T (or TE after Eve’s POVM). If Alice and
Bob send the state in Eq. (14) through a Franson interferometer, the post-selected
coincidence rate is given by
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RM ∝
∫

dtadtb|〈0|α(ta, tb, δt,
t)|�M 〉|2 (15)

∼= 1 + cos
[ωp

2
(2
t + δt)

]
e
− δt2

8τ2 e
− 
t2

8T 2
E , (16)

where α(ta, tb, δt,
t) = (â1(ta +
t + δt)â2(tb +
t)+ â1(ta)â2(tb)), where a1,2(t)

is the destruction operator for Alice’s and Bob’s detectors respectively, 
t is the
path mismatch in Bob’s arm of the Franson interferometer, and δt is the difference
in path mismatches between Alice’s and Bob’s arms of the Franson interferometer.
A strong drop in Franson fringe visibility is observed when TE � 
t . Therefore
we can detect the presence of Eve’s POVM by observing a reduction in the visibil-
ity of Alice’s and Bob’s Franson fringes, as predicted by the exponential function in
Eq. (16). Note that a larger path mismatch 
t provides a more sensitive test against
Eve’s POVM.

The energy-time entanglement QKD protocol we present here is accomplished in
6 steps. (1) Alice sends Bob one photon of an energy-time entangled biphoton and
keeps one for herself. (2) Alice and Bob randomly and independently measure arrival
times of their incoming photon either directly with low-jitter (FWHM ∼50 ps, 1/e2

width ∼350 ps) detectors (timing detector) or after sending their photon through an
unbalanced Michelson interferometer acting as one-half of a Franson interferometer
(see Fig. 6). These timing measurements of Alice and Bob are accurately synchro-
nized to each other by using a shared, public, synchronization pulse signal. This sync
signal has a period of 64 ns between consecutive pulses in our experiment, where
each pulse is measured, counted and recorded. During the entirety of the QKD pro-
cess Alice privately scans one arm of her unbalanced interferometer between two,
neighboring, Franson interference maximum and minimum locations (predetermined
during initial calibration). (3) After all the photons have been detected, Bob publicly
sends Alice the exact arrival times of the photons that were detected in the output of
his Michelson interferometer. Alice uses this information, along with her own Fran-
son timing measurements and respective interferometer scan locations, to determine
the visibility of the Franson fringes. (4) Using the measured visibility, Alice deter-
mines the security of the system and communicates the status of security to Bob.
If the system is measured to be secure then Alice and Bob can proceed with the
QKD protocol. (5) Alice and Bob privately bin their remaining (non-Franson) timing
measurements, where each bin corresponds to a character of the QKD alphabet (see
Fig. 7). Details of the binning procedure are explained below. For our experiment
the bin size, σ , is varied between 48 ps–30.6 ns, where a tradeoff between alphabet
size and BER is explored. The first bin of the alphabet begins with each sync pulse,
and the alphabet extends over the period of the sync signal (64 ns for our experi-
ment). (6) Alice and Bob publicly publish the relevant sync periods in which they
measure the arrival of non-Franson photons, however they keep the precise binning
information from step (5) private. Alice and Bob discard the non-Franson photon
arrival events that do not occur in the same sync periods, and keep the rest. Alice and
Bob are thus left with identical photon events, where both photons of a downcon-
version pair are measured in the same time bin by Alice and Bob. The unpublished,
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Fig. 5 Experimental Setup. BS,
FBS, VBS, and PPS, refer to a
50:50 beamsplitter, a fiber 50:50
beamsplitter, a variable
beamsplitter made with a half
wave plate and a polarizing
beam splitter, and a passive
power splitter, respectively

precise arrival times for the accepted photon detection events thus give Alice and Bob
a common key.

An outline of the experiment is shown in Fig. (5). Alice uses a 50 mW, 390 nm, cw
laser having a bandwidth of 2 MHz to pump 5 mm of BBO-I cut for collinear, degener-
ate downconversion (with measured raw singles rate ∼800 KHz and coincidence rate
∼60 KHz using PerkinElmer SPAD with single mode fiber). The downconverted pho-
tons are coupled into a singlemode, 50:50, fiber beamsplitter, where one photon is sent
to Alice and the other to Bob. The instances where both photons travel to either Alice
or Bob can presently be ignored. Using a variable beamsplitter, Alice and Bob ran-
domly and independently send their photons either to a high resolution timing detector
(A1/B1; MPD PMD; background dark-count rate ∼250 Hz; background light-count
rate ∼1 KHz; singles rate ∼20 KHz; coincidence rate ∼24Ḣz; accidental-to-correlated
coincidence ratio of 1:88 for a 1 ns coincidence window) or an unbalanced Michelson
interferometer. The output of the unbalanced Michelson interferometer is sent to a cor-
relation detector (A2/B2; PerkinElmer SPAD; dark-count rate ∼450 Hz; background
light-count rate ∼600 Hz; singles rate ∼67 Hz; coincidence rate ∼58 Hz). Signals
from the detectors (A1/B1/A2/B2) are routed to two high-resolution data acquisi-
tion devices (DAQ; PicoQuant PicoHarp run at ξ = 16 ps resolution), one DAQ for
A1 and A2, and the other DAQ for B1 and B2. The two DAQs are synchronized to
each other via a clock signal (with period Tsync = 64 ns) that is generated by Alice.
Alice’s and Bob’s unbalanced Michelson interferometers both have a path mismatch
of τ 	 10 ns. Alice’s unbalanced Michelson interferometer has an automated 20 nm
resolution translation stage in the long arm that she scans as part of the key generation
protocol outlined above.

Ideally, for the duration of the QKD process, Alice need only randomly measure
the predetermined maximum and minimum locations of the Franson fringes. How-
ever, due to phase drifts, for the duration of the experiment Alice’s stage is scanned
from c
τ = 0 to c
τ = 600 nm ∼= 3λp

2 in 50 nm steps with 3 s integral peri-
ods. After taking data for a nominal duration of 60 s, Bob sends Alice his Franson
event arrival times. Alice uses Bob’s Franson event arrival times along with her own
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Fig. 6 a Franson fringe visibility is measured to be 93%. b Franson fringe visibility versus Eve’s POVM
resolution. The solid curve represents a gaussian POVM, while the dashed curve represents a rectangular-
form POVM. A measured visibility of 93% corresponds to a POVM resolution of � 50 ns, demonstrating
security (details in text)

Franson event arrival times to obtain a measured visibility V = 93±7% (see Fig. 6a).
The error in measured visibility is due to phase instabilities (we require 10 nm sta-
bility over 3 m path lengths), which can be improved with an all-fiber setup. The
measured visibility is used to estimate the resolution of Eve’s POVM in the inter-
cept-resend-type attack discussed previously. Assume that Eve performs a POVM on
every photon-pair. A theoretical plot of Franson fringe visibility versus Eve’s POVM
resolution is shown in Fig. 6b. A gaussian POVM and a rectangular-form POVM are
analysed, where the POVM resolution corresponds to four standard deviations for a
gaussian POVM (corresponding to 99.99% of the distribution) and the FWHM for
the rectangular-form POVM. As seen in Fig. 6b, a measured Franson fringe visibil-
ity of ∼93% corresponds to Eve’s POVM resolution of �50 ns. As discussed below,
the optimal alphabet obtained in our experiment spans a period of 21 ns. Hence Eve
does not gain any detailed information about the key, demonstrating security of the
quantum channel. A more rigorous security analysis is beyond the scope of this re-
view, and shall be presented in a later publication. Alice communicates to Bob that
the quantum channel is secure and they proceed with the key sifting process of the
protocol.

Alice and Bob bin the arrival times of their timing photons. Since the arrival times
of each photon is measured with respect to the clock cycle immediately preceding it,
the first level of binning is accomplished by Alice and Bob publicly communicating
the respective clock cycle, denoted na for Alice’s clock cycle and nb for Bob’s, dur-
ing which each photon detection event occurs. Coarse-grained coincidence events are
those for which na = nb. The simplest form of binning in order to obtain a D-character
alphabet involves dividing each 64 ns sync period into D, equally sized bins. Each bin
has an equal chance of containing a photon event since a cw-pump is used. Using a
bin size of σ = 3ξ = 48 ps gives us an alphabet of D = 64ns

48ps
∼ 1278 characters,

i.e. over 10 bits per photon. However, the detector electronics jitter has a 1/e2 width
of 350 ps that results in a very high quantum dit error rate (QDER) of 86%, due to
one photon registering in the d’th bin with Alice while the other photon registers in
the d ± 1’th bin with Bob. Converting dits to bits, we find that this corresponds to a
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Fig. 7 Example of the binning procedure as outlined in the text. In this example we have used I = 5, M = 2
and D = 3

BER of ∼30%. Error correction codes can be used to reduce the BER, but are only
effective for a raw BER of less than 11% [3].

In order to reduce the raw BER, a process of indexing and redundancy is performed
on the bins. Each of the 1278 bins are consecutively indexed from i = 1 to i = I , with
every I consecutive bins representing the same character (see Fig. 7). Alice and Bob
publicly announce the index i of their binned photons (but keep the character private).
Alice and Bob keep those coarse-grained correlation events that also have the same
index, and discard the rest. For example, an index-parameter of I = 5 reduces the
alphabet to 1278

5 = 255 characters, but also reduces the BER to ∼21%. This process
reduces the BER due to the jitter in the detector electronics, however a sizeable BER
remains due to erroneous coincidences that are caused by low collection and detec-
tion efficiency, ambient room light, fluorescence in the optics, and dark counts in the
detectors.

The BER due to these accidental coincidences can be further reduced by reducing
the coarse-grained coincidence window of 64 ns. This is done by dividing the sync
period (64 ns) into M , separate periods, denoted nm

a and nm′
b for Alice and Bob respec-

tively. Alice and Bob publicly announce the sync-division, m, during which a photon
is measured, and keep only those coarse-grained coincidences for which nm

a = nm′
b .

This reduces the BER due to accidental coincidences, but also reduces the alphabet
size D = 1278 by a factor M . For example, for M = 2, the alphabet size is reduced
to 639 characters (assuming I = 1). It should be noted that the security of the system,
determined by the Franson fringe visibility, is independent of the BER.

By varying σ , I and M, it is possible to find an optimal transmission rate within
a desired error bound. As seen in Fig. 8a, the optimal transmission rate for our sys-
tem, within a BER bound of 5%, corresponds to σ = 240 ps with 4 bits per photon
pair (using I = 5 and M = 3; not shown). Hence, a real advantage is achieved by
incorporating more information per photon pair. Note that this result was obtained for
an estimated eavesdropping POVM resolution of �50 ns, larger than the 64

3 = 21 ns
period of the optimal alphabet, thus demonstrating security. An added benefit of this
time-energy system is that this optimization can easily be performed in post-process-
ing, since σ

ξ
, I and M are all computational (as opposed to physical) parameters. Hence,

it is very easy to perform a unique optimization for different systems. Further, even
if the measured visibility of the Franson fringes is reduced, e.g. due to the presence
of an eavesdropper, a new optimization can immediately be performed so as to main-
tain security. For completeness, an image is encrypted and decrypted using the key
obtained for σ = 240 ps, I = 5 and M = 3, as shown in Fig. 8b.
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Fig. 8 a Diamonds represent optimal bit-rate versus σ (optimized for I and M). Squares represent infor-
mation per photon pair for each optimization. Overall optimum bit-rate is obtained for σ = 240 ps, with
4 bits per photon pair. b Demonstration of cryptography using optimal key. Image size 32 KB. Key re-used
58 times

We have presented a protocol for large-alphabet QKD using energy-time entangled
photons generated by a cw pump, as motivated in [39]. In this QKD protocol, one
conjugate basis is used exclusively for key generation while the other conjugate basis
is used exclusively for measuring security of the quantum channel. It is possible to
maintain secure QKD even in the presence of eavesdropping by monitoring the Fran-
son fringe visibility and re-optimizing σ

ξ
, I and M. We have demonstrated an alphabet

of over 10 bits per photon, albeit with a 30% BER. Within a BER bound of 5%, an
optimal transmission rate was achieved by using 4 bits per photon. Even larger alpha-
bets can be obtained by using longer sync pulse intervals or higher resolution timing
detectors, while the BER would need to be significantly reduced by reducing losses
and noise in the system. Energy-time entanglement has previously been demonstrated
to be well preserved over large distances in fiber [43,44], which makes the application
of this protocol an exciting prospect for practical QKD.

4 Single-photon image memories

We now turn our attention to potentially useful tools that can be incorporated in the
single-photon imaging toolbox. Here, we discuss an-all optical method for delaying
or buffering a single-photon image demonstrated by Camacho et al. [27]. In classical
image processing, one can change the optical signal into an electronic signal pre-
serving the amplitude and phase of an image via optical homodyning of the image.
However, when dealing with a single photon, this cannot be done. Therefore, we seek
a method for storing the image that preserves the amplitude and phase of the single-
photon image. All-optical methods for delaying images have great potential in signal
processing and quantum information. For example, in many digital signal process-
ing applications, amplitude and phase information of an image must be preserved for
long periods of time. Electrical conversion of the image can be costly, inaccurate and
information is lost in the analogue to digital conversion. Alternatively, one could use
a long free space delay line, but diffraction and size limitations impose serious restric-
tions on the system. A small all-optical buffer in which the phase and amplitudes are
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preserved would solve these problems. On the quantum information side, much effort
is going toward constructing memories of quantum bits (memories which preserve the
wavefunction of a two-state quantum particle). Camacho et al. showed that classical
and quantum images could be delayed while still preserving the amplitude and phase
information of the image. Further, the image buffer requires no additional laser beams
resulting in low background and a high signal to noise ratio in the image reconstruction
even at the single-photon level. The transverse images can be delayed by many times
the pulse length of the image. The phase stability of the delayed image has almost
no dependence on the slow light system, but only the free-space characteristics. This
remarkable property leads to stable and high fringe visibility when the delayed image
interferes with a local oscillator even if the slow light medium has large spectral or
thermal instabilities.

“Slow light” is the name given to a subfield of optics which describes the group
velocity (the velocity at which the pulse energy travels) of a pulse in a highly dispersive
medium [45,46]. Dispersion means that the index of refraction of a material changes
as a function of the frequency of the light and is found in any system which has a
spectrally dependent absorption. The group velocity is the slope of the linear term in
the dispersion. The effort is to find a medium which has a steep slope, allows a large
signal bandwidth, but minimizes the absorption. The slow light medium used in these
experiments is a hot Cesium vapor. Delay bandwidth products (the delay of the light
signal in the medium multiplied by the bandwidth of the signal) in excess of 50 can
be achieved by spectrally tuning the signal between the two hyperfine ground states
[47], which have a spectral separation of 9.2 GHz.

While several methods for achieving slow light have been explored, the system
discussed here is particularly attractive. For example, most slow light systems, such as
electromagnetically induced transparency [48–54], coherent population oscillations
[55–57] or spectral hole-burning [58], require additional light fields to prepare the
medium. Harris’ group also considered buffering transverse images [48,49], but not at
the single-photon level. The use of additional light fields results in transverse spatial
inhomogeneities in the group velocity of the medium. In the Cs system used here, the
group velocity is the same in all directions. Also, this system has relatively low loss
and minimal broadening of the pulse.

A brief overview of some of the most important theoretical elements will be given. A
more detailed treatment of the propagation of a Gaussian light pulse through a medium
with two widely spaced absorbing Lorentzian optical resonances may be found in
[47,59–61]. Assuming two Lorentzian absorption resonances of equal strength, the
complex index of refraction may be written as the sum of a free-space term (unity)
and two distinct Lorentzian terms:

n(δ) = 1 + β

2

(
1

−(δ + ω0) − iγ
+ 1

−(δ − ω0) − iγ

)

(17)

where each resonance has a strength β, a spectral half-width γ, δ is the detuning from
the midpoint between the two resonances, and 2ω0 is the separation between the res-
onances. If the bandwidth of the input pulse is much less than the separation between
the resonances, the refractive index may be expanded in a power series and keep only
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the first few terms. The real and imaginary parts of the index of refraction, responsible
for pulse delay and absorption respectively, may then be written as

n′ ≈ = 1 + β

ω2
0

δ + β

ω4
0

δ3 (18)

n′′ ≈ = βγ

ω2
0

+ 3
βγ

ω4
0

δ2. (19)

It can be seen that γ dn′
dδ

= n′′. This fact can be used to obtain a simple form for
the group velocity. Combining this result with α = 2ωn′′/c, where α is the opti-
cal intensity coefficient of the medium at the pulse carrier frequency, one obtains an
approximate group velocity

vg ≈ c

ω dn′
dδ

= 2γ

α
. (20)

If the medium is of length L, the resulting pulse delay in the medium relative to that
of free space is approximately

τg ≈ L

vg

= αL

2γ
. (21)

Several points are worth noting. First, the pulse delay is given entirely by the width of
the resonances and the optical depth of the medium at the pulse center frequency, and
is independent of the separation of the optical resonances. Second, there is no ultimate
bandwidth limit on the input pulse, since the input bandwidth is only limited by the
frequency separation of the two optical resonances. Third, assuming uniform atomic
density the group velocity is homogeneous in the sample. Fourth, while not treated
in this analysis, the broadening is relatively small for this system owing to the fact
that the dispersive broadening dominates the absorptive broadening. The last point is
that the propagation through the medium is a classical effect meaning that its behavior
does not change for quantum fields versus classical fields. The place where this system
benefits quantum fields is the ultra-low noise background (Fig. 9).

Consider the results for the macroscopic image interference shown in Fig. 10. In
Fig. 10a, the Cs cell temperature is set to give 5 ns of delay, which matches the arrival
time of the image pulses at the second beamsplitter to that of the reference pulses.
The situation in which both pulses arrive at the beamsplitter simultaneously will be
referred to as“temporally matched”. The intensity along the two paths is balanced for
maximum interference. The phase of the local oscillator is set to give a dark fringe
in the center of the image. Several π radians of phase shift across the image can be
observed. The only regions that do not experience interference are the image points of
the dark patterns of the amplitude mask. Since there is no light in the delayed image at
those points, the local oscillator creates a constant background where the dark regions
of the amplitude mask are imaged. Hence, at the center of the dark fringe the inverse
image is created. An interference visibility of 90±1% was observed for the temporally
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Fig. 9 Experimental setup for the delay of transverse images. Light pulses of 2 ns duration are incident on
a 50:50 beamsplitter. The transmitted pulses then pass through an amplitude mask and a 4f imaging system.
The transmitted and reflected pulses are recombined at another 50:50 beamsplitter. The transmitted part
traverses a path approximately 5 feet shorter than the reflected path, and arrives at the second beamsplitter
about 5 ns sooner than the reflected pulse, preventing interference between the two pulses. The temperature
of cesium vapor can then be adjusted to give 5 ns of delay, resulting in interference. In the low-light-level
experiment, the pulses are attenuated such that each pulse contains on average less than one photon and the
reflected path is blocked. A scanning optical fiber is used to collect the photons in the image plane and the
photon arrival times recorded using a photon counter with time-to-digital converter

matched pulse regime. The pulses from the two arms of the Mach-Zehnder interferom-
eter are then misaligned in time, so as to arrive at the beamsplitter at different times.
This is accomplished by either removing the cell or by tuning the delay of the pulse.
In both cases the observed visibility dropped, as seen in Fig. 2b and c, respectively.
The images show the same number of phase shifts as the temporally matched pulses
but the interference visibility (after balancing the intensity in each arm) is 6% for cell
removal and 15% for delay tuning, far lower than the 90% visibility for the temporally
matched case. As a note, there is always a small amount of CW light leaking through
the electro-optic modulator, which has a 100:1 extinction ratio. The CW light is the
primary culprit in giving the nonvanishing interference visibility when the pulses are
temporally mismatched. The amount of CW light can be much greater than 1% of
the total light since it is constantly “on”, which can lead to a much larger integrated
CW signal. In the interference experiment, the CW background is about 5%. The CW
background light can be removed by using a camera that is able to gate around a 2 ns
window in a fashion similar to that of the low light-level experiment.

The experimental results for the weak field images are shown in Figs. 11, 12, 13.
Figure 11a and b show a delayed and non-delayed one-dimensional image (a bar test
pattern) where each pulse impinging on the image mask contains, on average, 0.5 pho-
tons. The images are measured by scanning an optical fiber in a line across the image
plane for a total duration of 36 s. A histogram of the photon arrival times is made for
each incremented position of the fiber (an effective pixel) as it scans across the image
(shown in Fig. 11c). The measured image is the convolution of the image with the
fiber core. For these scans, the laser frequency is set halfway between the optical res-
onances and the temperature of the cell is set to give 9 ns of delay (shown in red). The
process is repeated but with the laser frequency tuned far from either resonance, which
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Fig. 10 Interference of a delayed image with a slightly diverging local oscillator. a An image (a black
pattern of bars and a numeral) delayed by 5 ns interferes with a reference beam and produces a ring pattern
superimposed with the image. In the central dark spot, the two beams destructively interfere and cancel
one another except in the image, which remains relatively bright. In the ring surrounding the central spot,
the two beams constructively interfere and add to create a bright ring except in the image, which remains
relatively dim. The succeeding rings alternate between constructive and destructive interference. b and c
show the same superposition of the two beams, but in the absence of slow light. In (b), the wavelength of
the laser is tuned outside of the dispersive region and in (c) the cesium cell is removed. In both cases, no
interference between the beams can be seen

Fig. 11 a Delayed and b non-delayed one-dimensional low-light-level image with c accompanying his-
tograms of photon arrival times. Each pulse contains, on average, 0.5 photons before striking the image
mask

gives almost no delay (shown in blue). Approximately 99% of extraneous counts from
background light and detector dark counts are removed by constructing the images
using only those photons which arrive in a 4 ns time window (out of the entire 330
ns window) centered on the middle of the pulse arrival time distribution. An analysis
of the undesirable counts led to an estimate of approximately 2 extraneous counts per
spatial bin shown in Fig. 11, which is in good agreement with the image noise.

Figure 12 shows the delay of a two-dimensional image comprised of the letters
“UR” representing the researchers’ institution. In this part of the experiment, each
pulse contains, on average, 0.8 photons before arriving at the image mask. The image
is constructed by raster scanning a fiber across the image plane in a total time of
approximately 48 s. The time-binned filtering technique described above was also
used to remove background counts from the two-dimensional images. A histogram of
the photon arrival times for the two dimensional images of Fig. 12 is shown in Fig. 13,
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Fig. 12 a Delayed and b non-delayed two-dimensional low-light-level image. An optical fiber was ras-
ter-scanned across a two dimensional image consisting of the letters “UR”. Though attenuated, the delayed
imaged shows similar image fidelity and resolution to the non-delayed image. Each pulse contains, on
average, 0.8 photons before striking the image mask

Fig. 13 Histogram of photon
arrival times showing the
delayed (pulse on the right) and
non-delayed (pulse on the left)
two-dimensional image shown
in Fig. 12

showing the delayed image pulses. Even though every photon used to construct the
image is delayed by approximately 3 ns, the image is preserved with high fidelity.

A few comments about the results are in order. First, the propagation through the
medium is a classical effect, meaning that its behavior does not change in going
from classical fields to quantum fields. A formal demonstration of the preservation of
quantum fields was not undertaken in the present study. However, the preservation of
amplitude and phase as well as the low noise characteristics imply that this system
can be an integral part of quantum image buffering. The development of a highly mul-
timode quantum image buffer is a much different goal than that of the preservation
of two state systems that have been recently studied (qubits) [53,54,62–65]. Second,
the homogeneous linewidth of the cesium atoms ultimately determines the upper limit
in the absolute delay of our slow light system. However, much narrower resonances
could achieve a much larger upper limit of the delay at the expense of the usable signal
bandwidth.

A study presented here concentrated on obtaining information about an image car-
ried by a single photon. However, a different scenario has be considered as well. In
this scenario, the goal is to obtain an image of a photo-sensitive sample that could
be destroyed by a single photon. Such a goal is achievable due to the possibility of a
single-photon measurement without interaction.

In a recent work [66], a single-photon-interaction-free measurement has been used
to detect an intruder in a sense that it was a single pixel black (intruder is there) or
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white (intruder is not there) imaging with no more than a single photon being seen by
an intruder. Thus, this approach allows for discrimination between black and white
with a high confidence level without photon absorption in the sample. Therefore, a
black and white image of any sample could be reconstructed in a statistical fashion
after a pixel by pixel scan in a recently developed invisible quantum tripwire modified
for scanning microscopy.
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