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For the pump beam, the ωp on the input side is replaced by another ω and hence there are m + 

1 + ω ’s but still m -ω’s so that 
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For P ( )NL

y  , the first 2 y’s belong to the probe beam and there are still m ω’s and m -ω’s, just 

like in )(P p
NL
yp   so that 
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4. Total nonlinear birefringence 

It is clear from Eqs. (15)–(18), that in order to find the birefringence, the relationship between 

the nonlinear susceptibilities
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xmyy
must be found. This depends on 

the symmetry properties of the medium. Even for isotropic media these are relatively 

complicated calculations and hence they are summarized in the Appendix along with some 

general results valid for all frequencies. Making the results specific to the non-resonant, 

isotropic medium case, Eq. (A17) is 
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For the pump-probe geometry in the non-resonant limit, Eq. (19) is inserted into Eqs. (16) and 

(18) to give 
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so that both the x- and y-components of the nonlinear polarization are given in terms of the 

same susceptibilities. Noting that
2 2( ; ) ( 1) ( ; )m p mn m n        from Eq. (13) and 

combining Eqs. (15), (17), (20), and (21) now leads directly to 
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in which the coefficient mA  is given by 
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This form was chosen so that for the individual nonlinearities m 
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In order to make contact with the experimental data in reference 1 we focus on the nonlinear 

refractive indices for the pump-probe case so that the nonlinear birefringence is given by 
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The expansion of 1 b for small b is well known from textbooks [13], to be: 
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The leading term (s = 1), expanded up to n10 (largest term reported in reference 1), is 
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Terms with s2 contain products of the nonlinear coefficients. Including all of the terms up to 

I
5
, 
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Note that all the numerical pre-factors in this case are all less than 2.5. The products of 

different nonlinear coefficients are limited to 2 here. However, products of more than two 

nonlinear coefficients occur for higher-orders in intensity, the first one being .6
642 Innn  From 

Eq. (29) it is evident that in a strict mathematical sense the nonlinear birefringence cannot be 

used as a means to measure the nonlinear coefficients higher than
2n .There is no direct 

correlation between the coefficient
2mn and the corresponding power of the intensity I

m
 for 

m>1 due to the existence of the product terms. However, it makes sense to use the simplified 

notation of Eq. (29) if the relation
1 2 22 2 2 2 1 2... , ...

nm k k k nn n n n m k k k     holds. 

5. Comparison with experiments on air 

Reference 1 contains data measured in air and its constituents for n2(-ωp;ω)  n8(-ωp;ω) and 

also n10(-ωp;ω) for argon. Based on their values, 2 2 2( ; ) ( ; ) ( ; )r v

m p q p u pn n n         with 

m = rq + vu and m5 is always satisfied in air. Assuming that the only nonlinear mechanism 

present is the Kerr effect, the nonlinear birefringence is given by the leading term, Eq. (28), 

which can be expressed as the series 
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This result should be compared with the expansion used by Loriot et al. [1]. Based on a linear 

extrapolation from the first two terms which Loriot et al. obtained from the literature [3,8] 

they assumed the series 
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in their analysis of their data. Note that in both series the numerical pre-factors 2
m
/(2

m
 + 1) 

and 2m/(2m + 1) respectively converge to unity for large m. A graphical comparison of the 

two expansions is given in Fig. 2. In Fig. 2(a) we compare the expansion terms as deduced 

from Eq. (30), 2 / (2 1)m m  , to the ones derived by Loriot et al. 2 /(2 1)m m . As m is 

increased their difference is maximized for m = 11. The relative deviation of Loriot et al.’s 
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expansion terms as compared to the analytically derived factors is depicted in Fig. 2(b). For m 

= 11 the relative error peaks at 6.25%. Furthermore, the Loriot et al. formulation 

systematically underestimates the expansion term coefficients and thus leads to an 

overestimation of the corresponding
2 ( ; )m pn   coefficient for m>2. 

 

Fig. 2. Comparison between the expansion coefficients estimated by the two models. (a) 

Coefficients corresponding to χ(m) terms. () analytical model, (•) Loriot et al. estimation, 

dotted/dashed lines are a guide to the eye. (b) Relative error for the various coefficients of the 
χ(m) terms. (Dotted lines are guides to the eye). 

6. Conclusions 

Expressions for the non-resonant, nonlinear birefringence induced in a probe beam 

(frequencyωp) by a strong pump beam of the same frequency in an isotropic medium have 

been derived for nonlinear Kerr indices n2m(-ωp;ω) for arbitrary m. This was made possible by 

using combinatorial approaches and by assuming that in isotropic media there is only one 

unique value for
(2 1) ( )m

p   for each value of m which was verified previously in the 

literature for m = 1, 2. Some general relations for arbitrary frequency inputs were also derived. 

Because the polarization, linear and nonlinear, induced in a material depends on the square 

of the refractive index, the nonlinear birefringence was found to depend not only on the 

intensity-dependent refractive index coefficients n2m(-ωp;ω) but also on the products of the 

various nonlinear index coefficients. Comparison with existing experiments in air and its 

constituents showed that the product terms were negligible in that case. 

An analytical series was found to describe the nonlinear birefringence. This series was 

different from that assumed by Loriot et. al based on a linear extrapolation of two points. 

Since in both cases the individual numerical factors for n2m(-ωp;ω) converged to unity for 

increasing m, the errors introduced into the analysis of the data were relatively small. 

Appendix A. Relationships between the nonlinear susceptibilities 

In this Appendix the relations between the
(2 1)

(2 2) ( )m

m x p 

   and 
(2 1)

,(2 ) ( )m

yy m x    are derived, some 

for arbitrary frequency inputs. Isotropy requires that each coordinate (x and y) comes in pairs. 

It also requires that the nonlinear polarization should be independent of the orientation of any 

axis system used. Consider first the general case (unrelated to the previous discussion) of 

three, parallel, co-polarized (along the x-axis) input fields E1, E2 and E3 with different 

frequencies ω1, ω2 and ω3 producing the field ω4 via ),,;( 3214
)3(  xxxx

. The third order 

nonlinear polarization (along the x-axis) is 
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Now consider the axis system (x', y') rotated 45° from the original x-axis [8]. The three fields 

have the following components along the x'-axis and y'-axis 
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For isotropic media, ),,,;(),,;( 1234
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nonlinear polarization induced along the x'-axis is given by 
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The nonlinear polarization )(P 4
)3(

' x
in Eq. (A3) can also be obtained by projecting the 

nonlinear polarization given by Eq. (A1) onto the x'-axis to give 
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Since Eqs. (A3) and (A4) must give the same result which is valid for any frequencies, 
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Note that any isotropic material, for example a mature electron plasma, which exhibits third 

order effects such as third harmonic generation [14,15] must have all of these coefficients 

non-zero and related as given by Eq. (A5). In the non-resonant limit it can easily be shown 

that 
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The same result holds for pump beam, i.e. 
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valid for a single medium, extension to multi-component air is trivial giving 
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An alternate and more compact approach for arriving at the same result is to again resort to 

combinatorial mathematics. Since there are three input polarization components, two y'-

polarized and one x'-polarized, which can be permuted among the three input eigenmodes 

(frequencies), there are 3! possibilities for permuting the corresponding polarization 

components in ),,;(
~

1234
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. Because there must be two identical polarization 
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components (y') and only one x, there are 3!/2!1!unique possibilities and Eq. (A5) can be re-

written in the non-resonant limit as 
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different frequencies ω1, ω2, ω3, ω4 and ω5 producing the field ω6 via 
(5)

6 5 4 3 2 1( ; , , , , )xxxxxx       . This produces the nonlinear polarization (along the x-axis) 

 (5) (5)

4 0 6 5 4 3 2 1 2 3 4 5

1
P ( ) ( ; , , , , )E E E E E .

16
x xxxxxx          1

  (A9) 

Now consider again the axis system (x', y') rotated 45° from the original x-axis. The five input 

x-polarized fields again have components along the x'-axis and y'-axis. Note that both mixed 

polarization terms like ),,,,;( 123456
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identical (x') and the two others are also identical (y') and, for the second one, there are 4 (y') 
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The nonlinear polarization )(P 6
)5(

' x
in Eq. A10 can also be obtained by projecting the 

nonlinear polarization given by Eq. (A9) onto the x'-axis to give 
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Again Eqs. (A10) and (A11) must yield identical results and noting again from references 2 

and 8 that
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etc. yields for the 

cases of interest here in the non-resonant limit 
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Consider briefly the 7’th and 9’th order susceptibilities. The same procedures as for the 3rd 

and 5th order cases are used. In order to derive the relationship between the different 
(7) (7)( ), ( ),xxxxxxxx p yyxxxxxx p      etc. seven co-polarized input fields are considered, first in the x, 

#141116 - $15.00 USD Received 14 Jan 2011; revised 28 Feb 2011; accepted 3 Mar 2011; published 21 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19, No. 7 / OPTICS EXPRESS 6397



y, z coordinate system and then in an axis system rotated 45° in the x-y plane. In this case, the 

mixed polarization terms 
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all contribute to the nonlinear polarizations induced 

along the x'-axis, (7)

' 8P ( )x  . The number of unique combinations are 7!/5!2!, 7!/4!3!and 

7!/6!1!respectively for the three cases. Thus again in the non-resonant limit 
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Based on the preceding results, only one, unique, nonlinear susceptibility is expected for an 

isotropic material in the non-resonant limit for each order “2m+1” of )12( m . Therefore all 

the mixed polarization susceptibilities are equal which gives 
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Again using the same approach, for the 9’th order susceptibility, 
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In the non-resonant limit 
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These results suggest simple relations governing the relationship between the susceptibilities, 

namely 
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For frequency inputs ω1, ω2, ω3,.. ω2m+1 giving an output frequency ω2m+2 for isotropic media, 

the above formulas suggest the following general result: 

#141116 - $15.00 USD Received 14 Jan 2011; revised 28 Feb 2011; accepted 3 Mar 2011; published 21 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19, No. 7 / OPTICS EXPRESS 6398



 

(2 1) (2 1) (2 1)

(2 2) 2 2 (2 2) 2 2 (2) ,(2 ) 2 2

(2 1) (2 1)

(4) ,(2 2) , 2 2 (6) ,(2 4) 2

1 (2 1)!
( ) [ ( ) ( )

(2 )!1!2

(2 1)! (2 1)!
                  ( ) (

(2 2)!3! (2 4)!5!

m m m

m x m m x m y m x mm

m m

y m x m y m x m

m

m

m m

m m

     

   

  

    

 

   


    

 
   

 
2

(2 1)

(2 1) ,(2) 2 2

)...

(2 1)!
                  ( )].

2!(2 1)!

m

m y x m

m

m
 

 


 



  

  (A18) 

which gives 
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