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We study the nonlinear optical propagation of two different classes of light beams with space-varying
polarization—radially symmetric vector beams and Poincaré beams with lemon and star topologies—in a
rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities,
we observe that their propagation is not marked by beam breakup while still exhibiting traits such as
nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the
polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a
novel approach to transport high-power light beams in nonlinear media with controllable distortions to their
spatial structure and polarization properties.
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Light beams that can propagate without a significant
change to their spatial profile [1] are of interest for modern
optical technologies and high-power laser systems. Self-
trapped light filaments, or spatial solitons, are formed when
their spreading due to linear diffraction is carefully bal-
anced by a self-focusing (Kerr) nonlinearity that causes the
beam to narrow. Because of their potential to carry an
increased information content, there has been significant
interest in the formation of spatial solitons carrying orbital
angular momentum (OAM) [2–9]. The formation of such
spatial structures has also been reported in a spinor
quantum fluid [10]. OAM-carrying beams are characterized
by an azimuthal phase dependence of the form exp ðilφÞ
[11], where the integer l corresponds to the topological
charge of the phase singularity present at the beam center
(e.g., see [12] and references therein). Such beams include
the Laguerre-Gauss (LG) modes [13], which comprise a
complete set of solutions to the paraxial wave equation.
It is well known that, in (2þ 1) dimensions, spatial

solitons are unstable in homogeneous Kerr media [14]. One
way to increase their stability is to use a saturable self-
focusing medium to prevent the catastrophic collapse due
to self-focusing. By using an intensity-dependent nonlinear
refractive index n2, it becomes possible to balance out the
effects of self-focusing and diffraction. However, even in
the case of saturable self-focusing media, it is known that
optical beams carrying OAM will fragment into several
solitons possessing particlelike attributes [3,15]. In par-
ticular, a scalar beam carrying an OAM value of l is
predicted to break up into 2l daughter solitons [2,7].

In comparison with scalar ring solitons that carry a
definite nonzero OAM, it has been suggested that stability
can be increased by using two beams with opposite OAM
to produce a beam with a net zero OAM [5,6,8,9]. For
example, “necklace” (petal) beams, which consist of a
scalar superposition of two modes with equal and opposite
OAM, have been shown to exhibit quasistable propagation
in a self-focusing medium, although they expand upon
propagation [16]. For vectorial superpositions of beams
carrying OAM, however, the resulting vector solitons have
been shown both theoretically [3,6,9] and experimentally
using nonlocal media [17] to exhibit quasistable propaga-
tion for much larger distances than the corresponding scalar
vortex solitons.
Vector vortex beams are fully correlated solutions to the

vector paraxial wave equation that have space-varying
polarization distributions. Cylindrical vector beams are a
subclass of vector beams with an axially symmetric
polarization profile about the beam’s propagation axis
[18,19]. Examples include radial, azimuthal, and spiral
polarization distributions. Another class of light beams
with nonuniform polarization structures is that of full
Poincaré beams [19,20]. These are of intrinsic interest,
because they carry polarization singularities. Such beams
typically consist of a superposition of two orthogonally
polarized LG modes of different orbital angular momenta
[19,20] and thus carry a net value of OAM.
In this Letter, we demonstrate, both experimentally and

numerically, the stable propagation of space-varying polar-
ized light beams in a saturable self-focusing nonlinear
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medium. More specifically, our study focuses on vector
vortex and Poincaré beams traveling through rubidium
vapor. We compare the intensity and polarization distribu-
tions of the beams at the entrance and exit of the nonlinear
cell. This allows us to see how beam breakup is affected
both by the net OAM of the beam and by its polarization
distribution.
Theory.—Light beams with spatially inhomogeneous

polarization distributions can be obtained by a super-
position of two spatial transverse modes, E1 and E2, with
orthogonal polarizations

Eðr;φ; zÞ ¼ E1ðr;φ; zÞe1 þ E2ðr;φ; zÞe2; ð1Þ

where e1 and e2 are orthonormal polarization vectors and r,
φ, and z are the cylindrical coordinates. Here we adopt the
circular polarization basis, i.e., e1 ¼ eL and e2 ¼ eR, and
the LG basis for the spatial transverse modes [20]. If the
two beams have equal but opposite OAM, the polarization
of the beam varies along the azimuthal coordinate and, if
the beams are equally weighted, spans the equator of the
Poincaré sphere. These radially symmetric vector vortex
beams [18] can have polarization distributions that are
radial, azimuthal [see Figs. 1(a) and 1(b)], or spiral. If E1

and E2 carry a zero and a nonzero OAM value, respectively,
the resulting full Poincaré beam [20] has a polarization that
varies in both the angular and radial coordinates [19] and
covers all polarization states on the Poincaré sphere [20].
The state of elliptic polarization varies with position [21],
and polarization singularities occur at C points, where the
azimuth is not defined and the polarization is circular [22],
and along L lines, where the polarization is linear and its
handedness is not defined [23]. C points can have three
fundamental polarization topologies classified by the

number of polarization lines that terminate at the singu-
larity: These topologies are known as “star” (three lines),
“lemon” (one line), and “monstar” (infinitely many, with
three straight, lines) [21,24]. Examples of lemon and star
topologies are shown in Figs. 1(c) and 1(d), respectively.
We simulate propagation through the medium using a

(2þ 1)-dimensional nonlinear Schrödinger equation with a
saturable self-focusing nonlinearity, derivable from the
two-level model, under the slowly varying envelope and
paraxial approximations and normalized to dimensionless
quantities ρ ¼ r=w0 and ζ ¼ z=ð2zRÞ, where w0 is the
beam waist and zR is the Rayleigh range of the beam
[2,3,6]. As we are dealing with vector beams, our model
consists of two coupled equations for oppositely circularly
polarized beams that interact through the cross phase
modulation term in a homogeneous medium [25]:

∂E1

∂ζ ¼ i
2
∇2⊥E1 þ iμ

jE1j2 þ 2jE2j2
1þ σðjE1j2 þ 2jE2j2Þ

E1;

∂E2

∂ζ ¼ i
2
∇2⊥E2 þ iμ

jE2j2 þ 2jE1j2
1þ σðjE2j2 þ 2jE1j2Þ

E2: ð2Þ

The parameters of importance are the nonlinear parameter μ
and the saturation parameter σ, given by

μ ¼ 2k20n2P0

3n0
; σ ¼ 4P0

3Isatw2
0

; ð3Þ

where k0 is the free-space wave number, n0 and n2 are the
linear and nonlinear refractive indices (n2 > 0 for self-
focusing), Isat is the saturation intensity, and P0 is the
power of the incident laser beam. In the simulations
reported below, we have selected μ ¼ 386 and σ ¼ 51.7
that reproduce the experimental configuration of the natural
rubidium (Rb) cell. We performed numerical integrations of
the propagation equations (2), using the split-step method
with fast Fourier transforms and parameters corresponding
to the experiments performed.
Experiment.—We use a spatially filtered, linearly polar-

ized, tunable cw single-mode diode laser (Toptica DL pro
780, 760–790 nm) together with a set of half- and quarter-
wave plates to generate a Gaussian beam with an arbitrary
polarization state cos ðθ=2ÞeL þ exp ðiχÞ sin ðθ=2ÞeR,
where θ and χ are set by the orientations of the wave
plates. This beam is converted into a space-varying
polarized light beam using a q plate—a slab of patterned
liquid crystal—that couples optical spin to OAM [26]. The
unitary action of a q plate in the circular polarization basis
is described by

Ûq ·

�
eL
eR

�
¼ cos

�
δ

2

��
eL
eR

�
þ isin

�
δ

2

��
eReþ2iðqφþα0Þ

eLe−2iðqφþα0Þ

�
; ð4Þ

where q is a half-integer number corresponding to the
topological charge of the liquid crystal pattern, α0 is the

FIG. 1. (a) Radial and (b) azimuthal vector beams. (c) Lemon
and (d) star Poincaré beams. Red (blue) ellipses correspond to left
(right) circular polarization.
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azimuthal orientation of the liquid crystal elements at
φ ¼ 0 (laboratory frame), and δ is the optical retardation
of the q plate. The parameter δ can be experimentally
adjusted by applying an electric field onto the plate in such
a way that the resulting optical retardation corresponds to a
half (δ ¼ π) or quarter (δ ¼ π=2) wavelength [27]. The
generated beam is then focused by a 150-mm-focal-length
lens into a 9-cm-long cell containing Rb atomic vapor. A
detailed depiction of this experimental apparatus is pro-
vided in Fig. 2. The intensity of the incident beam and the
temperature of the atomic vapor are set so that the medium
exhibits saturable Kerr nonlinearities (powers in the vicin-
ity of 7.44 mW and a temperature of 95 °C). In order to
observe beam breakup of OAM-carrying beams, the laser’s
output wavelength was tuned near the D2 transition line of
Rb. Moreover, the laser was blue-detuned by less than
0.7 GHz from the 5S1=2ðF ¼ 3Þ → 5P3=2ðF ¼ 4Þ hyper-
fine transition.
The beam exiting the Rb cell is then imaged using a lens

with a focal length of 200 mm (not shown in the
experimental setup) and its polarization distribution is
reconstructed using polarization tomography. The tomog-
raphy is performed using an appropriate sequence of a
quarter-wave plate, a half-wave plate, a polarizer, and a
spatially resolving detector (CCD camera) set at an
exposure time of 0.1 s.
In order to generate vector vortex beams (radial, azimu-

thal, and spiral), a linearly polarized Gaussian beam is sent
to a tuned (δ ¼ π) q plate of topological charge q ¼ 1=2
[28]. Apart from a global phase, the generated beam will be

given by ½LG0;−1ðr;φ; zÞeL þ exp ðiβÞLG0;1ðr;φ; zÞeR�=ffiffiffi
2

p
, where β≡ 4α0 depends on the orientation of the q

plate with respect to the input polarization. The generated
beams correspond to radial (β ¼ 0), azimuthal (β ¼ π), and
spiral (β ¼ �π=2) vector vortex beams. To generate the
lemon and star Poincaré beams, a circularly polarized
Gaussian beam is sent to a perfectly detuned (δ ¼ π=2)
q plate with q ¼ 1=2 and q ¼ −1=2, respectively [29].
Here, β ¼ 2α0 and does not affect the polarization topology
but does cause a rotation in the polarization pattern. Thus,
we choose β ¼ 0, resulting in an output beam of the form
½LG0;0ðr;φ; zÞeL þ LG0;2qðr;φ; zÞeR�=

ffiffiffi
2

p
, again omitting

any global phase factors. Note also that monstar topologies
cannot be readily generated in the laboratory. This scheme
allows us to switch between different structured light beams
without altering their intensities.
Analysis.—It is well known that azimuthal modulational

instabilities associated with the helical phase structure
found in beams carrying OAM result in their filamentation
as they propagate through saturating self-focusing media
[2,3,6]. It has been shown, however, that the dominant low-
frequency perturbations that typically disrupt ring solitons
are inhibited by diffraction for vector solitons with no
net OAM [6,9]. For strongly saturating media, stable
counterrotating vortex pairs have also been predicted
[9]. Here we confirm the inhibition of the azimuthal
instability experimentally and numerically by propagating
a beam of the form cos γLG0;−1ðr;φ; zÞeL þ
sin γ exp ðiβÞLG0;1ðr;φ; zÞeR through a self-focusing
medium. When γ ¼ 0 or π=2, the beam is a scalar LG
mode defined by l ¼ −1 or þ1 with left- or right-hand
circular polarization, respectively. For γ ¼ π=4 we have a
vector vortex beam with linear polarization and for γ ¼ π=8
and 3π=8, a vector vortex beam of left- and right-hand
elliptical polarization, respectively, following the topology
of the vector beam with γ ¼ π=4. Note that each beam has
the same total intensity.
A comparison of the experimental results with the

simulations based on Eqs. (2) is shown in Fig. 3 for a
vector beam defined by β ¼ −π=2. From our results, we
can see that the nonlinearity counterbalances diffraction up
until the point at which the beams fragment. As expected,
we see that the scalar OAM-carrying beams (γ ¼ 0, π=2)
are starting to break up at the exit of the nonlinear cell. The
vector beam (γ ¼ π=4), on the other hand, seems almost
unperturbed, in terms of both its amplitude and polarization
distribution. Indeed, we can find numerically that the
fragmentation point occurs much later for vector beams
(∼13.5 cm) than for scalar beams (∼9 cm) [30,31] and that
the vector beam and its components break up at the same
point. For the elliptically polarized vector beams (γ ¼ π=8,
3π=8), the stability length is between the cases of scalar and
vector vortex beams. In this case, the effect of the nonlinear
propagation is also evident in the local rotation of the
polarization: The initial spiral distribution has now become

780nm

Generation

PBS

Detection

CCD PBS

QP

Rb

f

FIG. 2. Experimental setup. A cw wavelength-tunable (760–
790 nm) Toptica diode laser is coupled to a polarization-
maintaining single-mode optical fiber. The power of the laser
beam is adjusted by means of a half-wave (λ=2) plate followed by
a polarizing beam splitter (PBS) in order to reach the saturation
threshold (Isat ¼ 5 Wcm−2) for the D2 resonance line of Rb. A
combination of a λ=2 and a λ=4 plate is used to generate an
arbitrary polarization state, which is then sent to a q plate (QP),
with a topical charge of q ¼ �1=2, to generate vector vortex and
Poincaré beams. This is then focused (w0 ¼ 60 μm) into a
thermally controlled Rb atomic vapor cell by means of a lens
(f ¼ 150 mm). The transmitted beam is analyzed with a combi-
nation of a λ=4 plate, a λ=2 plate, and a PBS and attenuated using
neutral density filters before being recorded by a CCD camera.
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almost azimuthal or radial, respectively (see Fig. 1). This
suggests that vector beams with equally weighted orthogo-
nally polarized components, regardless of their specific
topology [31], allow for greater control over the effects of
nonlinear propagation. In spite of the approximations used
in the derivation of Eqs. (2), small differences in polari-
zation distributions between the experiment and the

numerical simulation are really evident only in the biased
mode cases of γ ¼ π=8; 3π=8, thus demonstrating the
robustness of the vector vortex beam (γ ¼ π=4).
It has been proposed that the increase in stability seen in

vector beams is because they carry no net OAM [6,8,9]. To
test this hypothesis, we repeated our analysis using
Poincaré beams having lemon and star topologies which
do possess a net OAM. The experimental and numerical
results are shown in Fig. 4, where we have plotted the
intensity and the polarization distributions for the lemon
and star topologies after propagating through the Rb cell.
These results again show that beam breakup has been
inhibited when compared to scalar OAM-carrying beams
(see the left- and rightmost panels in Fig. 3). This result
demonstrates that the increased stability is due to the
orthogonality of the constituent modes, which is respon-
sible for the polarization shaping, and not simply due to a
net OAM of zero. We emphasize that both vector vortex
and Poincaré beams display increased stability with respect
to that of a scalar beam [31]. In Fig. 4, we show that the
polarization distributions of the Poincaré beams, although
rotated by the Gouy phase [20], remain unaltered after
nonlinear propagation (as in the case of vector vortex
beams for γ ¼ π=4) and even preserve the numbers and
types of polarization singularities.
Conclusion.—We have compared the propagation of

scalar OAM-carrying beams with two different classes of
beams with nonuniform transverse polarization distribu-
tions in a saturable self-focusing nonlinear medium of Rb
vapor. With respect to scalar vortex beams (LG modes), we
found that beam breakup can be inhibited, while nonlinear
confinement, self-focusing, and polarization distributions

FIG. 4. Intensity and polarization distributions of lemon and
star topologies after propagating through the Rb cell, numerical
(upper row) and experimental (lower row). Red (blue) ellipses
correspond to left (right) circular polarization. Note that these
beams are far more stable than the uniformly polarized beams of
the left- and rightmost columns in Fig. 3. Minor differences in
polarization rotations are mainly due to experimental imperfec-
tions.

FIG. 3. Simulated (upper row) and experimentally reconstructed (lower row) intensity and polarization distributions of scalar and
vector superposition beams after propagating through the Rb cell. The incident beams are cosðγÞLG0;−1ðr;φ; zÞeLþ
sinðγÞ exp ðiβÞLG0;1ðr;φ; zÞeR, with β ¼ −π=2 and γ specified at the top. Red (blue) ellipses correspond to left (right) circular
polarization. Note that for the cases of uniformly polarized input beams (γ ¼ 0 and π=2) the beam shows a significant distortion at the
output of the medium. The spiral vector beam (γ ¼ π=4) shows essentially no distortion in the intensity distribution or polarization. The
elliptically polarized input beams (γ ¼ π=8 and 3π=8) show some polarization distortion but no distortion of the intensity distribution.
Minor differences in polarization rotations are mainly due to experimental imperfections.

PRL 117, 233903 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 DECEMBER 2016

233903-4



are not altered for specific cases of nonuniform spatial
polarization, both with and without net OAM. This finding
suggests that the spatial structure of the polarization plays
an important role in preventing beam fragmentation. These
findings provide a novel approach to transport high-power
light beams in nonlinear media with controllable distortions
to their spatial structure and polarization properties.
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