Quantum Imaging

Quantum Imaging, Structured Light Fields, and Materials and Structures for Quantum Sensing

Robert W. Boyd

Department of Physics
University of Ottawa

The Institute of Optics
University of Rochester

Presented at OPTO, Photonics West, San Francisco, CA, USA, February 1, 2017.
Quantum Sensing

In this talk I present some ideas for research directions in the field of Quantum Sensing

Quantum Imaging
  Two-color ghost imaging
  Interaction-free ghost imaging
  Imaging with photon-added states
  Imaging with “undetected photons”

Structured Light Fields for Quantum Information
  Dense coding of information using orbital angular momentum of light
  Secure Communication transmitting more than one bit per photon
  Mobius structures of light

Materials for Quantum Information
  Epsilon-near-zero materials
  Single-photon sources
  Chip-scale photonic devices for quantum information
Quantum Imaging

• Goal of quantum imaging is to produce “better” images using quantum methods
  - image with a smaller number of photons
  - achieve better spatial resolution
  - achieve better signal-to-noise ratio

• Alternatively, quantum imaging exploits the quantum properties of the transverse structure of light fields
Quantum Lithography: Concept of Jonathan Dowling

- Entangled photons can be used to form an interference pattern with detail finer than the Rayleigh limit
- Resolution \( \approx \frac{\lambda}{2N} \), where \( N \) = number of entangled photons


- No practical implementation to date, but some laboratory results


Single-Photon Coincidence Imaging

How much information can be carried by a single photon?

We discriminate among four orthogonal images using single-photon interrogation in a coincidence imaging configuration.

Ghost (Coincidence) Imaging

- Obvious applicability to remote sensing! (imaging under adverse situations, bio, two-color, etc.)
- Is this a purely quantum mechanical process? (No)
- Can Brown-Twiss intensity correlations lead to ghost imaging? (Yes)


We formulate a theory for entangled imaging, which includes also the case of a large number of photons in the two entangled beams. We show that the results for imaging and for the wave-particle duality features, which have been demonstrated in the microscopic case, persist in the macroscopic domain. We show that the quantum character of the imaging phenomena is guaranteed by the simultaneous spatial entanglement in the near and in the far field.

Thermal Ghost Imaging

Instead of using entangled photons, one can perform ghost imaging using the (HBT) correlations of thermal (or quasithermal) light.


• Typical laboratory setup

![Diagram of the setup](image)

identical speckle patterns in each arm

• How does this work? (Consider the image of a slit.)

Calculate \((\text{total transmitted power}) \times (\text{intensity at each pixel})\) and average over many speckle patterns.

Object arm, bucket detector

Reference arm, CCD

Example ghost image

Zerom et al., A 86, 063817 (2012)
Two-Color Ghost Imaging

New possibilities afforded by using different colors in object and reference arms

Thermal ghost imaging

But no obvious way to make identical speckle patterns at two wavelengths

Quantum ghost imaging

Spatial resolution depends on wavelength used to illuminate object.

Wavelength-Shifted (Two-Color) Ghost Microscopy

- Pump at 355 nm produces signal at 460 nm and idler at 1550 nm
- Object is illuminated at 1550 nm, but image is formed (in coincidence) at 460 nm
- Wavelength ratio of 3.4 is the largest yet reported.

[Diagram of the setup]

Quantum Imaging by Interaction-Free Measurement

Interaction-Free Measurements and Entangled Photons

- Does an interaction-free measurement constitute a “real” measurement?
- Does it lead to the collapse of the wavefunction of its entangled partner?
- More precisely, does the entire two-photon wavefunction collapse?

If detector D2 clicks, will the spot size on the detector array measured in coincidence become smaller?
Experimental Results

Interaction-free ghost image of a straight wire

- Note that the interaction-free ghost image is about five times narrower than full spot size on the ICCD camera.

- This result shows that interaction-free measurements lead to wavefunction collapse, just like standard measurements.

With Frédéric Bouchard, Harjaspreet Mand, and Ebrahim Karimi,
Is interaction-free imaging useful?

Interaction-free imaging allows us to see what something looks like *in the dark*!

Could be extremely useful for biophysics. What does the retina look like when light does not hit it?
Photon-Added and Photon-Subtracted States

original thermal state

photon-subtracted

photon-added

photon-added and then subtracted

photon-subtracted and then added

Can we measure the phase $\phi$ more accurately by using photon-subtracted states?

- Results

  - without photon subtraction
  - with one-photon subtraction
  - with two-photon subtraction

- We find that the signal-to-noise ratio (SNR) is increased through use of photon-subtracted states!

- However, in the present setup, photon-subtraction occurs probabilistically and only a small fraction of the time

- Is there a means to obtain photon-addition and photon-subtraction deterministically?

- Can we use this method to perform quantum imaging with improved SNR?
Quantum Sensing

In this talk I present some ideas for research directions in the field of Quantum Sensing.

Quantum Imaging
  - Two-color ghost imaging
  - Interaction-free ghost imaging
  - Imaging with photon-added states
  - Imaging with “undetected photons”

Structured Light Fields for Quantum Information
  - Dense coding of information using orbital angular momentum of light
  - Secure Communication transmitting more than one bit per photon
  - Mobius structures of light

Materials for Quantum Information
  - Epsilon-near-zero materials
  - Single-photon sources
  - Chip-scale photonic devices for quantum information
Structured Light Beams

- One can use the transverse degree of freedom of the light field to encode information.
- Not all light waves are infinite plane waves!
- Even a single photon in such a structured field can carry many bits of information
- Example: Space-Varying Polarized Light Beams

Vector Vortex Beams

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c}
\ell = -1 \\
\ell = 1
\end{array} \right) = \text{Radial}
\]

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c}
\ell = -1 \\
\ell = 1
\end{array} \right) = \text{Spiral}
\]

Poincaré Beams

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c}
\ell = 0 \\
\ell = 1
\end{array} \right) = \text{Lemon}
\]

\[
\frac{1}{\sqrt{2}} \left( \begin{array}{c}
\ell = 0 \\
\ell = -1
\end{array} \right) = \text{Star}
\]

Larocque et al, PRL 2016 (in press)
How to create a beam carrying orbital angular momentum?

- Pass beam through a spiral phase plate
- Use a spatial light modulator acting as a computer generated hologram (more versatile)

Use of Quantum States for Secure Optical Communication

- The celebrated BB84 protocol for quantum key distribution (QKD) transmits one bit of information per received photon.

- We have built a QKD system that can carry more than one bit per photon.  
  – Note that in traditional telecom, one uses many photons per bit!

- Our procedure is to encode using beams that carry orbital angular momentum (OAM), such as the Laguerre-Gauss states, which reside in an infinite dimensional Hilbert space.

Key collaborators: Karimi, Leuchs, Padgett, Willner.
We are constructing a QKD system in which each photon carries many bits of information.

We encode in states that carry OAM such as the Laguerre-Gauss states.

We also need a second basis composed of linear combinations of these states.

**Single Photon States**

$Laguerre$-$Gaussian$ $Basis$ \( \ell = -13, \ldots, 13 \)

```
-13  -12  -11  \ldots  -1  0  1  \ldots  11  12  13
```

“Angular” Basis (mutually unbiased with respect to LG)

```
0  1  2  \ldots  12  13  14  \ldots  25  26  27
```

\[
\Psi_{AB}^N = \frac{1}{\sqrt{27}} \sum_{\ell=-13}^{13} LG_{\ell,0} \exp(i2\pi N\ell/27)
\]
Laboratory Demonstration of OAM-Based Secure Communication

We use a seven-dimensional state space.

We transfer 2.1 bits per detected photon

Observation of Optical Polarization Möbius Strips

- Möbius strips are familiar geometrical structures, but their occurrence in nature is extremely rare.
- We generate and characterize Möbius structures on the nanoscale in tightly focused vector beams.

• Light fields can possess rich spatial structure on subwavelength scales
• Current technology is capable of controllably creating beams with such structures and measuring it at subwavelength distances.

Nanoparticle-based probing technique for vector beam reconstruction
1. A dipole-like spherical nanoparticle (90 nm diameter) is scanned through the beam
2. The forward- and backward-scattered light for each position of the nanoparticle relative to the beam in the focal plane is measured

Full amplitude and phase reconstruction scheme:
Lab Setup to Observe a Polarization Möbius Strip

- **q-plate**: waveplate with a spatially varying orientation (q is the topological charge)
- **output beam** has a spatially varying state of polarization (vector beam, Poincaré beam, etc.)

Tight focusing enhances the Möbius effect, which depends on the z component of the field.
Quantum Sensing

In this talk I present some ideas for research directions in the field of Quantum Sensing

Quantum Imaging
  Two-color ghost imaging
  Interaction-free ghost imaging
  Imaging with photon-added states
  Imaging with “undetected photons”

Structured Light Fields for Quantum Information
  Dense coding of information using orbital angular momentum of light
  Secure Communication transmitting more than one bit per photon
  Mobius structures of light

Materials for Quantum Information
  Epsilon-near-zero materials
  Single-photon sources
  Chip-scale photonic devices for quantum information
New Nonlinear Optical Material for Quantum Technologies

• We want all-optical switches that work at the single-photon level

• We need photonic materials with a much larger NLO response

• We recently reported a new NLO material with an $n_2$ value 100 times larger than any previously reported results (but with some background absorption).

• A potential game changer for the field of photonics

What Makes a Good (Kerr-Effect) Nonlinear Optical Material?

- We want $n_2$ large ($\Delta n = n_2 I$). We also want $\Delta n^{(\text{max})}$ large.
  
  These are distinct concepts! Damage and saturation can limit $\Delta n^{(\text{max})}$

\[
\Delta n
\]

\[
\text{slope} = n_2
\]

\[
\Delta n^{(\text{max})}
\]

\[
\text{I}_{\text{damage}} \quad \text{I}
\]

- We report a material for which both $n_2$ and $\Delta n^{(\text{max})}$ are extremely large

For ITO at ENZ wavelength, $n_2 = 1.1 \times 10^{-10}$ cm$^2$/W and $\Delta n^{(\text{max})} = 0.8$

(For silica glass $n_2 = 3.2 \times 10^{-16}$ cm$^2$/W, $I_{\text{damage}} = 1$ TW/cm$^2$, and thus $\Delta n^{(\text{max})} = 3 \times 10^{-4}$)

- Thus $n_2$ is $3.4 \times 10^5$ times larger than that of silica glass
  
  $\Delta n^{(\text{max})}$ is 2700 times larger that that of silica glass

Nonlinear Optical Properties of Indium Tin Oxide (ITO)

ITO is a degenerate semiconductor (so highly doped as to be metal-like).

It has a very large density of free electrons, and a bulk plasma frequency corresponding to a wavelength of approximately 1.24 μm.

Recall the Drude formula

$$\varepsilon(\omega) = \varepsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

Note that $\text{Re} \varepsilon = 0$ for $\omega = \omega_p/\sqrt{\varepsilon_\infty} \equiv \omega_0$.

The region near $\omega_0$ is known as the epsilon-near-zero (ENZ) region.

There has been great recent interest in studies of ENZ phenomena:

The Epsilon-Near-Zero (ENZ) region of Indium Tin Oxide (ITO)

Measured real and imaginary parts of the dielectric permittivity.

Commercial ITO sample, 310 nm thick on a glass substrate

Note that Re(\(\varepsilon\)) vanishes at 1.24 mm, but that the loss-part Im(\(\varepsilon\)) is non-zero.

Drude fit
\[ \epsilon_\infty = 3.77 \]
\[ \gamma = 0.0468 \omega_p \]
\[ \omega_p / 2\pi = 473 \text{ THz} \]
Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ conditions are of interest in NLO. Recall the standard relation between $n_2$ and $\chi^{(3)}$:

$$n_2 = \frac{3\chi^{(3)}}{4\varepsilon_0 c n_0 \Re(n_0)}$$

Note that for ENZ conditions the denominator becomes very small, leading to a very large value of $n_2$. 
Why Does ENZ Lead to Large NLO Response?

Simple Math:

\[ \epsilon = \epsilon_b + \Delta \epsilon \quad (b = \text{“bulk”}) \]
\[ n = \sqrt{\epsilon} = \sqrt{\epsilon_b + \Delta \epsilon} \]

Assume \( \Delta \epsilon \ll \epsilon_b \) (this assumption can be violated).

\[ n = \sqrt{\epsilon_b} \left( 1 + \frac{\Delta \epsilon}{2 \epsilon_b} + \cdots \right) = \sqrt{\epsilon_b} + \frac{\Delta \epsilon}{2 \sqrt{\epsilon_b}} \]

or

\[ n = n_b + \Delta n \quad \text{where} \quad \Delta n = \frac{\Delta \epsilon}{2 n_b} \]
The NLO Response Is Even Larger at Oblique Incidence

Standard boundary conditions show that:

Thus the total field inside of the medium is given by

\[ E_{\text{in}, \parallel} = E_{\text{out}, \parallel} = E_{\text{out}} \cos \theta \]

\[ D_{\text{in}, \perp} = D_{\text{out}, \perp} \implies E_{\text{in}, \perp} = E_{\text{out}, \perp}/\epsilon = E_{\text{out}} \cos \theta/\epsilon \]

Thus the total field inside of the medium is given by

\[ E_{\text{in}} = E_{\text{out}} \sqrt{\cos^2 \theta + \frac{\sin^2 \theta}{\epsilon}} \]

Note that, for \( \epsilon < 1 \), \( E_{\text{in}} \) exceeds \( E_{\text{out}} \) for \( \theta \neq 0 \).

Note also that, for \( \epsilon < 1 \), \( E_{\text{in}} \) increases as \( \theta \) increases.
Huge Nonlinear Optical Response of ITO

- Z-scan measurements for various angles of incidence

**Wavelength dependence of $n_2$**

- Note that $n_2$ is positive (self focusing) and $\beta$ is negative (saturable absorption).
- Both $n_2$ and nonlinear absorption increase with angle of incidence
- $n_2$ shows a maximum value of $0.11 \text{ cm}^2/\text{GW} = 1.1 \times 10^{-10} \text{ cm}^2/\text{W}$ at 1.25 $\mu$m and 60 deg. This value is 2000 times larger than that away from ENZ region.

**Variation with incidence angle**

Peak laser intensity was 50 GW cm$^{-2}$
Beyond the $\chi^{(3)}$ limit

The nonlinear change in refractive index is so large as to change the transmission, absorption, and reflection!

Note that transmission is increased at high intensity.

Here is the refractive index extracted from the above data.

Note that the total nonlinear change in refractive index is $\Delta n = 0.8$.

The absorption decreases at high intensity, allowing a predicted NL phase shift of 0.5 radians.
Measurement of Response Time of ITO

- We have performed a pump-probe measurement of the response time. Both pump and probe are 100 fs pulses at 1.2 μm.
- Data shows a rise time of no longer than 200 fs and a recover time of 360 fs.
- Results suggest a hot-electron origin of the nonlinear response.
- ITO will support switching speeds as large as 1.5 THz.

![Graph showing normalized transmittance vs. pump-probe delay (fs)]
Indium Tin Oxide at its ENZ wavelength displays enormously strong NLO properties:

\[ n_2 \] is $3.4 \times 10^5$ times larger than that of fused silica
\[ n_2 \] is 200 times larger than that of chalcogenide glass
Nonlinear change in refractive index as large as 0.8

Note that the usual “power-series” description of NLO is not adequate for describing this material. (We can have fun reformulating the laws of NLO!)

Some possible new effects
Waveguiding outside the “weakly-guiding” regime
Efficient all-optical switching
No need for phase-matching
Control of radiative processes


Single-Photon Sources

- Many protocols in quantum information require a single-photon source.
- An example is the BB84 protocol of quantum key distribution:
  - If by accident two photons were sent, one could be stolen by an eavesdropper.
  - Even in a weak coherent state, there is a nonvanishing probability of two or more photons being sent.
- Circularly polarized fluorescence and antibunching from a nanocrystal quantum dot doped into a glassy cholesteric liquid crystal microcavity.
On-Chip Photonic Devices for Quantum Technologies

• To make quantum technologies practical, we need to develop networks of quantum devices on a single chip

- Source of correlated photons
  - Strong coupling of QD to PhC resonator


- Entanglement source

Related Project: Chip-Scale Slow-Light Spectrometer

- The spectral sensitivity of an interferometer is increased by a factor as large as the group index of a material placed within the interferometer.

- We want to exploit this effect to build chip-scale spectrometers with the same resolution as large laboratory spectrometers.

- Here is why it works:

  Slow-light interferometer:

  Simple analysis

  \[
  \frac{d \Delta \phi}{d\omega} = \frac{d}{d\omega} \frac{\omega n L}{c} = \frac{L}{c} \left( n + \omega \frac{dn}{d\omega} \right) = \frac{L n g}{c}
  \]

- We use line-defect waveguides in photonic crystals as our slow light mechanism.

  Slow-down factors of greater than 100 have been observed in such structures.

Laboratory Characterization of the Slow-Light Mach-Zehnder Interferometer

- Interference fringes

- Resolution (quarter wave) is 17 pm or 2.1 GHz or 0.071 cm$^{-1}$

- (Slow-light waveguide is only 1 mm long!)

On-chip spectrometer based on high-Q photonic crystal cavities

- The concept

- Cavity design

- Spectroscopy results

Quantum Sensing

In this talk I present some ideas for research directions in the field of Quantum Sensing

Quantum Imaging
- Two-color ghost imaging
- Interaction-free ghost imaging
- Imaging with photon-added states
- Imaging with “undetected photons”

Structured Light Fields for Quantum Information
- Dense coding of information using orbital angular momentum of light
- Secure Communication transmitting more than one bit per photon
- Mobius structures of light

Materials for Quantum Information
- Epsilon-near-zero materials
- Single-photon sources
- Chip-scale photonic devices for quantum information