

Quantum information with structured light

Mohammad Mirhosseini

Robert W. Boyd's Quantum Photonics Group

The Institute of Optics, University of Rochester, Rochester, NY

Outline

- Quantum key distribution with orbital angular momentum of photons
- Direct measurement of quantum wave function
- Measurement of Wigner distribution of twisted photons

Orbital angular momentum of light

• Circularly polarized light carries angular momentum (Spin angular momentum).

Poynting, Proc. R. Soc. London, Ser.A, (1909)

Beth, Phys. Rev., (1936)

 A light beam with helical phase also carries orbital angular momentum (OAM).
 a)
 b)

The large Hilbert space of OAM is ideal for encoding quantum information

Mair et al., Nature, (2001)

Communication modes

 Singular value decomposition provides an optimal set of modes for free-space communication

$$\hat{G} = \sum_{n} g_n \left| b_n \right\rangle \left\langle a_n \right|$$

- The results of SVD gives us LG modes modes for a system with round apertures.
- LG modes are eigenstate of OAM

Communication with OAM modes

• OAM communication is feasible with available telescopes.

Quantum communication

- Quantum key distribution (QKD) relies on fundamental properties of quantum physics for establishing a secure key.
- This is particularly exciting, since it has been shown that conventional public cryptography can be broken using quantum computers.

6

BB84 Protocol

• QKD schemes traditionally use the polarization of a photon for encoding information.

Alice's Random Bit	0	1	1	0	1	0	0	1
Alice's Random Basis	\Leftrightarrow	\Leftrightarrow	X	\Leftrightarrow	X	X	X	\Leftrightarrow
Alice's Sent Symbol	\$	\leftarrow	1	\$	1	×	×	\leftrightarrow
Bob's Random Basis	\Leftrightarrow	X	X	X	\Leftrightarrow	X	\Leftrightarrow	\Rightarrow
Bob's Measured Symbol	\$	×	1	×	+	×	\leftrightarrow	\leftrightarrow
Bob's Measured Bit	0	0	1	0	1	0	1	1
Secret shared Key	0		1			0		1

Bennett & Brassard, Proc. IEEE Int. Conf., Bangalore (1984)

QKD security

- Quantum mechanics dictates that the state of an unknown photon can not be determined without disturbing it.
- By checking for the disturbance in the transmitted states, Alice and Bob can establish an upper bound on the eavesdropping occurring in their communication channel.

QKD with OAM modes

 Multidimensional system offer a larger information capacity and a higher error threshold
 Information capacity ~ log(d)

Cerf et al, Physical Review Letters (2002)										
d	2	3	4	5	8					
Error (%)	14.64	21.13	25	27.64	32.31					
I (bits)	1	1.58	2	2.32	3					

• ANG basis is unbiased with respect to the OAM basis.

$$\begin{split} \Psi_{\rm ANG}^n &= \frac{1}{\sqrt{d}} \sum_{\ell=-N}^N \Psi_{\rm OAM}^\ell \exp\left(\frac{i2\pi n\ell}{d}\right) \\ \langle \Psi_{\rm ANG}^n | \Psi_{\rm OAM}^\ell \rangle &= 1/d \qquad \forall \{n,\ell\} \end{split}$$

Single-photon measurement of polarization

Mode sorting with coordinate transformation

- The polar coordinate is mapped to the Cartesian.
- OAM modes are mapped to plane waves.

$$v = a \arctan(y/x)$$
 $u = -a \ln(\sqrt{x^2 + y^2}/b)$
 $e^{i\ell\phi} \Rightarrow e^{i\ell v/a}$

Enhanced mode sorting with diffractive copying

$$E(x) \propto \frac{\sin(\pi[\frac{ax}{\lambda f} - \ell])}{\frac{\pi x}{\lambda f}}$$

$$\frac{\int_{-1/2}^{1/2} \left|\frac{\sin(\pi x)}{\pi x}\right|^2 dx}{\int_{-\infty}^{\infty} \left|\frac{\sin(\pi x)}{\pi x}\right|^2 dx} = 77.4\%$$

Enhanced mode sorting with diffractive copying

Prongue et al., Applied Optics (1992)

O'Sullivan et al., Optics Express (2012)

Experimental results

- Cross-talk reduces from 23% to 8%.
- For a set of 25 modes, we calculate information capacity of 4.18 bits per photon (4.64 is the upper bound for ideal separation).
- A small variation of this method sorts ANG modes

Mirhosseini et al., Nature Communications (2013)

OAM QKD

- We use d = 7 modes.
- Single photons approximated as weak coherent pulses.
- 0.1 photons per each 125 ns pulse.
- Beam-splitter passively chooses a random basis.

Experimental Results

- Mutual information of 2.07 bits per sifted photon for 7 modes I(X;Y) = H(Y) - H(Y|X)
- 10.5% error rate in the sifted key is low enough to prove security against intercept resend attacks.
- $R_{net} = R_{sift}[I_{AB}-max(I_{AE}, I_{AB})] = 1.7$

Mirhosseini et al., New Journal of Physics (2015), selected by editors as the 2015 top highlighted paper in Quantum Physics

Limitations of projective measurements

- Characterizing the state is a crucial part of quantum protocols.
- Full characterization of the state requires measurements in multiple basis.

Weak measurements

- Weak unitary interaction of the quantum system with the pointer, that is followed by the post selection.
- It is possible to extract partial information about the system without completely disturbing it.

Aharonov, Albert, & Vaidman, PRL, 60(14), 1988

$$A_w = \frac{\langle \Psi_f | \hat{A} | \Psi_{in} \rangle}{\langle \Psi_f | \Psi_{in} \rangle}$$

• Weak values can be used to directly find the quantum state.

8

$$\langle \pi_x \rangle_{\rm W} = \frac{\langle p | x \rangle \, \langle x | \Psi \rangle}{\langle p | \Psi \rangle}$$
$$= \frac{e^{i p x / \hbar} \Psi(x)}{\Phi(p)}$$

J. S. Lundeen et al. *Nature*, 474(7350), 2011.

Direct measurement

 $A_w = \frac{\langle \Psi_f | \hat{A} | \Psi_{in} \rangle}{\langle \Psi_f | \Psi_{in} \rangle}$

How do we measure the OAM state vector?

$$|\Psi\rangle = \sum_{\ell} a_{\ell} |\ell\rangle \qquad c |\Psi\rangle = c \sum_{\ell} |\ell\rangle \langle \ell |\Psi\rangle = \sum_{\ell} |\ell\rangle \frac{\langle \theta_0 |\ell\rangle \langle \ell |\Psi\rangle}{\langle \theta_0 |\Psi\rangle} = \sum_{\ell} \langle \pi_{\ell} \rangle_w |\ell\rangle$$

Couple photon's OAM to their polarization —> measurement pointer

- Weak measurement of OAM—> rotate the polarization of an OAM component by a small angle
- Strong measurement of angle —> post-select on an angular wedge

M. Malik, M. Mirhosseini, et al. Nature Communications, 5, 3115, 2014.

Experimental setup

Direct measurement of OAM state vector

 We prepare a test wave function shaped as an angular wedged with

Visualizing rotation by measuring the OAM state vector

M. Malik, M. Mirhosseini, et al. Nature Communications, 5, 3115, 2014.

Characterization of partially coherent states

- The knowledge of amplitude and phase is not adequate for partially coherent states.
- The quantum state is described using more complicated mathematical functions such as density matrix or Wigner distribution function.
- Quantum state tomography is the standard way of finding the Wigner function in \hat{a} and \hat{a}^{\dagger} basis.

Lvovsky and Raymer. Reviews of Modern Physics, 2009

Wigner distribution of twisted photons

Wigner distribution simultaneously store position and momentum representations

$$P(x,p) = \frac{1}{\pi \hbar} \int_{-\infty}^{\infty} \langle x+y | \hat{\rho} | x-y \rangle e^{-2ipy/\hbar} \, dy,$$

Wigner, E. (1932). Physical Review, 40(5), 749–759.

Alonso, M. A. (2011). Advances in Optics and Photonics, 3(4), 272–365.

• The conjugate of OAM is azimuthal angle. Angle is a tricky coordinate.

$$\begin{split} & [\hat{\theta}, \hat{\ell}] = ? \quad \text{Barnett, S. M., \& Pegg, D. T. (1990). Physical Review A, 41(7), 3427–3435.} \\ & W(\theta, \ell) = \frac{1}{d} \sum_{\tau = -N}^{N} \exp\left(-\frac{4\pi i}{d}\ell\tau\right) \langle \theta - \tau | \hat{\rho} | \theta + \tau \rangle. \end{split}$$

Leonhardt, U. (1995). Physical Review Letters, 74(21), 4101–4105.

Wigner distribution of twisted photons

$$W(\theta, \ell) = \frac{1}{d} \sum_{\tau=-N}^{N} \exp\left(-\frac{4\pi i}{d}\ell\tau\right) \langle \theta - \tau |\hat{\rho}|\theta + \tau \rangle.$$

We perform a polarization-sensitive rotation.

$$\hat{\rho} \times |D\rangle \langle D|$$

We perform a polarization-sensitive rotation.

original state

rotated by au

vector beam

We post-select on an angle eigenstate.

$$\langle \hat{\sigma}_x(\theta,\tau) \rangle = \frac{2}{N(\theta,\tau)} \operatorname{Re} \left[\langle \theta - \tau | \hat{\rho} | \theta + \tau \rangle \right]$$
$$\langle \hat{\sigma}_y(\theta,\tau) \rangle = \frac{2}{N(\theta,\tau)} \operatorname{Im} \left[\langle \theta - \tau | \hat{\rho} | \theta + \tau \rangle \right]$$

Results with classical beams—angle to OAM

27

Coherent superposition vs incoherent mixture

• Full characterization requires understanding of the state's behavior in both OAM and ANG bases.

Coherent superposition vs incoherent mixture

 Negativity of Wigner's function is an indicator for the degree of coherence.

29

Mirhosseini et al. Physical Review Letters, (2016).

Coherent OAM- ANG interference of a "single" photon

• Analogue of Young's experiment in the ANG-OAM basis.

Conclusions

- High-dimensional spatial modes provide a great resource for quantum information processing.
- We have doubled the capacity of QKD with OAM encoding. The next step would be to go to GHz symbol transmission rates.
- Characterization of high-dimensional states of OAM.
- Further research is required to achieve scalable and efficient methods for characterizing multi-photon, multi-level states.

Acknowledgement

Robert Boyd Quantum Photonics Group
DARPA InPho project
Canadian Research Excellence Center

Selected Publications

- 1. Mirhosseini et al. Nature Communications, 4, 2781 (2013).
- 2. Mirhosseini et a. New Journal of Physics, 17, 033033 (2015).
- 3. Mirhosseini, et al. Physical Review Letters, 113, 090402 (2014).
- 4. Mirhosseini, et al. Physical Review Letters, 116, 130402 (2016).
- 5. Mirhosseini, et al. *Physical Review A*, 93, 053836 (2016)
- 6. Mirhosseini et al. Optics Express, Vol. 21, Issue 25, 30196-30203 (2013).
- 7. Mirhosseini et al. Journal of Modern Optics, Vol. 61, Issue 1, 43-48 (2013).
- 8. Malik, Mirhosseini et al. Nature Communications, 5, 3115 (2014).
- 9.Magaña-Loaiza, Mirhosseini, et al., Science Advances 2 (no. 4), e1501143 (2016).
- 10. Magaña-Loaiza, Mirhosseini et al. *Physical Review Letters*, 112, 200401 (2014).
- 11. Potocek et al. Physical Review Letters,, 115,160505 (2015).
- 12. Safari et al. *Physical Review Letters*,, accepted (2015).
- 13.Shi, Mirhosseini et al. Optica, Vol. 2, Issue 4, pp. 388-392 (2015).
- 14. Rodenburg, Mirhosseini et al. New Journal of Physics, 16, 033020 (2014).
- 15.Bouchard, et al. New Journal of Physics, 16, 123006 (2014).

Angular projections of density matrices

• We can reliably measure projections of density matrix in the angular basis

Generation of spatial modes

• Adjusting the position and the width (duty cycle) of a grating modulates amplitude and phase of the diffracted beams.

Compressive direct measurement

• We use a liquid crystal SLM to make random measurements.

$$\phi_m = \frac{1}{\kappa} [\bar{\sigma}_{x,m} - i\bar{\sigma}_{y,m}]$$

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_M \end{pmatrix} = \begin{pmatrix} Q_{1,1} & Q_{1,2} & \cdots & Q_{1,N} \\ Q_{2,1} & Q_{2,2} & \cdots & Q_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{M,1} & Q_{M,2} & \cdots & Q_{M,N} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix}$$
$$\psi = \mathbf{Q}^{\dagger} (\mathbf{Q} \mathbf{Q}^{\dagger})^{-1} \phi$$

$$\min_{\boldsymbol{\psi}'} \sum_{j} \left| \left| \nabla \boldsymbol{\psi}'_{\boldsymbol{j}} \right| \right|_{\ell_1} + \frac{\mu}{2} \left| \left| \mathbf{Q} \boldsymbol{\psi}' - \boldsymbol{\phi} \right| \right|_{\ell_2}^2.$$

Candès, Romberg, Tao, Communications on Pure and Applied Mathematics 59 (8), (2006) Romberg, IEEE Signal Process. Mag. (2008).

Experimental results

 350 times faster than the standard direct measurement for a 19200 dimensional states.
 Amplitude
 Phase

Projective measurements

What is structured light?

• Gaussian laser beam

$$\mathbf{E}(r,z) = E_0 \,\hat{x} \, \frac{w_0}{w(z)} \exp\left(\frac{-r^2}{w(z)^2}\right) \exp\left(-i\left(kz + k\frac{r^2}{2R(z)} - \psi(z)\right)\right) ,$$

$$w_0 \int z_{\mathbf{R}} = \frac{\pi w_0^2}{\lambda}$$

• Laguerre-Gaussian beams are a set of solutions to paraxial wave equation LG_{21} LG_{31} LG_{32}

How is orbital angular momentum related to communication?

- The number of spatial modes that can be effectively communicated between two apertures is finite.
- This number can be estimated using diffraction considerations:

$$\delta \simeq \lambda L/D.$$

 $N_F \simeq D/\delta = \frac{D^2}{\lambda L}$

