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It is well known that the optical response of a medium depends on the
local field acting on an individual emitter rather than on the macroscopic
average field in the medium. The local field depends very sensitively on the
microcopic environment in an optical medium. It is thus possible to achieve a
significant control over the local field by intermixing homogeneous materials
on a nanoscale to produce composite optical materials. A combination of
local-field effects and nanostructuring provides new degrees of freedom
for manipulating the optical properties of photonic materials. Especially
interesting opportunities open up in the nonlinear optical regime where the
material response depends on the local-field correction as a power law. The
goal of this review is to present a conceptual overview of the influence
of local-field effects on the optical properties of photonic materials, both
homogeneous and composite. We also give a summary of recent achievements
in controlling the optical properties by local-field effects and nanostructuring.
c© 2012 Optical Society of America
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Local-field effects in nanostructured
photonic materials
Ksenia Dolgaleva and Robert W. Boyd

1. Introduction

There is a huge variety of optical materials suitable for different
applications, and there is always a need for a material that has optical
properties superior to existing ones. Controlling the optical properties of
photonic materials is thus a subject of great importance. There are many
different approaches one can take to manipulate the optical properties
of photonic materials. For instance, molecular engineering can be used
to produce materials with a high nonlinear optical response. Photonic
crystal structures enable dispersion control to achieve phase-matched
nonlinear optical interactions and enhanced laser gain.

One approach that we discuss in this review is based on nanostructuring,
i.e., building nanocomposite optical materials by intermixing two or
more homogeneous constituents on a nanoscale. Another approach
relies on local-field effects, a phenomenon that has intrigued scientists
for decades. Even before the practical importance of these effects was
recognized, there had been a considerable interest in their fundamental
nature. The realization that local-field effects could be utilized to
manipulate the optical response has triggered an extensive study of
their influence on the linear and nonlinear optical properties of photonic
materials. The beauty of the two aforementioned approaches is that they
can merge together to produce new degrees of freedom in controlling
optical properties and to generate a new class of optical materials with
highly tailorable optical responses.

The primary goal of this paper is to review how local-field effects
can come into play in homogeneous and composite optical materials,
in both the linear and the nonlinear optical regimes. We also discuss
some recent achievements and outline future directions. As the scope
of this review is fairly broad, we do not aim at providing details
on narrowly focused subtopics, such as metal–dielectric composite
materials and spectroscopy of nanopowders. We restrict ourselves to
discussing the optical properties of dielectric composite materials, while
briefly touching on the benefits of combining metals and dielectrics. We
derive only more general equations that are crucial for understanding the
topic at a fundamental level. To avoid overloading the paper, we provide
references for more complex derivations and lengthy final expressions
(e.g., small-signal gain coefficients of composite materials). The overview
presented herein is also aimed at clarifying some conceptual issues that
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the authors have found to be the subjects of common misinterpretation
or confusion.

The paper is organized as follows. In Section 2, we give an overview of
various concepts that form the basis of the topic. In particular, we present
the concept of the local field and describe the simplest models developed
for the local-field correction factor. In addition, we review the idea of
composite optical materials and their various geometries. In Section 3,
we review the existing theories for treating the local-field-corrected
spontaneous emission rate. We also discuss how these theories have
been applied to describe the local-field effects in the experimentally
measured radiative lifetime. In Section 4, we present the general idea
of a composite laser and discuss the influence of local-field effects on the
laser gain properties of nanocomposite optical materials. In Section 5,
we discuss the role of local-field effects in the nonlinear optical response
of composite materials. We review a recent theoretical and experimental
study of the microscopic cascading phenomenon in nonlinear optics in
Section 6. This phenomenon is purely a consequence of local-field effects.
Finally, in Section 7, we present a summary, outline future directions, and
mention a few interesting novel phenomena relying on local-field effects.

2. Basic Concepts

2.1. Local Field

It is well known that the field driving an atomic transition in a material
medium, the local field, is different in general from both the external
field and the average field inside the medium. The difference from
the average field is not significant when one considers a low-density
medium. To describe the optical properties of such a system, one can use
the macroscopic (ensemble average) field. However, if the atomic density
of a system exceeds approximately 1015 atoms/cm3 [1], the influence of
local-field effects becomes significant and cannot be neglected.

In order to account for local-field effects on the optical properties of a
material, one needs to utilize a proper model relating the local field to
its macroscopic counterparts, namely, the average field and polarization.
The choice of the model strongly depends on the medium of interest. For
example, the local field in a homogeneous medium can be related to the
macroscopic average field according to

Ẽloc = LẼ, (1)

where L is the local-field correction factor. The tilde denotes quantities
oscillating at an optical frequency. Existing theoretical models predict
different expressions for the factor L. Below we give a brief overview
of the models most commonly used by experimentalists to explain
measurement results.

2.1a. Lorentz Local Field

It is conventional to describe local-field effects in a homogeneous
material medium by using the well-known Lorentz model. In the
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simplest version of this model, one treats the medium as a cubic lattice
of point dipoles of the same sort. In order to find the local field acting on
a typical dipole of the medium, one surrounds the dipole of interest with
an imaginary spherical cavity of radius much larger than the distance
between the dipoles, and much smaller than the optical wavelength.
The contributions to the local field from the dipoles situated within
the spherical cavity are accounted for exactly, while the dipoles outside
the cavity are treated as uniformly distributed, characterized by some
average macroscopic polarization. This approach yields the well-known
expression

Ẽloc = Ẽ+
4π
3

P̃ (2)

for the local field in terms of the average macroscopic field and
macroscopic polarization P̃. The local field given by Eq. (2) is called
“the Lorentz local field.” It is derived in many textbooks (see, for
example, [2,3]). The textbook model used for deriving Eq. (2) is known
as the virtual-cavity model, because a fictitious sphere is introduced
as a trick for calculating the local field acting on a typical dipole in
the medium. An alternative, more elegant, derivation of relationship (2)
that does not require introducing an imaginary sphere was proposed by
Aspnes [4].

We further derive the Lorentz–Lorenz (or Clausius–Mossotti) relation
for the dielectric permittivity ε and microscopic polarizability α. Let
us assume for now that the medium is lossless and dispersionless. We
represent the microscopic dipole moment induced in a typical molecule
(or atom) of the medium as

p̃ = αẼloc. (3)

The macroscopic polarization of the material is given by the equation

P̃ = Np̃, (4)

where N denotes molecular (or atomic) number density. Using
Eqs. (2)–(4), we find that the polarization and macroscopic field are
related by

P̃ = Nα

(
Ẽ+

4π
3

P̃
)
. (5)

We assume the polarization P̃ to be linear in the average field:

P̃ = χ (1)Ẽ, (6)

where χ (1) is the linear optical susceptibility of the medium. Substituting
expression (5) into Eq. (6), solving for χ (1), and eliminating the field Ẽ,
we find that

χ (1) =
Nα

1− 4π
3 Nα

. (7)
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Expressing the left-hand side of Eq. (7) as χ (1) = (ε − 1)/4π , we obtain
the well-known Lorentz–Lorenz (or Clausius–Mossotti) relation

ε − 1
ε + 2

=
4π
3

Nα. (8)

Through a rearrangement of Eq. (8), we can express the linear
susceptibility as

χ (1) =
ε + 2

3
Nα. (9)

Substituting expression (9) into Eq. (6), then Eq. (6) into Eq. (4), and using
relationship (3) between the local field and the dipole moment, we obtain
the equation relating the local field to the average field:

Ẽloc =
ε + 2

3
Ẽ. (10)

The factor

LLor =
ε + 2

3
(11)

is known in the literature as the Lorentz local-field correction factor.
Expression (11) for the local-field correction factor is valid in the case
of homogeneous media, where all the particles (molecules or atoms) are
of the same sort. It is also valid in materials where the emitters enter as
interstitial impurities that do not influence the correlation between the
host molecules or atoms [5].

2.1b. Onsager Model

A different macroscopic model for describing the local field in
homogeneous media was developed by Onsager [6]. In his study,
Onsager treats a molecule or atom as being enclosed in a tiny real
cavity in the medium. Then the field acting on the molecule is divided
into the cavity field, which would exist at the center of the real cavity
surrounding the molecule in the absence of the molecule, and the
reaction field, which corrects the cavity field for the polarization of the
surrounding medium by the dipole field of the molecule in the cavity.
The resulting local field is given by

Ẽloc =
3ε

2ε + 1
Ẽ+

2(ε − 1)

(2ε + 1)a3 p̃ (12)

with the first and second terms expressing the cavity and reaction fields,
respectively. Here a is the cavity radius. Even though the Lorentz and
Onsager models yield different expressions for the local field, more
rigorous theories, developed in [5,7], reconcile these two models, which
appear to be two special cases.

In most of the experimental situations, one of the two macroscopic
theories works reasonably well. The Onsager model is applicable to
polar liquids, while the Lorentz model is applicable to solids. Both
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models can describe a guest–host system. The Lorentz model describes
such a system in cases when the guest’s molecule or atom replaces a
molecule or atom of the host with similar polarizability [5]. An example
is neodymium-doped yttrium aluminum garnet (Nd3+:YAG) where
neodymium guest ions replace yttrium ions in the crystalline structure.
Both neodymium and yttrium belong to the class of rare-earth metals
and have similar properties. The Onsager model is more suitable when
the polarizability of a guest is significantly different from that of the
host molecules or atoms. Then the guest not only forms a cavity in the
host medium, but affects the local field outside the cavity [6,8]. A good
example of such a guest–host system is provided by liquid solutions of
fullerene C60 [8].

2.1c. Real-Cavity Model

If the polarizability of an emitter placed in a cavity inside a dielectric
medium is small, so that the emitter does not impose strong changes
on the local field outside the cavity, one can neglect the reaction field
in Eq. (12). The local-field model resulting from this simplification is
referred to as the “real-cavity” model. The expression for the local field
given by the real-cavity model has the form

Ẽloc =
3ε

2ε + 1
Ẽ, (13)

and the corresponding local-field correction factor is given by [9]

Lreal =
3ε

2ε + 1
. (14)

The real-cavity model describes the majority of experiments on
measuring the radiative lifetime of composite optical materials, which
we discuss in Section 3.

2.2. Nanocomposite Optical Materials

Nanocomposite optical materials are nanoscale mixtures of two or
more homogeneous constituents in which the individual particles are
much smaller than the optical wavelength, but still large enough to be
characterized by their own dielectric constants. The optical properties of
composite materials can be adjusted by controlling the constituents and
morphology of the composite structure. Properly tailored composites
can display the best qualities of each of their constituents, or, in certain
cases, can display properties that even exceed those of their constituents.
These features render composite materials valuable for applications in
photonics and laser engineering.

Nanocomposite optical materials are becoming more and more impor-
tant in laser applications, as nanofabrication technology has been rapidly
developing. In particular, nanoscale ceramic composite laser gain media
with improved optical properties have been reported [10,11]. It has also
been shown that one can improve the performance of a laser material
by mixing it with some other material on a nanoscale in such a way
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that the thermal refractive index changes of the resulting composite
material are smaller than those of either of the constituents [12,13]. In
the current work we are concerned with controlling the laser properties
of nanocomposite materials by using local-field effects [2,3].

The optical properties of composite materials have been the subject of
many studies (see, for example, [14–17]). In particular, the modification
of the radiative lifetime of composite materials caused by local-field
effects was addressed in many publications both theoretically [5,9,18–20]
and experimentally [21–29]. The influence of the local-field effects
on the nonlinear optical properties of composite materials is even
more significant, as the material response scales as several powers of
the local-field correction factor. Theoretical modeling of the nonlinear
optical response has been reported for many different geometries
of composite materials [30–33]. In particular, rigorous theories for
Maxwell Garnett-type composite materials [30] and layered composite
materials [32] have been developed. It was shown that a significant
enhancement of the nonlinear optical response is possible under certain
conditions. A number of experiments in the field yielded promising
results [34–37]. In such a way, a composite-material approach has proved
to be a valuable tool in designing optical materials with improved laser
properties and enhanced nonlinear response.

2.2a. Quasi-static Approximation and Finite-Wavelength Effect

There are several characteristic length scales associated with nanocom-
posite optical materials. The smallest dimension is the average size
of the constituent grains. According to Aspnes [38], this quantity has
the lower limit of 1–2 nm, at which individual particles can still be
characterized by their dielectric permittivities. The upper limit on the
sizes of the individual grains is dictated by the range of applicability
of the effective-medium approximation that is valid as long as a
composite optical material can be considered uniform at the scale of
an optical wavelength. Within the effective-medium approximation, one
can introduce an effective dielectric constant εeff in order to treat a
composite optical material as quasi-homogeneous.

Different models for calculating εeff have been developed for different
composite geometries (see Section 2.2b). These models rely on the
infinite-wavelength approximation, neglecting the time variation of the
optical field. Within the infinite-wavelength, or quasi-static, approxima-
tion, the particles of the constituents of the composite material behave as
objects placed in a static electric field. They exhibit a screening surface
charge, which results in differences of the local fields in different phases
of the nanocomposite material. Under certain conditions, the electric
field can become concentrated inside the grains with smaller dielectric
constants (smaller optical density). It may seem counterintuitive at a
first glance, as in waveguiding structures the electric field tends to
accumulate in the regions with the higher dielectric constant. One should
keep in mind, however, that the waveguiding structures operate in a
different regime, the regime of guided waves, or finite wavelength. In
that regime, the characteristic size of components of a heterogeneous
structure is comparable with the wavelength of light, and total internal
reflection of the wave at the boundary between more and less optically
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dense media can occur. The light tends to be confined within the regions
with the higher dielectric constant, occupying the available spatial
modes in these regions. The characteristic size of the constituent particles
for which the waveguiding effect comes into play sets the upper limit
beyond which the quasi-static approximation is no longer valid and the
finite-wavelength effect has to be taken into account.

The range of validity of the quasi-static approximation has been
tested both theoretically and experimentally by Aspnes and Egan in
the 1980s [38–40]. The authors performed the measurement of the
refractive index of a composite material formed by pressed spherical
Al2O3 nanoparticles of different sizes at different wavelengths and
compared the measurement outcome to the value of εeff predicted
by the effective-medium approximation [40]. They found that the
experimental measurements are in good agreement with the quasi-static
approximation as long as the characteristic size of the constituent
grains does not exceed 0.25λ. When the size of the grains reaches
0.5λ, the waveguiding effect becomes dominant. Comparing different
theories with their measurement results, the authors also concluded
that one cannot treat the effect of finite wavelength as time-dependent
dipolar and quadrupolar corrections to the quasi-static approximation.
Instead, one should incorporate the finite-wavelength effect in the initial
formulation of the effective-medium problem.

Using the effective-medium approximation for describing nanocompos-
ite optical materials involves spatial averaging. Another length scale
associated with composite materials is the characteristic radius over
which one performs the averaging. This quantity should be much
larger than the average particle size, but much smaller than λ (see,
for example, [30]). In more recent work [41], LeBihan et al. measured
the distance at which an emitter in a composite optical material stops
sensing the refractive index change due to the presence of an interface.
As the emitter, the authors used a monolayer of Eu3+

:Gd2O3 material.
The radiative lifetime of Eu3+ ions depends on the refractive index of
the surrounding medium. The authors gradually modified the effective
refractive index of the medium surrounding the ions by adding thin
layers (18 ± 1 nm) of TiO2 while measuring the changes in the radiative
lifetime with every deposition. When the overall thickness of TiO2

reached λ/4, the radiative lifetime of Eu3+
:Gd2O3 stopped changing with

further depositions. The resulting overall thickness of TiO2 represents the
characteristic distance over which the averaging should be performed,
as at this distance the composite optical material appears as uniform
regarding the refractive index.

We finish this subsection by summarizing the characteristic length
scales associated with a nanocomposite optical material. The individual
grains of the composite constituents should be larger than 1–2 nm,
but smaller than 0.25λ for the effective-medium theories to be valid.
If the constituent particle size is larger than 0.25λ but smaller than
0.5λ, quasi-static approximation starts to break, and one should
incorporate the finite-wavelength effect into the initial formulation of the
effective-medium problem. When the constituent particle size becomes
larger than 0.5λ, the waveguiding, or finite-wavelength, effect becomes
dominant.
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Figure 1

(a) (b) (c)

Composite material structures: (a) Maxwell Garnett geometry; (b) Bruggeman
geometry; (c) layered geometry. Adapted with permission from Ref. [44] (http://
dx.doi.org/10.1088/1464-4258/11/2/024002).

2.2b. Composite Geometries

There are mainly three types of composite geometries discussed
in the literature: Maxwell Garnett composites [14,15,33], Bruggeman
composites [37,42,43], and layered composites [32,33,36] (see Fig. 1).

The Maxwell Garnett type of composite geometry is a collection of small
particles (the inclusions) distributed in a host medium. The inclusions
are assumed to be spheres or ellipsoids of a size much smaller than the
optical wavelength; the distance between them must be much larger than
their characteristic size and much smaller than the optical wavelength.
Under these conditions, one can treat the composite material as an
effective medium, characterized by an effective (average) dielectric
constant, εeff, which satisfies the relation [14,15]

εeff − εh

εeff + 2εh
= fi

εi − εh

εi + 2εh
. (15)

Here εh and εi are the dielectric constants of the host and inclusion
materials, respectively, and fi is the volume fraction of the inclusion
material in the composite.

In the Maxwell Garnett model the composite medium is treated asym-
metrically. It is assumed that the host material completely surrounds the
inclusion particles, and the result for the effective dielectric constant of
the composite will be different if we interchange the host and inclusion
dielectric constants in the expression (15). This problem is eliminated in
the Bruggeman composite model [45], in which each particle of each
constituent component is considered to be embedded in an effective
medium characterized by εeff. The corresponding equation defining the
effective dielectric constant thus has the form [37]

0 = f1
ε1 − εeff

ε1 + 2εeff
+ f2

ε2 − εeff

ε2 + 2εeff
. (16)

Here ε1 and ε2 are the dielectric constants of the constituent components
1 and 2, and f1 and f2 are the volume fractions of the components. If we
accept that f1 = fi, f2 = fh, ε1 = εi, and ε2 = εh, Eq. (16) reduces to the
Maxwell Garnett model (15) in the limit f1 � f2.

There are certain practical limitations associated with both Maxwell
Garnett and Bruggeman composite geometries. The Maxwell Garnett
model predicts the existence of plasmon resonances in the case when
εi + 2εh is close to zero, which is achievable in metal–dielectric material
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systems, such as that originally described by Maxwell Garnett [14,15].
However, due to its asymmetrical treatment of the host and inclusion
materials, this model is only applicable to the situations when the
volume fraction of the inclusions is very small: fi � 1. As the constituents
are treated symmetrically in Bruggeman expression for εeff (16), this
model can describe percolation. On the other hand, it does not predict
surface plasmon resonances. Neither of the two models works well in
the situations when the volume fractions of the two constituents are
comparable. There has been some success in developing mean-field
models that attempt to extrapolate between the two topologies (see, for
instance, Ref. [46]).

The third composite model shown in Fig. 1 is a layered structure
consisting of alternating layers of two materials (a and b) with different
optical properties. The thicknesses of the layers should be much smaller
than the optical wavelength. Materials of this sort are anisotropic. For
light polarized parallel to the layers of such a composite material the
effective dielectric constant is given by a simple volume average of the
dielectric constants of the constituents:

εeff = fa εa + fb εb. (17)

The electric field in this case is spatially uniform, as the boundary
conditions require continuity of its tangential part on the border between
two constituents. However, for the light polarized perpendicular to the
layers, the effective dielectric constant is given by

1
εeff
=

fa
εa
+

fb
εb
. (18)

In the latter case the electric field is nonuniformly distributed between
the two constituents in the composite, and local-field effects are of
particular interest.

2.2c. Bounds on Effective Dielectric Constant

The theories developed for estimating the effective dielectric constant of
composite geometries were elaborated under the assumption of perfect
shapes of the individual particles. For example, Maxwell Garnett theory
was developed for spherical nanoparticles surrounded by a dielectric
host material. In practice, spherical nanoparticles tend to accumulate
and form aggregates of random shapes, which makes it nontrivial, if
not impossible, to precisely determine the value of the effective dielectric
constant of the composite material. However, one can establish bounds
on the value of εeff, based on the information available about the
constituents of the composite optical material [39,47].

The most relaxed bounds for the value of εeff for any composite optical
material are given by the Wiener limits [4,39,47], corresponding to
the maximum and minimum screening of the electric field by the
constituents, depending on the electric field polarization and the shape
of the individual parts. If the particles form needles or elongated
cylinders, and the electric field vector is polarized along the particles’
largest dimension, the screening will be minimal, and the corresponding
boundary value of the effective dielectric constants will be given by
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Eq. (17). If the particles form discs, and the electric field is polarized
perpendicular to their surfaces, the screening will be maximal, and εeff
will be given by Eq. (18). Equations (17) and (18) thus represent two
limiting cases of no screening and maximum screening for any composite
geometry regardless of its morphology, and the actual values of εeff
should fall within these limits. Such bounds are displayed in Fig. 2 as
the largest shaded area, formed by a straight line (no screening) and a
curve (maximum screening), for a two-component composite material in
which the constituents have complex dielectric constants [4].

In cases in which the information about the volume fractions of the two
constituents is available, the Wiener limits reduce to the more restrictive
Hashin and Shtrikman bounds [39], displayed in Fig. 2 with a smaller
shaded area for the case fa = 0.6 [4]. If the composite optical material has
an isotropic or cubic point symmetry, one can further confine the value
of εeff to an even smaller region on the complex plane [47].

Aspnes and Egan [40] presented an elegant way to summarize all the
models for calculating εeff and the limit theorems by using a single
equation,

εeff =
qεaεb + (1− q)εh(faεa + fbεb)

(1− q)εh + q(faεb + fbεa)
. (19)
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Here (0 ≤ q ≤ 1) is a screening parameter, and εh is a host dielectric
function that can be assigned the values of either εa or εb, or a
combination of these, depending on the particular case. The Wiener
limits for an arbitrary composition and microstructure are obtained from
Eq. (19) by setting q = 0 or 1 and 0 ≤ fa ≤ 1. The Hashin–Shtrikman
limits are defined by a known volume fraction fa and 0 ≤ q ≤ 1. The
Bergman–Milton limits for 2D (q = 1/2) or 3D (q = 1/3) macroscopically
isotropic composite materials can be obtained by fixing fa and imposing
the Wiener limits on εh, i.e., εh = xεa + (1 − x)εb and 1/εh = x/εa +

(1 − x)/εb, where 0 ≤ x ≤ 1. It is remarkable that the Maxwell Garnett
expression (15) for εeff also follows from Eq. (19) by setting εh = εa
or εb, and Eq. (16) for the Bruggeman effective-medium approximation
can also be obtained from Eq. (19) by setting εh = εeff. Equation (19)
thus summarized the effective-medium approximation for calculating
the value of εeff for a two-component nanocomposite optical material of
an arbitrary morphology and choice of constituents and their volume
fractions.

Beyond the range of applicability of the quasi-static approximation, light
tends to concentrate in regions of the composite material with the higher
optical density. As a result, the effective value of the dielectric constant
experienced by light under these condition can be higher than expected.
In fact, it has been shown by Aspnes and Egan [39,40] that it can even lie
outside Wiener limits.

3. Local-Field Effects and Spontaneous Emission
Rates in Dielectric Media

Spontaneous emission occurs as a result of the interaction of an excited
atom with the ground state of the quantized electromagnetic field. The
rate of spontaneous emission can be described by Fermi’s golden rule as

A =
2π
h̄
|V12(ω0)|

2ρ(ω0). (20)

Here V12(ω0) is the energy of interaction between the emitter and the
electric field in the medium, and ρ(ω0) is the density of states at the
emission frequency ω0. It follows from Fermi’s golden rule (20) that
one can control the rate of spontaneous emission through the density
of states. For instance, it has been demonstrated both theoretically and
experimentally that the spontaneous emission rate can be suppressed or
enhanced in the vicinity of a mirror or an interface [48,49], in periodic
structures [50,51] or in a cavity [52,53]. Radiative processes in bulk
dielectric media appear to be less well understood at a fundamental
level, and in particular there has been much current interest in the effects
of local fields on spontaneous emission. Numerous models have been
developed to account for local-field effects on the spontaneous emission
rate. These models tend to make different predictions. Below we provide
an overview of some of them.

3.1. Macroscopic Theories

A very common approach used by many researchers to describe the
influence of local-field effects on the spontaneous emission rate for
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both homogeneous and composite dielectric media relies on the use
of macroscopic theories. Most of these approaches are based on the
quantization of the electromagnetic field in a dielectric medium and
an assumption that the emitter embedded in the medium has no
influence on the surrounding oscillators. Within this approach, one
phenomenologically accounts for the local field by substituting it into
the interaction energy, so that

V12, loc ∝
L

n
, (21)

while treating the density of states at the emission frequency as a
macroscopic characteristic of the medium with the refractive index n [18]:

ρ(ω0) ∝ n3. (22)

We also assume that the dielectric medium is lossless. The analysis can
easily be extended to the case of absorbing dielectric media. The factor n
in the denominator of relation (21) comes from the mode normalization
and thus appears in the expression for the electromagnetic energy
density in a dielectric medium [18]. Using Eqs. (20) through (22), one can
establish the relationship between the local-field-corrected spontaneous
emission rate Aloc in the dielectric medium and the spontaneous emission
rate in the medium of unit refractive index (we call it Avac) to be

Aloc = n|L|2Avac. (23)

Here and below in this paper we assign the “vac” subscript to the
variables denoting quantities in a medium with the same chemical
environment as that of the dielectric medium under consideration, but
with the refractive index equal to unity. The variables marked with the
“loc” subscript denote the local-field-corrected quantities. Relation (23)
has been shown to hold also when the effect of dispersion is included in
V12, loc and in the density of states [18]. The corresponding relation for
the local-field-corrected radiative lifetime τloc in terms of the “vacuum”
lifetime τvac takes the form

τloc =
τvac

n|L|2
. (24)

The form of the factor L, entering Eqs. (23) and (24), depends on
the choice of the local field model. Two simple and intuitive models,
the virtual-cavity (Lorentz) model [4] and the real-cavity model [9],
are most commonly used for describing the experimentally measured
radiative lifetime as a function of the refractive index. Within this section
we will refer to the Lorentz model as the “virtual-cavity model” in
order to emphasize its difference from the real-cavity model. Using the
virtual-cavity approach, one arrives at expression (11) for the local-field
correction factor [2,3]. Here we rewrite this expression as

Lvirt =
n2
+ 2
3

(25)

in terms of the refractive index of the dielectric medium. We also rewrite
the expression for the local-field correction factor following from the
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real-cavity model (14) as

Lreal =
3n2

2n2 + 1
. (26)

Expressions (25) and (26) for the local-field correction factor are very
different and lead to different results for the radiative lifetimes in a
dielectric medium. In fact, they describe different physical situations.
An attempt to classify the physically different systems has been reported
by de Vries and Lagendijk [5]. They present a microscopic theory based
on resonant classical light scattering by impurity atoms inside dielectric
cubic lattices, and they introduce a distinction between interstitial and
substitutional types of impurities, depending on the way the emitters
enter a lattice and their influence on the correlations between the rest
of the particles in the medium. The interstitial case occurs when the
emitters do not influence the many-particle correlation and interact with
Lorentz local field in the lattice, and the virtual-cavity model is valid.
The substitutional case occurs when the impurities have correlations
comparable with those of the particles constituting the lattice. In this
case, the real-cavity model is applicable. The authors of [5] thus identify
the conditions under which each of the cavity models is applicable. Their
generalized theory describes both types of impurity and can be reduced
to the virtual- and real-cavity models in the limiting cases. Their theory
based on resonant scattering thus agrees with the macroscopic theories.

Most of the experiments on evaluating the influence of the local-field
effects on the radiative transition rate were performed in composite
optical materials. A commonly accepted way of describing the measured
local-field-corrected radiative lifetime is to compare the measurements
to Eq. (24) with either a real- [Eq. (26)] or a virtual-cavity [Eq. (25)]
local-field correction factor. In this case, an effective refractive index
neff of the composite optical material, given by an appropriate model
corresponding to the composite geometry (see Subsection 2.2), is used
everywhere in place of the refractive index n in Eqs. (24)–(26). We
also give another example of a phenomenological macroscopic model
developed by Pukhov et al. [54] to describe the local-field effects on
the radiative lifetime in composite optical materials . The authors point
out that mere replacement of the refractive index n of a bulk material
with the refractive index neff of a composite material in Eqs. (23)–(26)
does not account for the difference between the local field acting on
an emitter within a constituent nanograin where it is embedded and
the average mesoscopic field in the nanograin. They modify Eq. (23) to
phenomenologically account for the difference, so that

Aloc = neffLnanoLbulkAvac. (27)

Here the local-field correction Lnano in Eq. (27) accounts for the difference
between the macroscopic average field in the entire composite material
and the mesoscopic average field in the constituent containing the
emitters, while Lbulk is a function of nbulk of the bulk constituent material
containing the emitters and accounts for the local-field effects in the
bulk constituent. In order to avoid an ambiguity of choosing the model
for Lbulk, the authors of [54] suggest that the experimentally measured
spontaneous emission rate in the nanocomposite materials should be
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compared with that of the bulk materials,

Aloc =
neff

nbulk
Lnano Abulk. (28)

The problem is now reduced to finding the right form of Lnano.

In their later studies [55,56], the authors consider composite materials
comprising spherical and ellipsoidal inclusions embedded in a dielectric
host and derive the corresponding expressions for the spontaneous
emission rate explicitly. For the case of spherical inclusions, they obtain

Aspher =
neff

ni

[
3

2+ εi/εh − fi(εi/εh − 1)

]
Abulk, (29)

where fi is the volume fraction of the inclusions in the nanocomposite,
and εi and εh are the dielectric constants of the inclusion and host,
respectively. The effective dielectric constant εeff = n2

eff is given by the
Maxwell Garnett expression (15). The expression for the spontaneous
emission rate for an isolated ellipsoidal inclusion has the form

Aellips =
nh

ni

∑
α=a, b, c

[
γα

1+ (εi/εh − 1)Nα

]2

Abulk, (30)

where γα = dα/
√∑

α|dα|
2 are the direction cosines of the transition

dipole moment with respect to the principal axes a, b, and c of the
ellipsoid, and Nα are the depolarization factors.

3.2. Microscopic Theories

The key feature of the macroscopic approaches is quantization of the
electromagnetic field in a dielectric under the assumption that the
oscillators forming the dielectric are not influenced by the emitter.
The latter is assumed to interact with nonlocal vacuum field modes
determined by the macroscopic density of states. Local-field effects exist
due to the dipole–dipole interaction between the particles forming the
dielectric and manifest themselves at the microscopic scale within the
characteristic distances much smaller than the optical wavelength. It
seems thus plausible, in a strict manner, to consider the interaction
of the emitter with the local vacuum radiation field modes in order
to accurately evaluate the influence of the local-field effects on the
spontaneous emission rate [57,58].

Crenshaw and Bowden [57] presented a fully microscopic theory based
on a many-body quantum electrodynamical approach. Within their
model, the emitters are treated as two-level atoms (TLAs) embedded
in an absorptive and dispersive dielectric host. The emitters and
host particles are assumed to interact with each other only through
the electromagnetic field. The model yields an expression for the
spontaneous emission rate of the form

Aloc = L Avac, (31)
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where L takes the form of the Lorentz factor (11) as a result of the
interaction between the emitter and nearby polarizable particles of the
host via the electromagnetic field.

The result given by Eq. (31) differs significantly from that of the
macroscopic theories (23) in that there is no refractive index present
in expression (31) and the factor L appears in it in the first power.
This result not only challenges the macroscopic theories of sponta-
neous emission rate, but also such fundamental concepts as Fermi’s
golden rule and fluctuation–dissipation theorem. In [58], the authors
extend their fully microscopic many-body quantum electrodynamical
treatment to revisit these fundamental concepts, showing that there
is no contradiction within their formalism. They argue that, when
dealing with dipole–dipole interactions, one should distinguish the
macroscopic electrodynamical environment of the dielectric from the
local environment of the emitter. The reciprocal dipole–dipole interaction
of the emitter with the dielectric in its near vicinity leads to the
self-action, neglected in macroscopic theories, resulting in the difference
of the local-field-corrected spontaneous emission rate (31) from Eq. (23).
This self-action is the modification of the local field acting on a dipole
through the contribution of the dipole itself to the local fields of the
nearby dipoles.

In his later work [59], Crenshaw further analyzes the inconsistency of
the macroscopic theory with the fully microscopic theory. He derives
the optical Bloch equations by using two approaches: quantum-classical
theory relying on the classical Lorentz model of the local field, and
macroscopic quantum electrodynamics. The inconsistency found in
the expressions for the Lorentz frequency shift and Rabi frequency
(electric field) is attributed to the failure of the macroscopic theory to
properly account for the local-field effects. The results obtained by using
the quantum-classical theory based on the Lorentz local field model
are consistent with those obtained earlier using the fully microscopic
model [57].

The fact that the local-field correction factor appears in the first power
in the expression for the local-field-corrected spontaneous emission rate
is typical for fully microscopic approaches [60]. For instance, another
microscopic model, developed by Kuznetsov et al. [61,62], leads to an
expression for the spontaneous emission rate where factor L enters in
the first power, similar to Eq. (31). In their model, Kuznetsov et al. [62]
consider a three-component system consisting of two sets of TLAs and a
quantized electromagnetic field. Like Crenshaw and Bowden [57], they
assume that the emitters and host TLA systems interact only through
the electromagnetic field. The group of the emitting TLAs is assumed
to be in resonance with the external electromagnetic field, while the
group of host TLAs are assumed to have their resonance frequency far
from that of the external field. The authors use a different approach,
adapting the Bogolyubov–Born–Green–Kirkwood–Yvon formalism [63]
to the problem and deriving a system of coupled equations for the
evolution of the emitters’ density matrix. The resulting expression for
the local-field-corrected spontaneous emission rate is

Aloc = nL Avac. (32)
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The difference of Eq. (32) from Eq. (31) is that the dependence on the
refractive index is now present, and the local-field correction factor is
given by the real-cavity model (14).

The fully microscopic theory developed by Crenshaw and Bowden
raised much discussion. One attempt to reconcile it with macroscopic
theories is due to Berman and Milonni [64]. These authors developed
an alternative microscopic theory of the spontaneous emission rate,
considering a system consisting of an emitter embedded in a bath of
other atoms comprising a dielectric. The modification to the spontaneous
emission rate is then a consequence of the dipole–dipole interaction
between the emitter and the bath atoms. The modification of the decay
rate of the source atom was calculated exactly as an integral over
all space. Berman and Milonni have shown that their result is fully
consistent with that of the macroscopic theories.

Another example of a microscopic theory reproducing the result of the
macroscopic theories belongs to Knoester and Mukamel [65]. They have
derived an equation of motion describing the excited-state dynamics
of impurity molecules embedded in an atomic crystal. The molecules
were assumed to interact with each other through an exciton–polariton
exchange. Full agreement with Eq. (23) was obtained, where the
local-field correction factor (11) appeared from the microscopic theory
as a consequence of the interactions between the molecules.

It is evident from Eqs. (23)–(32) that different macroscopic and
microscopic approaches to treating the local-field-corrected spontaneous
emission rate lead to quite different results. It is generally recognized
that some of them—e.g., the macroscopic theory [Eq. (23)] with virtual-
cavity [Eq. (25)] and real-cavity [Eq. (26)] local field models—describe
physically different systems. Nevertheless, in some experiments an
agreement was found with a model that is generally applicable to a
physically different material system (see, for instance, Ref. [66]). The
question about the range of applicability of various theoretical models
of the local-field-corrected spontaneous emission rate thus remains
open. Below we review some recent attempts to explain the existing
experimental results with different models.

3.3. Experimental Studies

The expressions for the local-field-corrected spontaneous emission rate
contain the dependence on the refractive index and local-field correction
factor. It is thus convenient to test the theories by measuring the radiative
lifetime of emitters as a function of the refractive index of the background
dielectric medium. The easiest way to produce a system where all the
parameters but the refractive index remain unchanged is by making
composite optical materials, dispersing nanograins containing emitters
in background materials with different refractive indices. Some examples
of composite materials for the radiative lifetime measurements include
liquid suspensions of nanoparticles [29,66], quantum dots [28], dye
molecules dissolved in water droplets [26,27], Eu3+ organic complexes
in liquids [21] and supercritical gas [22], and rare-earth ions embedded
in a binary glass system xPbO− (1− x)B2O3 [23,24].
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Here we summarize the models for the local-field-corrected spontaneous
emission rate, discussed above, applying them to the radiative lifetime
under the assumption of a lossless composite dielectric medium. As
we mentioned in Subsection 3.1, it is common to replace the bulk
refractive index n with the effective refractive index neff of a composite
optical material in describing the influence of the local-field effects on
its radiative lifetime. We thus rewrite the expressions for the radiative
lifetime in terms of neff to emphasize that we are dealing with the
composite optical materials in this section. Neglecting local-field effects,
one obtains the expression

τnoLFE =
τvac

neff
(33)

for the radiative lifetime in the dielectric medium. We refer to this model
as “no local-field effects,” and call the corresponding radiative lifetime
τnoLFE. The macroscopic virtual- and real-cavity models of the local field
yield

τvirt =
1

neff

(
3

n2
eff + 2

)2

τvac (34)

and

τreal =
1

neff

(
2n2

eff + 1

3n2
eff

)2

τvac, (35)

respectively. The fully microscopic model from [57] yields

τmicro, 1 =
3

n2
eff + 2

τvac, (36)

and the microscopic model developed later in [62] results in

τmicro, 2 =
1

neff

2n2
eff + 1

3n2
eff

τvac. (37)

Finally, we also give the expression for the radiative lifetime obtained
in [54] for spherical inclusions:

τspher =
ni

neff

[
2+ εi/εh − fi(εi/εh − 1)

3

]
τbulk. (38)

Here τspher is expressed in terms of the radiative lifetime τbulk of the bulk
material containing the emitters, instead of τvac.

Generally, the measured decay time τmeas is not purely radiative and can
be expressed in terms of the radiative and nonradiative decay times, τrad
and τnonrad, as

1
τmeasured

=
1
τrad
+

1
τnonrad

. (39)
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It is commonly assumed that the nonradiative decay time τnonrad =

A−1
nonrad does not depend on the refractive index of the surrounding

material [21,27] and can be roughly expressed in terms of the radiative
lifetime of ions in vacuum by using the relation

η =
A(vac)

rad

A(vac)
rad + Anonrad

(40)

for the quantum yield η of the material. Quantum yield is the fraction
of the energy decaying through the radiative channel, so the measured
lifetime is purely radiative only in the case when the quantum yield of
the material is close to unity. Unlike τnonrad, τrad is altered by the local-field
effects.

In order to compare the experimentally measured radiative lifetime as
a function of neff to the theory, one typically performs a least-squares
fit of the data to the theoretical models, using the unknown “vacuum”
lifetime τvac as a free fitting parameter. The nonradiative transitions can
significantly contribute to the population decay dynamics. A common
mistake that can lead to a misinterpretation of the experimental data
is assuming that τmeasured ≈ τrad in the case when the quantum yield
is different from unity, and applying the local-field models (34)–(38)
directly to τmeasured. It is thus important to use Eq. (39) as a fitting function
for the experimental data whenever η < 1.

The macroscopic virtual- and real-cavity models have been most
commonly used by experimentalists, especially in the earliest reports
when other models had not yet been developed [21,22,66]. In Fig. 3,
we show the measurements of the radiative lifetime of Eu3+ organic
complexes embedded in dielectric backgrounds with different refractive
indices [21] [Fig. 3(a)], and suspended in supercritical gas [22] [Fig. 3(b)].
The refractive index variation in the latter case is achieved through
changing the gas pressure. In both reports the measured lifetime was
fitted to the no-local-field-effects [Eq. (33)], virtual-cavity [Eq. (34)],
and real-cavity [Eq. (35)] models with the best agreement provided
by the real-cavity model. The real-cavity model is justified in this
type of composite material, as Eu organic complexes, containing
low-polarizability Eu3+ ions, expel the surrounding solvents or gas
from the volume occupied by them, thus producing real cavities in
the surrounding dielectric medium [5,25]. It is therefore physically
reasonable to use the empty-cavity model of the local field to explain
the experimental results.

The measurements of the radiative lifetime of Y2O3:Eu3+ nanoparticles
suspended in different liquids, reported by Meltzer et al. [66], display the
best least-squares fit with the virtual-cavity model [see Fig. 4(a)]. This
result is quite surprising, as the virtual-cavity model is applicable only
to homogeneous media or the media with interstitial type of inclusions
(emitters) that do not change the correlation between the surrounding
lattice particles [5]. The result has been revisited by Duan et al. [25] in
their article, where they analyze in which situations the virtual- and
real-cavity models are applicable. Duan et al. have successfully fitted the
original data from [66] with the real-cavity model, modifying it so that
the refractive index of the cavity is equal to the index of Y2O3. This choice
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Figure 3
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(a) Experimentally measured radiative lifetime of Eu3+ ions embedded in
organic ligand cages, suspended in apolar liquids (points). The lines show
the best least-squares fit to the no-local-field model [Eq. (33), dashed
curve], virtual-cavity model [Eq. (34), dotted curve], and real-cavity model
[Eq. (35), solid curve]. Reproduced with permission from Fig. 2, Ref. [21].
Copyright 1995 by the American Physical Society (http://link.aps.org/doi/10.
1103/PhysRevLett.74.880). (b) Experimentally measured radiative lifetime of
Eu3+ organic complexes, suspended in supercritical gas (points). The lines show
the best least-squares fit to the no-local-field model [Eq. (33), dotted curve],
virtual-cavity model [Eq. (34), dashed curve], and real-cavity model [Eq. (35),
solid curve]. Reproduced with permission from Fig. 3, Ref. [22]. Copyright 1998
by the American Physical Society (http://link.aps.org/doi/10.1103/PhysRevLett.
80.5077).

is justified, as the nanoparticles replace a part of the surrounding liquid,
producing within it real cavities with the refractive index of Y2O3. Duan
et al. replaced the refractive index in Eq. (35) with the ratio nr = neff/nY2O3 ,
so that it becomes

τreal =
1
nr

(
2n2

r + 1

3n2
r

)2

, (41)

and obtained excellent agreement with the modified real-cavity model
[see Fig. 4(b)].

The radiative decay rate, measured in Eu3+ [23] and Tb3+ [67] ions
embedded in xPbO + (1 − x)B2O3 binary glass matrix, has also shown
agreement with the real-cavity model (see Fig. 5). The refractive
index change was achieved through changing the ratios of PbO and
B2O3 components in the glass matrix. Kumar et al. explain their
results by the fact that the virtual-cavity model is applicable only to
homogeneous media where all the particles are of the same kind [23].
This interpretation, however, calls for a better physical explanation,
which was later provided by Duan et al. [25]. Their explanation of
the results reported in [23] relies on the fact that the bond length of
Pb–O is comparable with that of a rare-earth ion and oxygen, while
the bond length of B–O is significantly smaller. It is thus likely that the
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(a) Experimentally measured radiative lifetime of Eu3+
:Y2O3 nanoparticles

suspended in different liquids and air (circles). The curves show the best
least-squares fit with the virtual-cavity model [Eq. (34)] for different volume
fractions x of the nanoparticles, as labeled. Reproduced with permission from
Fig. 2, Ref. [66]. Copyright 1999 by the American Physical Society (http:
//link.aps.org/doi/10.1103/PhysRevB.60.R14012). (b) Reinterpretation of the
results from [66] by fitting them with a modified real-cavity model with
the best least-squares fit obtained for the volume fraction of the Eu3+

:Y2O3
nanoparticles x = 0.15. Reproduced with permissions from Fig. 3, Ref. [25].
Copyright 2005 by Elsevier (http://dx.doi.org/10.1016/j.physleta.2005.06.037).

rare-earth ions replace Pb atoms in the glass matrix. As the polarizability
of the rare-earth ions is relatively low, while the polarizability of Pb is
very high, such a replacement is physically similar to an empty cavity
formation in the surrounding medium. This example thus corresponds
to the substitutional case, as defined by De Vries and Lagendijk [5].

Measurement of the radiative lifetime in liquid suspensions of
organically capped CdTe and CdSe quantum dots has been reported
by Wuister et al. [28] [see Fig. 6(a)]. The data were fitted with the
virtual-cavity, real-cavity, and fully microscopic [Eq. (36)] models, with
the latter model giving the best least-squares fit. The authors of [36]
explain this result with the fact that the polarizability of the quantum
dots is very high, and the quantum dots exhibit self-action through the
polarization changes that they introduce to their local environment. This
situation is similar to the conditions of Crenshaw and Bowden’s fully
microscopic model [57], where the self-action of the emitter is taken
into account. The authors of [36], however, did not account for the fact
that their quantum dots have a quantum yield much lower than unity
(η ≈ 0.55). This issue has been raised by Duan et al. in Ref. [25], where
they attempt to reinterpret the data by using the real-cavity model and
Eq. (39). Indeed, for such a low value of quantum yield one needs to
take into account nonradiative processes when describing the local-field
effects on the radiative lifetime. It is also plausible to use the Onsager
cavity model, where the reaction field is taken into account, to interpret
the data reported in [28]. This is a justified approach, as a quantum dot
has a very large polarizability, and, being enclosed in an organic cap,
replaces a volume within a liquid in which it is suspended.
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Figure 5

i
i

Experimentally measured radiative lifetime of (a) Eu3+ and (b) Tb3+ rare-earth
ions embedded in xPbO+ (1−x)B2O3 glass matrix (points). (a) The solid curve
displays the best least-squares fit of the experimental data with the virtual-cavity
model; the dashed curve corresponds to the fit with the real-cavity model.
Reproduced with permission from Fig. 2(b), Ref. [23]. Copyright 2003 by
the American Physical Society (http://link.aps.org/doi/10.1103/PhysRevLett.91.
203903). (b) The dashed curve represents the best least-squares fit with the
virtual-cavity model; the solid curve displays the fit with the real-cavity model.
Reproduced with permission from Fig. 4, Ref. [67]. Copyright 2009 by Elsevier
(http://dx.doi.org/10.1016/j.optmat.2008.10.010).
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(a) Experimentally measured radiative lifetime of organically capped CdTe
quantum dots suspended in different liquids. Reproduced with permission
from Fig. 2, Ref. [28]. Copyright 2004 by the American Institue of Physics
(http://link.aip.org/link/doi/10.1063/1.1773154). (b) A reinterpretation of the
experimental results shown in part (a) by Duan et al. [25]. The small squares
represent the experimental data. The stars and crosses correspond to the best
least-squares fit with the real-cavity model for the values of the quantum
yield η = 0.55 and η = 0.90, respectively. Reproduced with permissions
from Fig. 4, Ref. [25]. Copyright 2005 by Elsevier (http://dx.doi.org/10.1016/
j.physleta.2005.06.037).

A situation where the virtual-cavity model is applicable has been
realized in Ce3+ ions in different solid-state matrices [25]. The
experimental data and the best least-squares fit with the virtual-cavity
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Figure 7
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Experimentally measured radiative lifetimes of Ce3+ ions embedded in different
solid-state matrices. The solid curve shows the best least-squares fit to the
virtual-cavity model, while the dashed curve corresponds to the fit to the
real-cavity model. Reproduced with permissions from Fig. 2, Ref. [25].
Copyright 2005 by Elsevier (http://dx.doi.org/10.1016/j.physleta.2005.06.037).

model is represented in Fig. 7. In all the hosts, the low-polarizability
Ce3+ ions interstitially replace cations with low polarizability, thus
not influencing the correlations between the rest of the particles. The
virtual-cavity model for the local field is thus applicable in this physical
situation.

In [62], Kuznetsov et al. applied their microscopic model, given by
Eq. (37), to fit the experimentally measured radiative lifetime of Eu3+ [23]
and Tb3+ [67] ions in a binary glass matrix xPbO–(1 − x)B2O3 and
liquid suspensions of quantum dots [28]. Their theory provides an
excellent description for both kinds of systems, while the real-cavity
model originally applied to describe the data [23,28,67] works better for
the ions in a binary glass matrix [23,67]. The excellent agreement of the
microscopic theory proposed in [62] with the experimental data obtained
in the liquid suspensions of quantum dots can be attributed to the fact
that Kuznetsov et al. account for the self-action of the emitter through the
change of its local environment. This is exactly the case with the quantum
dots that have a very high polarizability.

3.4. Radiative Lifetime of Liquid Suspensions of Nd3+:YAG
Nanoparticles

The experiments on the radiative lifetime measurements are similar.
To provide more detail on the specifics of this kind of experiment,
we overview our experiment on the radiative lifetime measurement of
Nd3+

:YAG nanoparticles dispersed in different liquids [29]. The goal of
our experiment was to measure the change in the radiative lifetime of
emitters caused by local-field effects and to establish which model for
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Figure 8

Scanning electron microscope picture of Nd:YAG nanopowder. The average
particle size is 20 nm. Reproduced from Fig. 1, Ref. [29] (http://dx.doi.org/10.
1364/JOSAB.24.000516).

the local-field correction factor works best in this case. We also comment
on possible difficulties and uncertainties that one can encounter in this
kind of experiment which can complicate the data analysis.

3.4a. Sample Preparation and Experiment

The Nd:YAG nanopowder used in our experiment has an average
particle diameter of approximately 20 nm (see the scanning electron
microscope image in Fig. 8). The neodymium concentration was chosen
to be 0.9 at.%, which is the standard value for Nd:YAG laser rods. We
used different organic and inorganic liquids with appropriate surfactants
in order to achieve stable suspensions of the nanoparticles. The refractive
indices of the liquids ranged between 1.329 (methanol) and 1.63 (CS2).
The Nd:YAG volume fraction in all the samples was 0.11 vol.%.

As the volume fraction fi of the nanoparticles in our samples is very
low, we can treat our suspensions as Maxwell–Garnett-type composite
materials and use relation (15) to calculate the effective refractive index
neff, substituting the refractive index of the liquids in place of the host
refractive index, n2

h = εh, and the YAG refractive index in place of that of
the inclusions, n2

i = εi. The effective refractive indices of our samples are
very close to the refractive indices of the liquids.

We used a Spectra Physics femtosecond laser system to optically excite
neodymium ions in the Nd:YAG nanoparticle suspensions. The scheme
of the experimental setup is represented in Fig. 9. The excitation
wavelength was 800 nm, which coincided with a Nd:YAG absorption
peak. The pump radiation was focused into a cell containing the
suspension, and the fluorescence from the Nd:YAG nanoparticles was
collected in a perpendicular geometry. An InGaAs detector and a digital
oscilloscope were used to observe and record the fluorescence decay
curves. A narrowband 10 nm FWHM filter with the central wavelength
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Figure 9
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Experimental setup for measuring the radiative lifetime in liquid suspensions of
Nd:YAG nanoparticles.

of 1064 nm, together with an additional long-pass filter, were placed in
front of the detector to block scattered pump radiation.

3.4b. Bi-exponential Fluorescence Lifetime

A typical time trace showing the fluorescence decay dynamics is shown
in Fig. 10. In all our experiments we observed a nonexponential decay,
and our data can be fitted well with a sum of two exponentials with
a 4:1 ratio of the slower to the faster decay times. All the slower decay
exponentials have fluorescence decay times longer than the typical value
of 230 µm for bulk Nd:YAG, while all the faster decay exponentials
have decay times shorter than that of bulk Nd:YAG. We expect the
fluorescence decay times in our Nd:YAG nanopowder suspensions to
be longer than that in a bulk Nd:YAG crystal, because the effective
refractive indices of our liquid suspensions (1.32–1.63) are smaller than
the refractive index of a bulk Nd:YAG (1.82).

The most likely reason for the faster exponential in the fluorescence
decay in our samples is the contribution from ions sitting on the
surfaces of the nanoparticles. To test this hypothesis, we measured
the fluorescence lifetimes not only for the Nd:YAG nanopowder, but
also for an Nd:YAG micropowder with a micrometer-scale particle
size. We obtained the micropowder by crushing an Nd:YAG laser rod
and grinding the pieces in a ball mill. The resultant decay dynamics
displayed a bi-exponential character in both powders. The shorter decay
time (130 µs) was the same for both powders (within the error of
our measurements), and the longer decay time was around 600 µs for
the nanopowder and more than two times shorter (270 µs) for the
micropowder. Furthermore, the relative contribution of the faster-decay
exponential was much higher for the nanopowder, compared with that
of the micropowder. The facts that the shorter lifetime is the same for
both powders and that the faster-exponential amplitude is relatively
higher for the nanopowder suggest that the faster exponential in the
fluorescence decay is due to the contribution from the Nd3+ ions sitting
on the surfaces of the particles. Indeed, the structures of the surfaces
of the nanoparticles and microparticles should be similar, while the
relative surface area of the nanopowder is much larger than that of
the micropowder. The crystal lattice surrounding of the surface ions is
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Figure 10

Typical fluorescence decay in the Nd:YAG nanopowder. Reproduced from
Fig. 3, Ref. [29] (http://dx.doi.org/10.1364/JOSAB.24.000516).

distorted, leading to the variations in their electric dipole moments and
resulting in much shorter relative decay times.

The observation of a biexponential fluorescence decay in rare-earth-
doped nanoparticles has also been reported by other authors. In Ref. [68],
Meltzer et al. investigated the effect of the surrounding amorphous
matrix on the radiative lifetime of the embedded rare-earth-doped
nanoparticles. The authors studied the fluorescence dynamics of
Eu3+
:Y2O3 nanoparticles and Pr3+- and Ho3+-doped LaF3 nanocrystals

of different sizes, ranging between 10 and 25 nm. They found that the
reduction of an ideal crystal symmetry increases the probability of the
radiative transition, resulting in the appearance of the shorter decay
component in the measured radiative lifetime. In their recent studies
of the luminescent properties of Yb3+

:Y2O3 nanoparticles [69], Amans
et al. comment on the existence of the crystal field fluctuations for the
rare-earth ions sitting close to the surface of the nanoparticles. These
crystal field fluctuations are due to an additional pressure induced by
the surface strengths that appear when the size of the particles is very
small [70] and do not occur in bulk crystals [69]. Because of the high
surface-to-volume ratio, a large number of rare-earth emitters sit close
to the surface of the nanoparticles and thus significantly contribute to
the fluorescence dynamics of a composite material, exhibiting the shorter
radiative decay time.

3.4c. Data Analysis

The fluorescence lifetimes for the various host liquids (shown as points
in Fig. 11) are obtained by fitting the time evolution of the fluorescence
decay to the sum of two exponentials and taking the longer decay time
as the relevant time for the reasons explained above. As the results of the
fitting procedure were somewhat sensitive to the range of time values
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Figure 11

Experimentally measured radiative lifetimes of the Nd:YAG-nanopowder
suspensions (points with error bars), and the best least-squares fits with various
models (curves) under the assumption that the quantum yield of the nanopowder
is (a) 1 and (b) 0.48. Reproduced from Fig. 4, Ref. [29] (http://dx.doi.org/10.
1364/JOSAB.24.000516).

used in the fitting procedure, we repeated the fit for several different time
ranges for each data point. The data points shown in Fig. 11 represent
averages of the results of these fits, and the error bars represent the
standard deviations from the mean values.

Using Eq. (39), we fitted our experimental data with the “no local-field
effects,” [Eq. (33)], virtual-cavity [Eq. (34)], and real-cavity [Eq. (35)]
models to find the best least-squares fit to our data. Reported values of
the quantum yield of Nd:YAG range from 0.48 (see Ref. [71]) to 0.995
(see Ref. [72]), with 0.6 being the value most often reported [73–75]. It
appears that the quantum yield for a given sample depends sensitively
on Nd concentration and on environment. For this reason, we have
fitted our data to the three models, using the quantum yield as an
additional adjustable parameter. We thus find it plausible to present
our experimental data together with the results of the least-squares
fits for the two limiting values of reported quantum yields, namely 1
and 0.48 in Figs. 11(a) and 11(b), respectively. Through visual inspection
of these results, one can immediately rule out the virtual-cavity
model. Under the assumption η = 1, both the real-cavity and the
no-local-field-effects models agree reasonably well the experimental
data, with the no-local-field-effects model providing a slightly better fit
[see Fig. 11(a)]. For the other limiting case, with the assumption that
η = 0.48 [see Fig. 11(b)], the real-cavity model gives the best fit, which
agrees with our expectations based on the theoretical analysis performed
in Ref. [5]. The no-local-field-effects model lies close to our experimental
data as well. However, there is no theoretical justification for assuming
the validity of the no-local-field-effects model, as the physical properties
of our samples were such that local field effects should have been
present. That is, the sizes of the particles were more than 30 times smaller
than the wavelength of light. Also the dispersions were stable in most
of the samples, which indicates that even if some particle aggregation
had occurred, the aggregates would still have been smaller than the
wavelength of light.

Advances in Optics and Photonics 4, 1–77 (2012) doi:10.1364/AOP.4.000001 28

http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516
http://dx.doi.org/10.1364/JOSAB.24.000516


In Ref. [54], Pukhov et al. used their model of the local-field-corrected
radiative lifetime in spherical inclusions dispersed in a host, given by
Eq. (38), to reinterpret the experimental data shown in Figs. 11 and 4.
This choice of the theoretical model is physically meaningful for liquid
suspensions of nanoparticles. However, using the volume fraction of the
spherical inclusions (nanoparticles) as a free fitting parameter did not
result in good agreement with the experimental data in Fig. 11. Moreover,
the volume fraction values, obtained from the model, were reaching
0.2–0.4, while the actual volume fraction of Nd:YAG nanoparticles in
our samples was fi ≈ 0.001. A possible way to improve the agreement
between the theory proposed by Pukhov et al. and our data could be
returning to the original expression in terms of Avac, given by Eq. (27).
Expressing explicitly Lbulk = (εi + 2)/3 in terms of the dielectric
constant εi of the inclusions, one can set τvac = (Avac)

−1 as a free
fitting parameter while using the known value of the inclusion volume
fraction as a fixed parameter. A similar theoretical approach, developed
for calculating the local-field-corrected laser gain coefficient in various
composite geometries, is discussed in the next section.

4. Influence of Local-Field Effects on Basic Laser
Parameters

In this section, we discuss how local-field effects and composite optical
materials can be applied to control and tailor the basic laser properties
of laser gain media, such as the radiative lifetime of the upper laser
level, the small-signal gain coefficient, and the saturation intensity.
We first provide an overview of a proof-of-principle study aimed at
demonstrating the idea of the composite laser in Subsection 4.1 and show
the significance of the local-field effects in modifying the laser properties.
Local-field effects can come into play differently in different composite
geometries, and separate theoretical studies of the laser properties of
various composite geometries are needed. We provide a recipe for
developing such theories in Subsection 4.2. Using examples, we also
analyze the small-signal gain coefficient in layered and Maxwell Garnett
composite geometries.

4.1. Idea of the Composite Laser

The basic operation of lasers can be characterized most simply in
terms of the upper-level spontaneous emission lifetime τ , the laser
gain coefficient g, and the gain saturation intensity Is. Control of the
three laser parameters is crucial for the development of laser systems
for the following reasons. (1) The upper state lifetime controls how
large the pumping rate of the laser needs to be in order to establish
a population inversion. (2) The gain coefficient determines the laser
threshold condition. The gain needs to be large enough for the laser
to reach threshold, but it is not desirable for the gain to be too large
because excessive gain can lead to the development of parasitic effects
such as amplified spontaneous emission. (3) The saturation intensity
(and its related energy quantity, the saturation fluence) determine the
output power of a laser, from the point of view that the output power
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is determined by the condition that the saturated round-trip gain must
equal the round-trip loss. In practice, the output intensity of most lasers
is typically a factor of several times the saturation intensity. All three of
these parameters can be controlled through use of a composite material
geometry. In order to show the significance of local-field effects in
modifying laser properties of composite optical materials, we developed
in [76] a simple theoretical study aimed at presenting a general picture.

In this section, we summarize the idea of the composite laser reported
in [76]. For illustrative purposes, we treat a composite laser gain medium
as an effective medium and assume that the amplification (and loss) at
the laser transition frequency is small enough to neglect the imaginary
part of the effective dielectric constant εeff. We also assume that the
local-field effects in our effective medium can be accounted for using the
Lorentz model of the local field. This allows us to express the local-field
correction factor as L = (n2

eff + 2)/3. In this simplest formulation of
local-field effects, we obtain the expressions for the laser parameters as
functions of neff [18,76]:

τloc =
τvac

neff|L|2
, (42a)

g0, loc =
|L|2

neff
g0, vac, (42b)

Is, loc = n2
effIs, vac. (42c)

Equations (42) thus relate the basic laser parameters in a composite
dielectric medium to their “vacuum” counterparts.

In Fig. 12, we plot the enhancement factors, which are the ratios
between the basic laser parameters and their vacuum counterparts, as
functions of neff. We choose the range of refractive indices available in
dielectric composite materials. Clearly, significant control over the laser
parameters is available through use of a composite geometry. Since the
rates of change of the laser parameters with neff are very different, it is
possible to control the radiative lifetime, gain coefficient, and saturation
intensity almost independently. The approach described in this section
is general to all composite geometries for the linear optical regime and
can only be used to estimate the linear laser properties. More specific
separate models are needed for a more precise evaluation of the basic
laser parameters of different composite geometries.

4.2. Laser Gain Properties of Composite Optical Materials

The Lorentz model of the local field has been shown to be applicable
to homogeneous media [5]. However, local-field effects can manifest
themselves differently in composite materials, and separate theoretical
models for describing the laser properties of different composite
geometries [17] are needed. Such models have been developed in
Ref. [44] for layered and Maxwell Garnett composite geometries. Here
we give a generalized recipe, derived from Ref. [44], for assessing the
laser properties of an arbitrary composite geometry.

In order to demonstrate our model, in Subsection 4.2a we derive
the local-field-corrected small-signal gain coefficient for homogeneous
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Figure 12

Variation of the principal parameters that control the basic operation of a laser
with the effective refractive index of the composite material. A = 1/τ is
the Einstein A coefficient. Reproduced from [76] (http://dx.doi.org/10.1364/
JOSAB.24.000A19).

materials. We give a recipe for extending the model to the case of
composite materials, while omitting the derivations and lengthy final
expressions. Instead, we give examples in Subsections 4.2c and 4.2d of
applying the models to describe the small-signal gain coefficients in
layered and Maxwell Garnett composite materials.

We consider a two-component nanocomposite optical material with
resonant emitters in one of the constituents. There are two mechanisms
contributing to the local field acting on the emitters in such a material
system: (i) the local environment within the constituent containing the
emitters, and (ii) the geometry of the composite material.

4.2a. Influence of Local Environment

The influence of the local environment on the electric field acting on an
emitter in a resonant constituent can be taken into account by treating
the constituent as a homogeneous material and applying an appropriate
model, such as Lorentz model of local field. This model can be applied to
describe the majority of homogeneous solids, such as rare-earth-doped
laser materials. The Lorentz model of the local field in its simplest
formulation [Eq. (2)] is applicable to the case of “pure resonant emitters”
(PREs) in which all atoms are of the same sort. However, when dealing
with laser gain media, it is more typical to have a system with atoms or
molecules of two or more sorts. Therefore, it is useful to distinguish the
case in which one has a background (host) material with the transition
frequencies far from that of the optical field, doped with some portion of
atoms with a transition frequency in resonance with the optical field. We
refer to this case as “resonant emitters in a background” (REB).
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Pure Resonant Emitters. We first consider a PRE medium illuminated by
an optical field of frequency ω. We assume that the field is tuned close to
a resonance of the emitters. In that case we can treat the medium roughly
as a collection of TLAs, and can apply a well-known formalism, based on
the Maxwell–Bloch equations [77]

σ̇ =

(
i1−

1
T2

)
σ −

1
2

iκEw (43a)

and

ẇ = −
w− weq

T1
+ i(κEσ ∗ − κ∗E∗σ) (43b)

for coherence σ and population inversion w, to describe the optical
properties of such a medium. Here E(t) is the slowly varying amplitude
of the macroscopic electric field Ẽ(t) = E(t) exp(−iωt) + c.c.. The
polarization P̃(t) = P(t) exp(−iωt)+ c.c. involves

P(t) = Nµ∗σ(t), (44)

where N is the number density of atoms, µ is the transition dipole
moment of the two-level system from the ground to excited state, and
σ(t) is the slowly varying amplitude of coherence σ̃ (t), that is,

σ̃ (t) = σ(t) exp(−iωt). (45)

In Eqs. (43), κ = 2µ/h̄, 1 = ω − ω0 is the detuning of the optical field
frequency ω from the atomic resonance frequency ω0, T1 and T2 are,
respectively, the population and coherence relaxation times, and weq is
the equilibrium value of the population inversion (e.g., in the case of an
uninverted system, weq = −1).

We insert the Lorentz local field (2) into the Maxwell–Bloch equations
(43) and obtain

σ̇ =

(
i1+ i1Lw−

1
T2

)
σ −

1
2

iκwE (46a)

and

ẇ = −
w− weq

T1
+ i

(
κEσ ∗ − κ∗E∗σ

)
. (46b)

As a result of the Lorentz local field correction, an inversion-dependent
frequency shift 1Lw appears in Eq. (46a). It involves shifting of the
resonance of the atomic transition. Here 1L is known as Lorentz
redshift [78] and is given by

1L = −
4π
3

N|µ|2

h̄
. (47)

The slowly varying amplitude P of the macroscopic polarization can be
expressed in terms of the linear susceptibility χ (1) as P = χ (1)E. We find
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from Eq. (44) that

χ (1) =
Nµ∗σ

E
. (48)

Substituting the steady-state solution of Eq. (46a) [44,79] for the
coherence σ yields

χ (1) =
N|µ|2

h̄

weq

1+1Lweq + i/T2
. (49)

Now we can find the small-signal gain (g0) and absorption (α0)
coefficients of the medium, as they are proportional to the imaginary part
of the linear susceptibility:

g0 = −α0 = −
4πω

c
√
ε

Im χ (1). (50)

The dielectric permittivity ε entering Eq. (50) describes the dielectric
properties of the entire material structure away from its resonances.

Resonant Emitters in a Background. For a REB medium, we can split the
total polarization entering Eq. (2) for the Lorentz local field (we call it
Ptot from now on) into a contribution Pbg coming from the atoms of the
background medium and a contribution Pres from the resonant atoms:

Ptot = Pbg + Pres = Nbg αbg Eloc + Nres µ
∗
res σres, (51)

where αbg is the polarizability of a background atom. Here and below the
parameters with the subscripts “bg” and “res” refer to the background
and resonant atoms or molecules of the medium. As we consider only
media in which the Lorentz model of the local field is valid, both resonant
and background types of molecules or atoms should experience the same
Lorentz local field.

One can relate the polarizability αbg to the dielectric constant of
the background material εbg by using the Clausius–Mossotti (or
Lorentz–Lorenz) relation (8):

εbg − 1

εbg + 2
=

4π
3

Nbg αbg. (52)

Substituting Eq. (51) into Eq. (2) for the local field and using the
Clausius–Mossotti relation (52) and Eq. (11) for the local-field correction
factor, we find

Eloc = Lbg

(
E +

4π
3

Pres

)
, (53)

where Lbg = (εbg + 2)/3 is the Lorentz local-field correction factor for the
background material. The current expression for the local field reduces
to Eq. (2) if one considers a vacuum to be a background medium.

Next, we find the susceptibility of the medium from the relationship
χ (1) = Ptot/E. Substituting Eq. (51) and the steady-state solution for σres
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into the above relationship for χ (1), we arrive at the result

χ (1) = χ
(1)
bg +

Nres |µres|
2

h̄

L2
bg weq, res

1+1′L weq, res + i/T2,res
(54)

for the linear susceptibility of the REB medium. The frequency shift 1′L
is a modified Lorentz redshift, given by

1′L = −
4π
3

Nres |µres|
2

h̄
Lbg = Lbg1L. (55)

The Lorentz redshift thus appears to be enhanced by Lbg owing to the
influence of the background dielectric medium. Using Eqs. (50) and (54),
we can find the small-signal gain and absorption coefficients.

The result [Eq. (55)] for the Lorentz redshift modified by the presence
of the background medium is in agreement with that obtained by
Crenshaw and Bowden [57,80] for a collection of resonant TLAs
embedded into a dielectric background. Knoester and Mukamel [65],
however, obtained a different enhancement factor for the Lorentz
redshift in a similar system. Their result shows frequency shift
enhancement by the refractive index of the background nbg only.

4.2b. Influence of Composite Geometry

We consider a two-component nanocomposite optical material com-
prised of homogeneous media a and b, and we assume that the resonant
emitters are present in constituent a only. Constituent a can be of either
PRE or REB type. In the case of a composite material, Eqs. (2) and (53),
describing the Lorentz local field in homogeneous media of PRE and REB
types, take the forms

Eloc, a = ea +
4π
3

pa (56)

and

Eloc, a = Lbg, a

(
ea +

4π
3

pa

)
, (57)

respectively. Here ea and pa are the average (mesoscopic) field and
polarization within component a, influenced by the mesoscopic field
and polarization of component b, and thus by the geometry of the
composite material. Applying the models developed for the specific
composite geometries [17,30,32], one can express ea and pa in terms
of the average macroscopic field E and polarization P of the entire
composite material. Equations (56) and (57) thus describe the local field
acting on the emitters in a composite material of an arbitrary geometry.
Substituting the local field in the form of Eqs. (56) and (57) into the
Maxwell–Bloch equations (46), one can solve them to find χ (1) and,
from there, the local-field-corrected gain and absorption coefficients
for composite optical materials with PRE and REB types of resonant
constituent [44].
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4.2c. Laser Gain Properties of Layered Composite Materials

Here we consider a layered composite material comprising two types
of homogeneous media (we call them a and b) with different optical
properties [see Fig. 1(c)]. Let us assume that both components a and
b of our layered composite material respond linearly to the applied
optical field, and we consider only the components of electric field
and polarization perpendicular to the layers. Assume that the field of
frequency ω is tuned close to one of the resonances of the component a,
but does not coincide with any of the resonances of the component b. The
detailed derivation of the linear susceptibility and local-field-induced
frequency shift for the layered composite material can be found in [44].
Here we present an example of how the model can be applied to analyze
the laser gain properties of a layered composite material.

As an example, we analyze the behavior of the small-signal gain as
a function of various parameters, choosing a Rhodamine 6G-doped
poly(methyl methacrylate) (PMMA) laser gain medium as the resonant
species a in our layered composite material. The parameters of the gain
medium that we used for our analysis are the emission peak wavelength
λ0 = 590 nm, the transverse relaxation time T2 = 100 fs, the transition
cross section σtr = 2×10−16 cm2, the Rhodamine molecular concentration
N = 1.8×1018 cm−3, and the refractive index of PMMA, nbg = 1.4953. We
take the component b to be an unknown material and vary its refractive
index to see how it affects the optical response of Rhodamine-doped
PMMA.

Rhodamine-doped PMMA is an example of the REB case, and, therefore,
one should use Eq. (57) for the local field acting on the Rhodamine
molecules. The expression for the mesoscopic field in a constituent of
a two-component layered composite material has been derived in [32].
In the linear optical regime, it takes the form

ea =
εeff

εa
E. (58)

We have dropped the vector notation, as we treat only the component
of the electric field that is perpendicular to the layers. Alternatively, one
can also express the mesoscopic field in the resonant constituent a as [44]

ea =
εb

1+ 4π fa χ
(1)
b

E −
4π fb

1+ 4π fa χ
(1)
b

pa (59)

in terms of the macroscopic field and mesoscopic polarization pa.
Substituting Eq. (59) into the local field [Eq. (57)], and then Eq. (57)
into the Maxwell–Bloch equations (46), and following the recipe given
in Subsection 4.2a, one can find the expression for the small-signal gain
coefficient [44].

Setting the equilibrium value of the population inversion weq = 1, which
corresponds to a fully inverted amplifying system, and the detuning
of the optical field with respect to the resonance 1 = 0, we plot the
small-signal gain, calculated by using the method described above, as
a function of the refractive index of the nonresonant component nb in
Fig. 13, and of fa in Fig. 14. It can be seen from Figs. 13 and 14 that the
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Figure 13

Small-signal gain of a layered composite material as a function of the refractive
index of the nonresonant component for different values of the volume fraction
of the resonant component. Reproduced with permission from Fig. 3(a),
Ref. [44] (http://dx.doi.org/10.1088/1464-4258/11/2/024002).

gain coefficient tends to grow with the increase of the refractive index
of the nonresonant component. The reason for this behavior is that for
the light polarized perpendicular to the layers, the electric field tends to
localize in the regions of a dielectric with lower refractive index [32].
Therefore, the higher the refractive index of the nonresonant layers,
the more the electric field is displaced into the resonant layers, which
causes a stronger gain. The behavior of the gain coefficient as a function
of fa is more complex. It grows monotonically with the increase of fa
for small refractive indices. In the case nb = nbg the growth is linear.
For high values of the refractive index the small-signal gain displays a
rapid growth with the increase of the volume fraction until it reaches a
maximum value, corresponding to an optimal value of fa, after which
it starts to decrease with further increase of fa. This behavior can be
understood as follows. The initial growth of g0 with fa is due to the fact
that the number of the resonant molecules in the medium increases. On
the other hand, by increasing fa, we make our layers with the resonant
molecules thicker, and the local field, highly concentrated in these layers
because of the high value of nb, spreads over the layers, and each
individual molecule “feels” a smaller value of the local field. This causes
the gain to decrease with the increase of fa beyond an optimal value.
Thus, in order to achieve maximum gain or absorption in a layered
composite material, one needs to use a nonresonant component with a
high refractive index while keeping the volume fraction of the resonant
component low.

4.2d. Laser Gain Properties of Maxwell Garnett Composite Materials

The Maxwell Garnett type of composite geometry is a collection of small
particles (the inclusions) distributed in a host medium [see Fig. 1(a)].
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Figure 14

Small-signal gain of a layered composite material as a function of the volume
fraction of the resonant component for different values of the refractive index of
the nonresonant component. Reproduced with permission from Fig. 4, Ref. [44]
(http://dx.doi.org/10.1088/1464-4258/11/2/024002).

The effective dielectric constant of a Maxwell Garnett composite material
is described by Eq. (15). Because of the geometry of Maxwell Garnett
composite materials, the local field is uniform in the inclusion medium
and nonuniform in the host [30]. We review only the results obtained
in Ref. [44] for the case of resonant species in inclusions. Following the
recipe reported in [44], one can numerically solve the problem to deduce
the total susceptibility and associated frequency shift of the resonant
feature for the case of the resonant species in the host material.

As an example, we consider a Maxwell Garnett composite material with
Nd:YAG nanoparticles as inclusions. We use the emission wavelength
λ0 = 1.064 µm, the transverse relaxation time T2 = 3 ms, the transition
cross section σtr = 4.6×10−19 cm2, the neodymium atomic concentration
N = 1.37×1020 cm−3 (this value corresponds to 1 at.% of Nd in YAG), and
the YAG refractive index nbg = 1.82. We take the host to be an unknown
medium and vary its refractive index nh to see how it affects the optical
response of Nd:YAG nanoparticles.

Nd:YAG corresponds to the case of REB, which means that the gain
coefficient can be calculated substituting Eq. (57) for the local field acting
on the Nd3+ ions. The mesoscopic field inside the inclusions can be
expressed as [30]

ei =
εeff + 2εh

εi + 2εh
E, (60)

or as [44]

ei =
3εh

3εh − 4π fh χ
(1)
h

[
E −

4π
3εh

fh pi

]
(61)
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Figure 15

Small-signal gain of a Maxwell Garnett composite material as a function of the
refractive index of the nonresonant host for different values of the inclusion
volume fraction. Reproduced with permission from Fig. 6, Ref. [44] (http://dx.
doi.org/10.1088/1464-4258/11/2/024002).

in terms of the mesoscopic polarization. We dropped the vector notation
in Eq. (61) as the mesoscopic field inside the inclusion is uniform,
and the inclusion material is assumed to be isotropic. Substituting the
mesoscopic field [Eq. (61)] into the local field [Eq. (57)], and Eq. (57)
into the Maxwell–Bloch equation (46), one can solve them and find the
small-signal gain coefficient.

Setting the equilibrium value of the population inversion weq = 1 and the
detuning 1 = 0, we plot the small-signal gain coefficient as a function
of the host refractive index nh in Fig. 15. The dependence of g0 on the
inclusion volume fraction fi is depicted in Fig. 16.

One can see from Figs. 15 and 16 that the small-signal gain of the
Maxwell Garnett composite geometry exhibits a monotonic growth with
the increase of fi. It increases to some maximum value with the increase
of the host refractive index and then decreases with further growth of
nh. The monotonic growth of g0 with fi is due to the fact that, unlike
in layered composite materials, the increase of the inclusion volume
fraction in the Maxwell Garnett composite material is not accompanied
by the decrease in the local field in an inclusion. The reason for the
complex behavior of g0 as a function of nh is as follows. It is seen from
Eq. (50) that g0 ∝ [

√
εeff]
−1Imχ

(1)
eff . Due to the electric field localization

in the component with the lower refractive index, Imχ
(1)
eff monotonically

grows with the increase of nh. However, the term [
√
εeff]
−1, where εeff is

given by Eq. (15), decreases with the increase of nh, and at some value of
the host refractive index its decrease overcompensates for the growth of
Imχ

(1)
eff . As a result, g0 starts to decrease with further increase of nh.

It is important to keep in mind that the Maxwell Garnett model works
well only for low volume fractions of the inclusions (fi . 0.4, and even
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Figure 16

Small-signal gain of a Maxwell Garnett composite material as a function of
the inclusion volume fraction for different values of the host refractive index.
Reproduced with permission from Fig. 7, Ref. [44] (http://dx.doi.org/10.1088/
1464-4258/11/2/024002).

lower in some cases). It does not account for a percolation phenomenon
that occurs when fi & 0.3.

5. Nonlinear Optical Properties of Composite
Materials

Numerous studies, discussed in the previous sections, have shown that
local-field effects can significantly modify the linear optical properties
of both homogeneous and composite optical materials. These effects
become even more pronounced in the nonlinear optical regime, as the
optical response scales with the strength of the local field.

In this section, we provide an overview of how local-field effects can
come into play in the nonlinear optical regime. We first present a basic
treatment of local-field effects in the nonlinear optics in Subsection 5.1,
and then show in Subsections 5.2 and 5.3 how nanostructuring can be
utilized to control the nonlinear optical response of materials.

5.1. Local-Field Effects in Nonlinear Optics

In order to demonstrate how local-field effects modify the nonlinear op-
tical susceptibility, we consider here the simplest case of a homogeneous
centrosymmetric medium that can be described by the Lorentz model
of the local field. We restrict ourselves with treating the lowest-order
nonlinear optical interactions at a single frequency, such as degenerate
four-wave mixing (DFWM). We thus can limit the consideration to
the third order of nonlinearity, and the corresponding power series
expansion of the nonlinear optical susceptibility characterizing the
medium with respect to the strength of the macroscopic electric field
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takes form [81]

χ = χ (1) + 3χ (3)|E|2 + · · · . (62)

Our goal is to relate the macroscopic characteristics of the medium
to the microscopic ones, applicable to individual molecules or atoms.
We thus seek the relationships between the linear susceptibility χ (1)

and third-order nonlinear susceptibility χ (3) of the medium and
their microscopic counterparts, namely, the linear polarizability γ

(1)
at

and third-order hyperpolarizability γ
(3)
at . This is where the local-field

corrections come into play.

We rewrite expression (2) for the Lorentz local field in terms of the slowly
varying amplitudes of the electric field and polarization as

Eloc = E +
4π
3

P. (63)

The polarization P entering Eq. (63) now contains a nonlinear
contribution and can be represented as a sum of the terms proportional
to the first and third powers of the local electric field as

P = P(1) + P(3) + · · · , (64)

where

P(1) = Nγ (1)at Eloc (65a)

and

P(3) = Nγ (3)at |Eloc|
2Eloc. (65b)

Using Eq. (63) in Eq. (65a), we obtain

P(1) =
ε − 1

4π

[
E +

4π
3

P(3) + · · ·

]
. (66)

The electric displacement vector D is defined as

D = E + 4πP = E + 4πP(1) + 4πP(3) + · · · . (67)

Substituting Eq. (66) into Eq. (67), we find that

D = εE + 4πPNLS, (68)

where

PNLS
= LLor(P

(3)
+ · · · ) (69)

is the nonlinear source polarization, introduced by Bloembergen [82].
Here LLor is the Lorentz local-field correction factor, given by Eq. (11)
in terms of the susceptibility ε of the medium.

Substituting expression (66) for the polarization P(1) into Eq. (64) for the
total polarization, we find that

P = χ (1)E + PNLS. (70)
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Substituting Eq. (63) for the local field into Eq. (65b) for the polarization
P(3) and dropping out the terms scaling with higher than the third power
of the electric field, we obtain

P(3) = 3Nγ (3)at |LLor|
2LLor|E|

2E. (71)

Substituting Eq. (71) into Eq. (69), and Eq. (69) into Eq. (70), we find the
total polarization to be

P = χ (1)E + 3Nγ (3)at |LLor|
2L2

Lor|E|
2E + · · · . (72)

Alternatively, the total polarization can be represented as a Taylor series
expansion with respect to the average electric field as

P = χE = χ (1)E + 3χ (3)|E|2E + · · · . (73)

Equating relations (72) and (73), we obtain

χ (1) = Nγ (1)at LLor (74a)

and

χ (3) = Nγ (3)at |LLor|
2L2

Lor. (74b)

By inspection of Eqs. (74a) and (74b), one can see that the linear optical
susceptibility scales as the first power of the local-field correction factor,
while the third-order nonlinear optical susceptibility scales as the fourth
power of the factor LLor. This extra power in the expression for χ (3) stems
from the nonlinear source polarization, Eq. (69). The physical implication
is that the presence of the nonlinear polarization modifies the linear
optical response of the material itself. Clearly, the influence of the local
field on the nonlinear optical response is much more significant than on
the linear properties, as it depends on the order of the nonlinearity.

5.2. Theoretical Predictions

5.2a. Maxwell Garnett Composite Geometry

A rigorous theoretical model for describing the third-order nonlinear
optical interactions in Maxwell Garnett composite material has been
developed by Sipe and Boyd in [30]. They consider a degenerate
third-order nonlinearity at the same frequency as that of the incident
field, such as the Kerr effect. They theoretically describe the cases in
which either or both host and inclusion materials exhibit the third-order
nonlinear optical response.

We follow the simplified representation used in Ref. [31] to display the
key result of the theory reported in [30] for the simplest case of the linear
host and nonlinear inclusions. In obtaining this result, the assumption
that the host and inclusion materials are isotropic and absorptionless is
made. We also assume that the inclusion material is centrosymmetric in
that it lacks even-order nonlinear susceptibilities, which implies that χ (3)i
is the lowest-order nonlinear susceptibility in such a material. As we are
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dealing with degenerate nonlinear interactions, we can operate in terms
of the slowly varying amplitudes of the electric field and polarization.

We can write the mesoscopic constitutive relation for the inclusions as

di = εi ei + 4πpNL
i , (75)

where the mesoscopic nonlinear polarization in the inclusion can be
expressed as

pNL
i = Ai(ei · e∗i )ei +

Bi

2
(ei · ei)e∗i . (76)

Here Ai and Bi are the constants specifying the nonlinear optical response
of the inclusion material. At the macroscopic level, Eqs. (75) and (76) take
the form

D = εeffE+ 4πPNL
eff (77)

and

PNL
eff = Aeff(E · E∗)E+

Beff

2
(E · E)E∗. (78)

Here εeff is the Maxwell Garnett effective dielectric permittivity given by
Eq. (15). Aeff and Beff characterize the overall nonlinear optical response
of the composite material. It can be shown [30] that for the case of a
nonlinearity in inclusions,

Aeff = fi

∣∣∣∣εeff + 2εh

εi + 2εh

∣∣∣∣2(εeff + 2εh

εi + 2εh

)2

Ai (79a)

and

Beff = fi

∣∣∣∣εeff + 2εh

εi + 2εh

∣∣∣∣2(εeff + 2εh

εi + 2εh

)2

Bi. (79b)

Equations (79) can be rewritten as

Aeff = fi|Li|
2L2

i Ai (80a)

and

Beff = fi|Li|
2L2

i Bi (80b)

in terms of the factor

Li =
εeff + 2εh

εi + 2εh
(81)

that enters Eq. (60), relating the mesoscopic electric field in an inclusion
to the macroscopic field in the Maxwell Garnett composite material.
Factor Li has thus the meaning of the local-field correction factor for the
inclusions in Maxwell Garnett geometry, and Eqs. (80) are in agreement
with the result of the previous paragraph, Eq. (74b) .

We emphasize that Li is not to be confused with the full local-field
correction containing both the influence of the local environment within
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Figure 17

Enhancement in the nonlinear coefficients Aeff and Beff as a function of
the volume fraction of the nonlinear inclusions embedded in a linear host.
Reproduced with permission from Fig. 3, Ref. [30]. Copyright 1992 by
the American Physical Society (http://link.aps.org/doi/10.1103/PhysRevA.46.
1614).

an inclusion and the structural contribution from the composite material.
In Subsection 4.2, we took into account both the local environment
and structural contributions when treating the local-field-corrected
small-signal gain coefficient. We did it there on purpose, to emphasize
that there are, in fact, two mechanisms contributing to the local field.
In this section, we restrict ourselves to accounting for the difference
between the mesoscopic field in a constituent of a composite material
and its macroscopic field, thus considering only the effect of composite
geometry on the local field.

To analyze the practical importance of Maxwell Garnett composite
materials with the nonlinearity in inclusions, we plot the ratios Aeff/Ai
and Beff/Bi, indicating an enhancement of the nonlinear coefficients,
as functions of the inclusion volume fraction for different values of
εi/εh [30] (see Fig. 17). The strength of the nonlinear interactions,
characterized by the coefficients Aeff and Beff, increases with the inclusion
volume fraction at a rate that is either more or less rapid than linear,
depending on the ratio of the dielectric permittivities of the inclusion and
host materials εi/εh. The reason for this behavior is the concentration of
the electric field in the component with the lower optical density. When
εi < εh, the field is concentrated in the nonlinear inclusion, and the
strength of the nonlinear interactions in this case is enhanced compared
with that in the case when εi > εh. However, it is clear from Fig. 17 that
the effective nonlinear coefficients can never be larger than those of the
pure inclusion material.

A different situation arises when the host is nonlinear and the inclusions
are linear. Due to the geometry of the Maxwell Garnett composite
materials, the electric field in the host is nonuniform, especially in the
regions around the inclusions, where it can be very large. Because of
the complexity of the electric field distribution, the expressions for the
effective nonlinear coefficients in this case are very complicated. We thus
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Figure 18

Enhancement in the nonlinear coefficient of the Maxwell Garnett composite
material with a nonlinear host as a function of the volume fraction of the linear
inclusions. Reproduced with permission from Fig. 4, Ref. [30]. Copyright 1992
by the American Physical Society (http://link.aps.org/doi/10.1103/PhysRevA.
46.1614).

do not present them here, referring the reader to the original paper [30]
for these expressions.

In Fig. 18, we show the enhancement of the effective nonlinear
coefficients of a Maxwell Garnett material with a nonlinear host and
linear inclusions, compared with the nonlinear coefficients of the
homogeneous host material, as a function of the inclusion volume
fraction at different values of the ratio εi/εh. Because of the large
concentration of the electric field in the vicinity of inclusions, it
is possible to achieve an enhancement of the effective nonlinearity
compared with that of the pure host material for the case when εi > εh.
It is remarkable that such an enhancement is achievable by an addition
of small amount of linear material to a nonlinear host.

Among the theories describing the nonlinear interactions in Maxwell
Garnett composite materials, we would also like to mention the work
by Gao et al. [83]. They developed a nonlinear differential effective
dipole approximation (NDEDA) to investigate an effective linear and
a third-order nonlinear susceptibility in a Maxwell Garnett composite
material with graded spherical inclusions dispersed in a linear host
material. For such inclusions, the linear and nonlinear optical properties
vary along the radius. The authors of [83] imitated the graded profile by
using a multishell construction. Taking into account local-field effects,
they derived expressions for the effective linear dielectric constant and
nonlinear susceptibility of such a composite material. They applied their
theory to investigate the surface plasmon resonant effect on the optical
absorption and optical nonlinearity enhancement.

A theoretical study of second-harmonic generation in a dilute suspension
of coated nanoparticles has been presented by Hui et al. [84]. The
authors consider a dilute suspension of coated spheres under the
assumption that only the coating material has a nonzero second-order
susceptibility describing the second-harmonic generation, while the host
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and core materials are linear. They found that even with a modest
choice of material parameters a significant enhancement of second-order
nonlinear susceptibility can be obtained at certain frequencies.

An alternative theoretical model of the nonlinear optical response of
Maxwell Garnett composite geometry was developed by Stockman
et al. [85]. Their theory is based on material-independent spectral
representation in the dipole approximation. They show that a strong
enhancement (up to four orders of magnitude) of the third-order
nonlinear susceptibility is possible in case of silver nanocomposite. They
point out that the previous theories, developed under the assumption
that the electric field in each inclusion is equivalent, are applicable only
in cases when the volume fraction of the inclusions is very low (fi ∼
10−3), because of strong fluctuations of the local field in the resonant
regions.

Recent theoretical studies include those on supercontinuum generation
in silica glass doped with silver nanoparticles [86] and on aqueous
colloids containing silver nanoparticles by Driben et al. [87]. Later, Driben
and Herrmann also predicted that it is possible to achieve solitary
wave propagation over five soliton periods in silica glass containing
silver nanoparticles [88] despite the high plasmonic loss. The same
group studied the effective linear and nonlinear optical properties of
Maxwell Garnett composite materials comprising silver nanoparticles of
various shapes and sizes dispersed in a linear host [89]. Another recent
theoretical work [90] is devoted to the study of the linear and nonlinear
optical properties of a dense array of metal nanoparticles as functions
of interparticle separation. In all of these situations, a combined effect of
surface plasmon resonance and strong field localization are responsible
for the largely enhanced nonlinear interactions.

5.2b. Layered Composite Geometry

In [32], Boyd and Sipe theoretically describe some nonlinear optical
effects, such as second-harmonic generation, electro-optic effect, and
the nonlinear index of refraction, in the layered composite geometry.
Similarly to the linear optical properties, the nonlinear optical sus-
ceptibilities are affected by the local-field effects much more strongly
when the electric field and polarization components are perpendicular
to the layers. As we have already shown in Subsection 4.2, a significant
enhancement of the small-signal gain coefficient is achievable in this
case. As has been shown in [32], an even larger enhancement is possible
in the nonlinear optical regime.

Assuming that a layered composite material possesses a second-order
nonlinearity in both components a and b, given by χ

(2)
a = χ

(2)
a (2ω =

ω + ω) and χ
(2)
b = χ

(2)
b (2ω = ω + ω), and considering only the

components of the electric field, polarization, and susceptibility tensor
that are perpendicular to the layers, one can arrive at the expression

χ
(2)
eff (2ω = ω + ω)= fa

[εeff(ω)]
2εeff(2ω)

[εa(ω)]2εa(2ω)
χ (2)a

+ fb
[εeff(ω)]

2εeff(2ω)

[εb(ω)]2εb(2ω)
χ
(2)
b (82)
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for the effective second-order susceptibility of the layered composite
material. Recall from Eq. (58) for the mesoscopic electric field in layers
a the local-field correction factor

La =
εeff

εa
. (83)

Similarly, Lb = εeff/εb for layers b. One thus can rewrite Eq. (82) as

χ
(2)
eff (2ω = ω + ω) = fa [La(ω)]

2La(2ω)χ (2)a + fb [Lb(ω)]
2Lb(2ω)χ

(2)
b . (84)

This result is in agreement with Eq. (74b): if n is the order of the
lowest-order nonlinearity in the medium, then the effective susceptibility
associated with this nonlinearity scales as the n + 1 power of the
local-field correction factor.

A similar result can be obtained for the Kerr nonlinearity, if one
assumes that both the components of the layered composite materials
are centrosymmetric (lack even-order nonlinear interactions):

χ
(3)
eff (ω = ω + ω − ω) = fa|La|

2L2
a χ

(3)
a + fb|Lb|

2L2
b χ

(3)
b . (85)

Here χ (3)a = χ
(3)
a (ω = ω + ω − ω) and χ (3)b = χ

(3)
b (ω = ω + ω − ω) are the

third-order nonlinear susceptibilities, describing the nonlinear refractive
index (Kerr effect) in bulk materials a and b.

In Fig. 19, we show the enhancement of the second-order nonlinear
susceptibility for the second-harmonic generation process in a layered
composite material as a function of fa under the assumption that only
the constituent a responds nonlinearly to the external optical field for
different ratios εb/εa. Clearly, a significant enhancement is achievable for
the cases when the dielectric constant of the linear component is larger,
so that the electric field is concentrated in the nonlinear component.
The same type of behavior can be observed in Fig. 20, where we show
the third-order effective nonlinear susceptibility for the Kerr effect,
assuming once again that only component a exhibits a nonlinear optical
response. The enhancement in this case is even more significant, as
the effective susceptibility scales as the fourth power of the local-field
correction factor [see Eq. (85)].

Other theoretical studies of layered composite geometry include investi-
gation of the effective linear and third-order nonlinear susceptibilities
of graded metal films [91]. The authors of [91] found that in graded
films the surface plasmon resonances are significantly broader, which
makes such layered composite materials more suitable for the nonlinear
optical applications. As it is easier in practice to fabricate multilayer
metallic films than graded films, the same authors later investigated
the enhancement of the nonlinear optical response in a multilayer
metal composite material [92]. They have shown that there is a gradual
transition from sharp resonant peaks to continuous bands with an
increase in the number of layers (See Fig. 21). For a sufficiently
large number of layers, the surface plasmon resonances become
indistinguishable from those of a graded composite material. As a
result, a large enhancement of the third-order nonlinear susceptibility
is achievable in these more easily realizable structures.

Advances in Optics and Photonics 4, 1–77 (2012) doi:10.1364/AOP.4.000001 46



Figure 19

Enhancement in the nonlinear susceptibility describing second-harmonic
generation in a layered composite material as a function of the volume fraction
of component b under the assumption that only component a possesses the
nonlinear optical response. Reproduced from Fig. 4, Ref. [32] (http://dx.doi.org/
10.1364/JOSAB.11.000297).

Figure 20

Enhancement in the nonlinear susceptibility describing the nonlinear refractive
index in a layered composite material as a function of the volume fraction
of component b under the assumption that only component a possesses the
nonlinear optical response. Reproduced from Fig. 6, Ref. [32] (http://dx.doi.org/
10.1364/JOSAB.11.000297).

In [93,94], Zheltikov derived and analyzed mixing rules in layered and
Maxwell Garnett composite geometries. He showed that it is possible
to manage group-velocity dispersion in nanocomposite materials to
achieve phase-matched nonlinear interactions by manipulating the
volume fraction, the size of the nanograins, and their dielectric
properties. This result is especially important for nonlinear interactions
with femtosecond laser pulses, as the group-velocity dispersion becomes
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Figure 21

N

N N

NNN

Enhancement of the third-order nonlinear susceptibility in a multilayer metal
composite material as a function of the normalized incident angular frequency
for different numbers of periods, as marked on the graph (solid curves). Dashed
curves, χ (3) enhancement for graded metal films. Reproduced with permission
from Fig. 2, Ref. [92]. Copyright 2006, American Institute of Physics (http://
link.aip.org/link/doi/10.1063/1.2175477).

especially significant and can lead to a large phase mismatch between the
interacting waves.

5.2c. Bruggeman Composite Geometry

The nonlinear optical response of the Bruggeman composite geometry,
which is a random mixture of two or more constituents, has been
theoretically investigated by Zeng et al. [42]. The resulting expression
for the effective third-order susceptibility characterizing the Kerr effect
is given by

χ
(3)
eff =

1
fa

∣∣∣∣∂εeff

∂εa

∣∣∣∣ (∂εeff

∂εa

)
χ (3)a , (86)

where the effective dielectric permittivity is given by Eq. (16). The
corresponding enhancement in the effective third-order susceptibility
under the assumption that the nonlinearity is present only in component
a is shown as a function of fa in Fig. 22. The Bruggeman composite
geometry better describes randomly intermixed dielectric constituents
with volume fractions significantly larger than the fraction of inclusions
in the Maxwell Garnett geometry. When the volume fractions of the two
constituents become comparable, the electric field localization becomes
less pronounced, and the enhancement of the effective nonlinear
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Figure 22

Enhancement of the third-order nonlinear susceptibility in a Bruggeman
composite material as a function of the volume fraction of the nonlinear
component a. Reproduced from Fig. 2, Ref. [37] (http://dx.doi.org/10.1364/
JOSAB.14.002310).

susceptibility decreases. This could be the reason for the smaller
enhancement of the nonlinear susceptibility predicted by the Bruggeman
model compared with that given by the Maxwell Garnett model for the
case of a nonlinear host material (see Fig. 18).

When the volume fraction of one of the constituents reaches ∼30%,
percolation can occur. In this regime, the nature of the optical properties
of the material changes dramatically. Unlike Maxwell Garnett theory,
the Bruggeman model can accurately describe this regime [45]. On the
other hand, the Bruggeman model cannot be applied to metal–dielectric
composite materials, as it does not account for surface plasmon
resonances.

A theoretical study of third-harmonic generation in a random composite
material is also reported by Hui et al. [95]. They consider the combined
contributions of the direct third-order and cascaded second-order sus-
ceptibilities and present a full tensor treatment of the resulting effective
third-order susceptibility associated with third-harmonic generation.
The use of the Bruggeman theory allowed them to study both local-field
effects and percolation in a system of randomly intermixed linear and
weakly nonlinear constituents.

In [96], Saarinen et al. study a degenerate third-order nonlinear sus-
ceptibility enhancement in Maxwell Garnett and Bruggeman composite
geometries based on a nonlinear host and high-index linear spherical
inclusions. To add practical value to their studies, they choose highly
nonlinear polymers, such as polythiophene (PT10) and polysilane
(PDHS), as the host materials. The nanoparticles are assumed to be TiO2
spheres that have a negligible third-order nonlinearity compared with
that of the polymers. The authors of [96] treat systems with smaller
nanoparticle volume fractions as a Maxwell Garnett composite geometry
while using Bruggeman effective-medium theory to describe larger
volume fractions. They demonstrate that up to twofold enhancement
of the third-order nonlinear susceptibility is achievable in the Maxwell
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Figure 23

Nonlinear absorption in a gold nanoparticle colloid mixed with a solvent
containing the nonlinear organic molecules. Different curves correspond to
different volume fractions of the gold nanoparticles. Reproduced from Fig. 4,
Ref. [35] (http://dx.doi.org/10.1364/JOSAB.14.001625).

Garnett regime of lower volume fraction. The Bruggeman model resulted
in a peak enhancement of 1.5 at a nanoparticle volume fraction fi = 0.3.
The material system studied in [96] can be easily produced.

5.3. Experimental Studies

Most of the experiments on measuring the nonlinear optical properties of
composite materials involve metal nanoparticles dispersed in dielectric
hosts. It is possible to observe a dramatic enhancement of the nonlinear
optical response in such composite materials that is due to a strong
electric field localization combined with surface plasmon resonances.
In [35], Smith et al. report the cancellation of photoinduced absorption
by addition of small amount of gold nanoparticles to a nonlinear
host material. Gold colloids were diluted to achieve different volume
fractions of the gold nanoparticles and were added to a solvent
containing nonlinear organic molecules. Even though the nonlinear
absorption was positive for both the pure solvent and the gold colloids, a
range of positive and negative absorption coefficients could be obtained
by varying the gold content (see Fig. 23). At the surface plasmon
resonance, the local-field correction factor becomes nearly imaginary for
a host without significant linear absorption: L ≈ 3ε′h/iε

′′

i . (Here prime and
double prime indicate the real and imaginary parts of the susceptibilities,
respectively.) Under these conditions, L2 < 0 at some volume fractions,
and the sign reversal in χ (3)eff of the composite material becomes possible.

Later Piredda et al. demonstrated a sign reversal of the nonlinear
absorption coefficient in a gold-silica composite with gold volume
fractions as high as 0.55 [97]. They found that the composite material
acts as a saturable absorber at all gold volume fractions, even though
gold itself is an optical limiter. They concluded that the nature of the
local-field enhancement for higher volume fractions of the nanoparticles
is the same as for the lower volume fractions [35].
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Figure 24
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(a), (b) Transmission electron microscopy images of silver nanoparticles. (c)
Closed-aperture Z-scan traces of suspensions of silver nanoparticles in CS2.
Different curves correspond to different volume fractions of the nanoparticles,
ranging between 0 and 4.0 × 10−5, bottom to top. Reproduced from Figs. 1
and 3, Ref. [98] (http://dx.doi.org/10.1364/JOSAB.22.002444).

Cancellation of photoinduced absorption α2 and sign reversal of the
nonlinear refractive index n2 have been observed in [98] in suspension
of silver nanoparticles in carbon disulfide CS2 (see Fig. 24). Due to the
high nonlinearity of CS2, the local-field enhancement factor contained a
real part along with an imaginary part. As a result, the cancellation of α2
and sign reversal of n2 were due to counteraction of the nonlinearities of
CS2 and silver. Nevertheless, the local-field enhancement was significant
in this case, and the generalized Maxwell Garnett model [30] was applied
for theoretical description of the experimental measurements.

Ultrafast low-power all-optical switching has been experimentally
realized in a photonic crystal based on a nanocomposite material
consisting of silver nanoparticles in a π -conjugated polymer [99].
Enhanced ultrafast optical nonlinearity has been studied in anodized
aluminum oxide nanostructures as a function of the pore number density
and pore diameters [100]. A strong enhancement of the third-order
susceptibility has been observed in an array of rectangular gold
nanoparticles and attributed to a strong electric field localization [101].
Various reports on enhancement of the third-order nonlinearity in metal
nanoparticle composites due to strong electric field localization have
been presented [102–105].

Layered composite materials are relatively easy to fabricate. As an
example, a simple spin-coating procedure can be used for this purpose.
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Figure 25

Enhancement in the third-order susceptibility describing the nonlinear refractive
index in a layered composite material as a function of the volume fraction of
component b under the assumption that only component a exhibits a nonlinear
optical response. Reproduced with permissions from Fig. 1, Ref. [36]. Copyright
1999 by the American Institute of Physics (http://link.aip.org/link/doi/10.1063/
1.123866).

This technique was utilized by Fischer et al. in [34] to produce a
layered composite material comprising the conjugated polymer PBZT
and titanium dioxide. The nonlinear optical response of TiO2 is negligible
compared with that of the polymer, while its refractive index is
significantly higher. As a result, a 35% enhancement of the nonlinearity
in the composite material was observed compared with that of the pure
polymer.

An even larger enhancement, up to 3.2 times, was reported in the
electro-optic response of a layered composite material by Nelson and
Boyd in Ref. [36]. The composite material comprised alternating layers of
barium titanite and polycarbonate containing a third-order nonlinear op-
tical organic dopant. The corresponding effective third-order nonlinear
susceptibility enhancement as a function of the polycarbonate is shown
in Fig. 25.

A sign reversal in both the nonlinear refractive index n2 and
two-photon absorption coefficient α2 has been demonstrated in layered
composite materials based on gold nanoparticles embedded in BaTiO3
matrices [106] (see Fig. 26). Two films with equal gold volume fractions
but different nanoparticle sizes and shapes exhibited a simultaneous
sign change in real and imaginary parts of the third-order nonlinear
susceptibility.

In [37], Gehr et al. report measurements of the effective linear
and nonlinear refractive indices of a porous-glass-based Bruggeman
composite material. The porous grass matrix is a silica structure with
pore dimensions of approximately 4–6 Å. It is a typical example of
Bruggeman composite geometry because of the relatively large (∼28%)
void volume fraction and because of the arbitrary shape of the voids.
The matrix was filled with different fluids with refractive indices ranging
between 1.32 and 1.78. The nonlinear refractive index was measured
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Figure 26
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(a), (c) Transmission electron microscopy images of Au in BaTiO3 films with
the nanoparticle sizes 15–20 nm and 2–3 nm, respectively. (b), (d) Closed- (top)
and open-aperture (bottom) Z-scan traces of the samples shown in (a) and (c),
respectively. Reproduced with permission from Figs. 1, 4, and 5, Ref. [106].
Copyright 2003 by the American Institute of Physics (http://link.aip.org/link/
doi/10.1063/1.1625082).

by using the closed-aperture Z-scan technique [107]. Good agreement
between the measurements and Bruggeman theory was achieved.

In [108], Coso et al. studied the third-order nonlinear susceptibility of
a composite material consisting of Cu nanoparticles in an amorphous
Al2O3 matrix at Cu volume fractions fCu in the range between 0.07
and 0.45. The Maxwell Garnett model has been shown to describe the
experimental data in the regime of the linear growth of χ (3)eff at 0.07 ≤
fCu ≤ 0.2 (Fig. 27, Regime I). In the range of volume fractions 0.2 ≤
fCu ≤ 0.35, χ (3)eff undergoes a sharp increase (see Fig. 27, Regime II). The
failure of the Maxwell Garnett model in that range can be attributed to
the fact that the inclusions start interacting with each other, which gives
rise to a strongly inhomogeneous electric field. The Bruggeman model
[Eq. (86)], however, fails in that range as well, as it is not capable of
describing the resonant behavior of the susceptibility in the vicinity of
the surface plasmon resonance. A giant enhancement, up to a factor of
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Figure 27

2.0

1.5

1.0

0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5

pnp

Regime I Regime II Regime III

MGef
f

Absolute value of the effective third-order nonlinear susceptibility of a
composite material containing Cu nanoparticles embedded in amorphous Al2O3.
Three regimes of χ (3)eff behavior are observable in the graph, as marked.
Reproduced with permissions from Fig. 4, Ref. [108]. Copyright 2004 by the
American Institute of Physics (http://link.aip.org/link/doi/10.1063/1.1643779).

10, has been observed at that range of the volume fractions, while the
predicted enhancement of the effective third-order susceptibility, given
by the Bruggeman model, is only a factor of 2. Saturation behavior is
observed at fCu > 0.35 owing to a decrease of the local-field enhancement
in that range of volume fractions (Regime III in Fig. 27).

6. Cascaded Nonlinearity Induced by Local-Field
Effects

Local-field effects can give rise to new physical phenomena. For in-
stance, steady-state solutions to the local-field-corrected Maxwell–Bloch
equations indicate that it is possible to realize mirrorless optical bista-
bility [77,109–111]. Also, an additional inversion-dependent frequency
shift appears. In the case of homogeneous media, it is the well-known
Lorentz redshift [see Eq. (47)]. It has been experimentally measured in
the reflection spectrum of a dense alkali vapor [78,112]. The Lorentz
redshift can cause a pulse to acquire a dynamic chirp, which enables
solitons to form at a very low level of atomic excitation [113,114]. In a
collection of three-level atoms, local-field effects can lead to inversionless
gain and the enhancement of the absorptionless refractive index by
more than two orders of magnitude [115–118]. Successful experimental
attempts to realize this enhancement of the refractive index have been
reported [119,120].

A phenomenological approach to treating local-field effects in nonlinear
optics was proposed by Bloembergen [82]. He found that the local-field-
corrected second-order nonlinear susceptibility scales as three powers
of the local-field correction factor L. It has been widely understood that
Bloembergen’s result can be generalized to a higher-order nonlinearity,
and that the corresponding nth-order nonlinear susceptibility should
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scale as Ln+1 (see, for example, [81,121]). We have recently theoretically
shown [79] that Bloembergen’s approach, when consistently applied,
actually leads to a much more complicated form for the nonlinear
susceptibility. This is due to the presence of a cascaded nonlinear effect.

Cascading is a process in which a lower-order nonlinear susceptibility
contributes to higher-order nonlinear effects in a multistep fashion; it has
been a field of interest in nonlinear optics for some time. Macroscopic
cascading has a nonlocal nature, in that the intermediate field generated
by a lower-order nonlinearity propagates to contribute to a higher-order
nonlinear process by nonlinearly interacting with the fundamental
field [122–131]. Thus, it has been acknowledged that the experimentally
measured third-order susceptibility can include contributions propor-
tional to the square of the second-order susceptibility [122–124]. On the
other hand, it has also been shown that nonlinear cascading is possible
because of the local nature of the field acting on individual molecules
in the medium [124,132–137]. This local-field-induced “microscopic”
cascading does not require propagation and has a purely local character.

The fact that local-field effects create cascaded contributions of the lowest
order hyperpolarizability γ (2)at to the third-order susceptibility was first
demonstrated by Bedeaux and Bloembergen [132]. They presented a
general relationship between the macroscopic and microscopic nonlinear
dielectric response, obtained by neglecting pair correlation effects that
were later taken into account by Andrews et al. [136]. All the studies
conducted thus far have concentrated on treating the local cascading
contribution of γ (2)at to third-order nonlinear effects, which arises only
if the constituent molecules lack a center of inversion symmetry. We
have recently shown both theoretically [79] and experimentally [138]
that microscopic cascading effects can be significant in higher-order
nonlinearities and are present in any system with a nonlinear response
higher than lowest level.

In Subsection 6.1, we give a simplified theoretical description of how
local-field effects can induce microscopic cascading phenomenon in
high-order nonlinearities. We show how to properly apply Bloember-
gen’s approach to treat local-field effects in higher-order nonlinearities.
It becomes obvious that local-field effects can, indeed, give rise to a
microscopic cascading contribution of the lower-order hyperpolarizabil-
ities to higher-order nonlinear susceptibilities. In Subsection 6.2, we
review our experimental work on separating the influence of microscopic
cascading from the more-well-known macroscopic cascading, and we
show conditions under which microscopic cascading is the dominant
effect [138].

6.1. Theoretical Prediction of Microscopic Cascading

The straightforward generalization [81,121] of the Bloembergen’s result
to the case of the saturation effects [which are described by an odd-order
nonlinearity as χ (n) = χ (n)(ω = ω + ω − ω + · · · )] reads as

χ (n) = Nγ (n)at |L|
n−1L2, (87)

where γ (n)at is the nth-order microscopic hyperpolarizability (n 6= 1).
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We have shown, however, using Lorentz–Maxwell–Bloch equations and
accounting for the nonlinear optical interactions treated up to a fifth
order, that [79]

χ (1) = Nγ (1)at L, (88a)

χ (3) = Nγ (3)at |L|
2L2, (88b)

but

χ (5) 6= Nγ (5)at |L|
4L2. (88c)

Thus, the naı̈ve local-field correction in terms of L’s, Eq. (87), is in
disagreement with the correct result derived from the Maxwell–Bloch
equations.

To find the origin of this disagreement, we have addressed the problem
of treating the saturation up to the fifth order of nonlinearity [79] by
following the recipe suggested by Bloembergen [82], rather than using
the straightforward generalization given by Eq. (87). The approach can
be summarized as follows.

We consider the case of a homogeneous centrosymmetric medium with
the nonlinear optical interactions up to the fifth order, assuming that
the local field in the medium can be described by the Lorentz model.
Extending the treatment that we used in Subsection 5.1 to include the
fifth-order nonlinear interactions, we can write the total polarization as

P = P(1) + P(3) + P(5) + · · · , (89)

where

P(1) = Nγ (1)at Eloc, (90a)

P(3) = Nγ (3)at |Eloc|
2Eloc, (90b)

and

P(5) = Nγ (5)at |Eloc|
4Eloc. (90c)

Using Eq. (63) in Eq. (90a), we obtain

P(1) =
ε(1) − 1

4π

[
E +

4π
3

P(3) +
4π
3

P(5) + · · ·

]
. (91)

The electric displacement vector D is defined as

D = E + 4πP = E + 4πP(1) + 4πP(3) + 4πP(5) + · · · . (92)

Substituting Eq. (91) into Eq. (92), we find that

D = ε(1)E + 4πPNLS, (93)

where

PNLS
= L(P(3) + P(5) + · · · ). (94)
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Substituting expression (91) for the polarization P(1) into Eq. (89) for the
total polarization, we find that

P = χ (1)E + PNLS. (95)

Substituting Eq. (63) for the local field into Eqs. (90b) and (90c) for the
polarizations P(3) and P(5) and dropping out the terms scaling with
higher than the fifth power of the electric field, we obtain

P(3) = 3Nγ (3)at |L|
2L|E|2E

+

[
24πN2(γ

(3)
at )

2
|L|4L2

+ 12πN2
|γ
(3)
at |

2
|L|6

]
|E|4E (96a)

and

P(5) = 10Nγ (5)at |L|
4L|E|4E. (96b)

Note that P(3) contains terms proportional to the fifth power of the
electric field. Substituting Eq. (96) into Eq. (94), and Eq. (94) into Eq. (95),
we find the total polarization to be

P= χ (1)E + 3Nγ (3)at |L|
2L2
|E|2E

+ [24πN2(γ
(3)
at )

2
|L|4L3

+ 12πN2
|γ
(3)
at |

2
|L|6L

+ 10Nγ (5)at |L|
4L2
]|E|4E + · · · . (97)

Alternatively, the total polarization can be represented as a Taylor series
expansion with respect to the average electric field as

P = χE = χ (1)E + 3χ (3)|E|2E + 10χ (5)|E|4E + · · · . (98)

Equating Eqs. (97) and (98), we obtain

χ (1) = Nγ (1)at L, (99a)

χ (3) = Nγ (3)at |L|
2L2, (99b)

and

χ (5) = Nγ (5)at |L|
4L2
+

24π
10

N2(γ
(3)
at )

2
|L|4L3

+
12π
10

N2
|γ
(3)
at |

2
|L|6L. (99c)

Equations (99) for the local-field-corrected first, third, and fifth order
susceptibilities are now equivalent to those obtained by using the
Maxwell–Bloch approach [79]. Thus, two different approaches –
the Lorentz–Maxwell–Bloch equations and Bloembergen’s approach –
brought us to the same result for the local-field-corrected susceptibilities.
This is of course not surprising, since both approaches are just different
ways of implementing Bloembergen’s scheme.

The expressions for the local-field-corrected χ (1) and χ (3) do not display
any peculiarity, while Eq. (99c) for χ (5) deserves special attention.
The first term on the right-hand side of the equation is due to a
direct contribution from the fifth-order microscopic hyperpolarizability,
while the two extra terms come from the contribution of the

Advances in Optics and Photonics 4, 1–77 (2012) doi:10.1364/AOP.4.000001 57



third-order microscopic hyperpolarizability. These extra contributions
are a manifestation of local-field effects. We denote for convenience the
direct contribution to the fifth-order susceptibility as

χ
(5)
dir = Nγ (5)at |L|

4L2. (100)

Similarly, the sum of the second and third terms on the left-hand side
of Eq. (99c) (the microscopic cascaded contribution to χ (5)) can be
denoted

χ
(5)
micro =

12π
10

N2
[2(γ (3)at )

2
|L|4L3

+ |γ
(3)
at |

2
|L|6L]. (101)

Then the total local-field-corrected χ (5), which is the sum of the two
contributions, can be written as

χ (5) = χ
(5)
dir + χ

(5)
micro. (102)

As we pointed out above, the result obtained for χ (5) does not agree with
that predicted by a straightforward generalization of the Bloembergen’s
result given by Eq. (87). It is evident from Eqs. (87) and (99c) that
the generalization, Eq. (87), predicts only the direct term (the term
proportional to γ (5)at ) in the expression for the local-field-corrected χ (5)

and does not account for the cascaded contributions coming from the
third-order microscopic hyperpolarizability. We have shown in this
section that the cascaded terms arise from substituting the nonlinear
local field into expression (90b) for P(3). If we were limiting ourselves
to considering the third-order nonlinearity (i.e., the lowest-order
nonlinearity in our system), as we did in Subsection 5.1, we would have
obtained P(3) in the form of Eq. (71) instead of P(3) in the form of Eq. (96a).
Thus, one clearly cannot simply use the generalization, Eq. (87), to treat
nonlinearity of the order higher than the lowest order of the nonlinearity
present in the system of interest.

6.2. Experimental Evidence of Microscopic Cascading

In the previous section, we have shown how local-field effects can act as a
mechanism that leads to a cascaded microscopic nonlinear response [79].
In this section, we describe an experiment on separating the microscopic
cascaded contribution to the fifth-order nonlinear susceptibility from
the direct contribution. This is, to the best of our knowledge, the first
experiment of this kind, and it has been described in [138] only very
briefly. That is why, in this review, we present additional important
details.

It is clear from Eqs. (100) and (101) that χ (5)dir is proportional to the
molecular (or atomic) density N, whereas χ (5)micro is proportional to N2.
Hence, in order to experimentally separate the two contributions to
the fifth-order susceptibility, one should measure χ

(5)
dir and χ

(5)
micro as

functions of the molecular or atomic density. We have performed such a
measurement in a mixture of carbon disulfide (CS2) and fullerene (C60),
both of which are highly nonlinear materials.
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Figure 28
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Experimental setup for DFWM. Nd:YAG, 35-ps, 10-Hz, 532-nm Nd:YAG laser;
BS, beam splitter; P, prism (delay arm); M1–M5, directing mirrors; L, focusing
lens, Sample, 2-mm-long quartz cell containing a mixture of CS2 and C60.
Reproduced with permission from Fig. 1, Ref. [138]. Copyright 2009 by the
American Physical Society (http://link.aps.org/doi/10.1103/PhysRevLett.103.
113902).

Our experimental setup is based on a degenerate four-wave mixing
(DFWM) scheme [139] (see Fig. 28) that allows one to separate effects that
are due to different orders of nonlinearity. Two beams of equal intensity
at 532 nm from a frequency-doubled Nd:YAG laser producing 35 ps
pulses were sent into a 2 mm quartz cell containing a mixture of CS2 and
C60, and we observed self-diffraction phenomena (see the photograph in
Fig. 28). The first order of diffraction is a consequence of the third-order
nonlinear effect, while the second-order diffracted beam results from the
fifth-order nonlinearity.

We measured the intensities of the first- and second-order diffracted
beams for various concentrations of C60 in CS2. In order to correct
the nonlinear signals for the absorption present in the medium,
we measured the linear absorption coefficient α and multiplied our
nonlinear signal intensities by the factor (αl exp(αl/2)/[1 − exp(−αl)])2n,
where l is the length of the nonlinear medium and 2n + 1 is the
order of the nonlinearity. We also performed an open-aperture Z-scan
measurement [140] to account for the nonlinear absorption in our
samples. Extracting the values of the normalized transmission Tnorm
from the Z-scan measurements, we divided our nonlinear intensities
by (Tnorm)

2n+1. The third- and fifth-order nonlinear signal intensities,
corrected for the linear and nonlinear absorptions and plotted on a
logarithmic scale as functions of the incident beam intensity, displayed
slopes equal to 3 and 5, respectively (see Fig. 29).

The DFWM experiment yields the absolute values of the nonlinear
susceptibilities. In order to extract these values from the measured
intensities of the diffracted beams, we used the expression [141]

Is = |χ
(2n+1)
meas |

2I2n+1
(n0c

8π

)−2n( n0c

2πωl

)−2
|4(θ)|2, (103)

relating the measured intensity Is of the nonlinear signal to the
corresponding nonlinear susceptibility |χ (2n+1)

meas |. Here I1 and I2 are the
intensity of an incident beam, c is the speed of light in vacuo, n0 is
the refractive index of the medium, θ is the half-angle between the
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Figure 29
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Intensities of the first (green circles) and second (red squares) diffracted orders,
corresponding to χ (3) and χ (5) interactions, respectively, as functions of the
incident beam intensity plotted on a logarithmic scale. The lines are the
least-squares fits by a cubic (green dashed line) and fifth-order (red solid line)
polynomials.

interacting beams in the experiment, and 4(θ) is the phase mismatch
term normalized such that |4(0)| = 1. 4(θ) takes different forms for
different orders of nonlinearities. It is a purely geometrical factor not
depending on the molecular density N.

We normalized our measured nonlinear susceptibilities to the known
value of χ (3) for pure CS2, which is 2.2×10−12 esu [81] in order to extract
their values from the experimentally measured intensities.

In Fig. 30, we present typical measured |χ (3)| and |χ (5)4(θ)| as functions
of the molar concentration NC60 of C60. Here and below we do not
make an attempt to correct the values of χ (5) for the phase mismatch,
as we cannot precisely determine the value of 4(θ) in our experiment.
Possible sources of error include lack of precision in measuring the angle
between the interacting beams and imperfections in the geometry of
the experiment. We plot the product |χ (5)4(θ)|, as we can extract its
values from our experiment using Eq. (103) with good precision. CS2
and C60 have nonlinear responses of opposite signs, which is why both
the third- and fifth-order nonlinear susceptibilities in Fig. 30 decrease
with the increase of NC60 . It is clear from the graphs that |χ (3)| depends
on NC60 linearly, whereas |χ (5)| has a quadratic dependence due to
cascading. However, as we pointed out earlier in this section, the total
measured fifth-order susceptibility should also include the macroscopic
(propagational) cascaded contribution, that is,

|χ (5)| = |χ
(5)
LFC + χ

(5)
macro| = |χ

(5)
dir + χ

(5)
micro + χ

(5)
macro|. (104)

Both microscopic and macroscopic cascaded effects have a quadratic
dependence on the atomic density [132], and thus separating the
contributions of the two cascaded effects is not straightforward.
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Figure 30

Typical experimental data for (a) third-order and (b) fifth-order nonlinear
susceptibilities as functions of NC60 . The lines represent a least-squares fit with
a function (a) linear and (b) quadratic with respect to NC60 . Reproduced with
permission from Fig. 2, Ref. [138]. Copyright 2009 by the American Physical
Society (http://link.aps.org/doi/10.1103/PhysRevLett.103.113902).

In order to resolve the problem of identification of the microscopic
cascaded contribution, we solve the driven wave equation [81],

∇
2Ẽ −

ε(1)

c2

∂2Ẽ

∂t2
=

4π

c2

∂2P̃NL

∂t2
, (105)

for the direct and microscopic cascaded contributions to |χ (5)| and,
separately, for the macroscopic cascaded contribution. Here P̃NL(t) =
PNL exp(−iωt) = PNL

0 exp[i(kr − ωt)] denotes the nonlinear polarization.
The same kind of relationship is valid for the electric field amplitude:
Ẽ(t) = E exp(−iωt) = A exp[i(kr − ωt)]. The total fifth-order nonlinear
polarization consists of three contributions, corresponding to the direct
and the two cascaded mechanisms:

P(5) = P(5)dir + P(5)micro + P(5)macro. (106)

Here we dropped the temporal dependence, as we are dealing with
a frequency-degenerate nonlinear effect. Next we write the separate
contributions to the total P(5) in terms of the electric fields of the
interacting waves. After that, we separately substitute them into Eq. (105)
and solve it to obtain the corresponding contributions to the electric field
amplitude, generated by means of the fifth-order nonlinear process.

In order to illustrate how different contributions to the nonlinear signal
are generated, we present a phase matching diagram of our DFWM
experiment in Fig. 31. The fundamental electric waves “1” and “2,”
propagating at an angle 2θ with respect to each other, interact in the
nonlinear medium and produce the diffracted waves “3” and “5.” The
direct and microscopic cascaded contributions to |χ (5)| have the same
phase matching condition, as they both are intrinsic properties of the
nonlinear response on the molecular or atomic scale. However, it is not
possible to achieve full phase matching for these terms, as the nonlinear
process is degenerate. That is why it is more informative to present the
expression for the wave-vector mismatch for the direct and microscopic
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Figure 31

Phase matching diagram for generating the first and second diffracted waves
(“3” and “5,” respectively). “1” and “2” are the interacting fundamental waves.
ki are the k-vectors of the corresponding waves.

cascaded contributions to |χ (5)|, which is

1k5,dir = k5 − (3k1 − 2k2). (107)

Here k1 and k2 are the wave vectors of the fundamental interacting
beams and k5 is the wave vector of the generated fifth-order nonlinear
signal (see Fig. 31). The corresponding relationship between the
nonlinear polarization and the electric fields is

P(5)dir + P(5)micro = 10(χ (5)dir + χ
(5)
micro)E

2
1(E
∗

2)
2. (108)

Solving Eq. (105) for the nonlinear polarization given by Eq. (108), we
find the expression

A(5)dir + A(5)micro =
5π

3n2
0θ

2
(χ
(5)
dir

+χ
(5)
micro)A

3
1(A
∗

2)
2
[

exp
(

i
12ωn0

c
θ2l

)
− 1

]
(109)

for the amplitudes of the electric field, corresponding to the direct and
microscopic contributions to the fifth-order nonlinear signal.

The macroscopic cascaded term, which is a propagational contribution
of the generated third-order nonlinear signal to the fifth-order nonlinear
signal, results from a two-step process with the corresponding
wave-vector mismatches:

1k3 = k3 − (2k1 − k2); (110a)
1k5,macro = k5 − (k3 + k1 − k2). (110b)

The nonlinear polarization takes form

P(5)macro = 6χ (3)E1E∗2E3, (111)

where the electric field E3, generated through a χ (3) nonlinear
interaction, can be found from Eq. (105):

E(3) =
3π

2n2
0θ

2
χ (3)A2

1A∗2

[
exp

(
i
4ωn0

c
θ2l

)
− 1

]
exp(ik3r). (112)
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Using Eqs. (110), (111) and (112), we solve Eq. (105) to obtain the
relationship

A(5)macro =
35π2

8n4
0θ

4
(χ (3))2A3

1(A
∗

2)
2
{

1
3

[
exp
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i
12ωn0

c
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)
− 1

]
−

1
2

[
exp

(
i
8ωn0

c
θ2l

)
− 1

]}
(113)

for the macroscopic cascaded contribution to the fifth-order nonlinear
signal.

Inspecting Eqs. (109) and (113), one can see that the amplitudes of the
electric field of the direct and microscopic cascaded contributions have
a different dependence on the angle θ and the cell length l, compared
with that of the macroscopic cascaded term. In Fig. 32 we plot the
absolute values of the angular dependences of Eqs. (109) and (113),
normalized to unity at θ = 0, as functions of the angle θ . These
dependences characterize the efficiencies of the direct, microscopic, and
macroscopic cascaded contributions to |χ (5)|. The normalized efficiency
of the direct and microscopic cascaded contributions is shown as
the red solid curve, and the efficiency of the macroscopic cascaded
contribution is shown as the green dashed curve. As the efficiencies
are normalized, we cannot extract information about the relative values
of the contributions to the total measured |χ (5)|. However, the graphs
show the approximate positions of the minima and maxima of the
efficiencies. It is also important that the efficiency of the macroscopic
cascaded process decreases much more rapidly than that of the direct
and microscopic cascaded contributions with the increase of the angle
between the interacting beams. By measuring the third- and fifth-order
nonlinear signals at different angles between the interacting beams, it is
possible to discriminate between different contributions to |χ (5)|.

The macroscopic cascaded contribution to the total electric field
generated by the fifth-order nonlinear process is proportional to |χ (3)|2.
Hence, in our experiment |χ (5)macro| is equal to Cm|χ

(3)
|
2,where Cm is some

parameter independent of NC60 . Neglecting the direct and microscopic
cascaded contributions to the fifth-order susceptibility of pure CS2, as
their values do not change the dependence of |χ (5)| on NC60 , we can find
Cm from the value of |χ (5)4(θ)|/|χ (3)|2 evaluated at NC60 = 0. Then,
multiplying the concentration dependence of |χ (3)|2 by the value of Cm,
we find |χ (5)macro4(θ)|. We can estimate |χ (5)dir + χ

(5)
micro| from Eq. (104), and

find that |χ (5)| − |χ (5)macro| ≤ |χ
(5)
dir + χ

(5)
micro|.

We have measured the nonlinear susceptibilities at four values of the
angle between the interacting beams (marked in Fig. 32 with thick
vertical lines with the numbers on top). The results of the measurements
are presented in Fig. 33, where we plot the values of |χ (5)4(θ)| and
|χ
(5)
macro4(θ)| as functions of the C60 molar concentration.

For θ ≈ 0.3◦, corresponding to position 1 in Fig. 32, we observed
no difference between the |χ (5)4(θ)| and |χ (5)macro4(θ)| [see Fig. 33(a)].
This fact suggests that for this experimental geometry the macroscopic
cascaded contribution to |χ (5)| is much larger than the direct and
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Figure 32
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Efficiencies of the direct and microscopic cascaded contributions (red solid
curve) and the macroscopic cascaded contribution (green dashed curve) as
functions of the half-angle between the interacting beams. Vertical lines show
the experimental cases. Reproduced with permission from Fig. 3, Ref. [138].
Copyright 2009 by the American Physical Society (http://link.aps.org/doi/10.
1103/PhysRevLett.103.113902).

microscopic cascaded contributions. We repeated the measurement,
increasing the angle to 0.43◦ (position 2 in Fig. 32). The resulting
measured values of |χ (5)4(θ)| and |χ (5)macro4(θ)| are shown in Fig. 33(b).
One can see a clear difference between |χ (5)4(θ)| and |χ (5)macro4(θ)|.
This means that, together with the macroscopic cascaded contribution,
we observe the presence of other contributions to |χ (5)|, which are the
direct and microscopic cascaded terms. Taking a careful look at position
2 in Fig. 32, one can see that, compared with position 1, the curve
characterizing the efficiency of the macroscopic cascaded contribution
drops significantly, while the curve describing the efficiency of the
other two contributions decreases by a much smaller amount. This
observation explains why we were not capable of observing the direct
and microscopic cascaded contributions in |χ (5)| at position 1, but see
these contributions in the experimental data taken at position 2.

The angles corresponding to positions 3 and 4 in Fig. 32 are in close
vicinity to the minimum of the macroscopic cascading efficiency curve.
The corresponding results are presented in Figs. 33(c) and 33(d). The
large difference between |χ (5)4(θ)| and |χ (5)macro4(θ)| indicates that the
macroscopic cascaded contribution is not the dominant contribution
to |χ (5)|. Observation of positions 3 and 4 in Fig. 32 and the
corresponding data in Figs. 33(c) and 33(d) show a good correlation
between the efficiency curves and the experimental data. Indeed,
position 3 corresponds to the decrease of the macroscopic cascaded
contribution efficiency, and position 4 is very close to the minimum
of this curve, while the efficiencies of the direct and macroscopic
cascaded contributions are relatively high at these positions. As a result,
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Figure 33

Experimentally measured |χ (5)4(θ)| and |χ (5)macro4(θ)| as functions of NC60 .
The measurements are done at the angles between the interacting beams
corresponding to (a) position 1 in Fig. 32, (b) position 2, (c) position 3, and
(d) position 4. The least-squares fits to the experimental data are shown with
curves. Reproduced with permission from Fig. 4, Ref. [138]. Copyright 2009
by the American Physical Society (http://link.aps.org/doi/10.1103/PhysRevLett.
103.113902).

we observe a large difference between |χ (5)4(θ)| and |χ (5)macro4(θ)| in
Fig. 33(c), and an even larger difference in Fig. 33(d).

The data of Fig. 33(d) show that under these conditions the microscopic
cascaded term makes a very large contribution to |χ (5)|. Unfortunately,
we are not able to extract the precise value of this contribution from
our data because each of the contributions to the measured signal is
a complex quantity, and we do not know the relative complex phase
of each contribution. Instead, we assume that the relative complex
phases between the direct, macroscopic, and microscopic cascaded
contributions to |χ (5)| take arbitrary values in the range between 0 and
π . These relative complex phases include the phase mismatch, which
scales differently with the angle θ for χ (5)micro and χ

(5)
macro. We fit our

experimental data to the square root of a fourth-order polynomial with
respect to the molecular density N for different fixed values of the
relative complex phases. An example of the least-squares fit is shown
with lines in Fig. 4 for the case of zero phase difference. Our fit outcome
indicates that the values of the ratio between |χ (5)micro| and |χ (5)macro| are
in the range [1.75, 5.0]. The values falling into this range have the
smallest fit uncertainty (<30%). This shows that, under the conditions
of Fig. 33(d), the microscopic cascaded contribution is more significant
than the macroscopic cascaded contribution to |χ (5)|.
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7. Conclusions

With the growing importance of photonics in different areas, including
medicine, military, and science, there is a demand for new materials
with substantially improved optical properties. As the cost associated
with nanofabrication goes down, it becomes possible to explore
nanostructuring as the means for optimizing the optical performance of
various materials. The focus of this review paper was tailoring the optical
properties of laser and nonlinear optical materials by nanostructuring
and through local-field effects. Local-field effects arise as a result of the
change of the local electric field driving an atomic transition induced
by the neighboring atoms and molecules, and it is the local field that is
responsible for the optical properties of the medium. The contribution
to the local field at an emitter from its immediate neighbors can be
controlled by nanostructuring. We have shown how it is possible to
combine local-field effects and nanostructuring to effectively manipulate
the optical properties of composite materials.

We have given an up-to-date overview of the progress in theoretical
and experimental investigation of the influence of local-field effects
on the radiative lifetime in photonic materials. This topic has been
attracting much interest over the past two decades, as there have been
a few theoretical models that, at first glance, contradict one another.
The availability of experimental methods to verify the theoretical studies
triggered a number of experiments on measuring the radiative lifetimes
of photonic materials. The experimental outcomes and data analysis
frequently lead to ambiguous conclusions, however, and a large number
of attempts to reconcile the theories and to develop some physical
understanding sometimes brought up new confusions. That is why we
found it necessary to review the existing theories and experimental
studies with the emphasis on recent findings. We believe that our attempt
to compile a summary of research on the radiative transition rate in
dielectrics will help one to see that there is, in fact, much progress in
understanding the physics of local-field effects.

We also summarized recent work on modification of the basic laser
parameters by local-field effects and nanostructuring with emphasis on
small-signal gain. We have shown that the small-signal gain, radiative
lifetime, and saturation intensity can be controlled almost independently,
which gives some freedom in tailoring these properties for specific
applications. We have presented a method of theoretical treatment of the
small-signal gain coefficient in an arbitrary composite geometry. Here
we have emphasized that the action of the local field on the emitters in
composite materials is twofold: by the impact from the local environment
in the immediate vicinity of the emitter within the constituent where it
is embedded, and from the nanocomposite geometry. We gave examples
of applying the theory to the layered and Maxwell Garnett composite
geometries. We also demonstrated the conditions under which it is
possible to achieve an enhancement of the small-signal gain coefficient
compared with its value in a bulk constituent. We thus have shown that
the impact of local-field effects is significant not only in the nonlinear
optical regime, but in the linear optical regime as well.
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Local-field effects are especially significant in the nonlinear optical
regime, as the nonlinear optical response of photonic materials scales
with the local field strength according to a power law. It is thus possible
to achieve a significant enhancement of the nonlinear optical response
in a composite material compared with its bulk constituents by a
proper nanostructuring. We have summarized recent theoretical and
experimental studies of the nonlinear optical response in nanocomposite
materials of various geometries. More than tenfold enhancement
has been demonstrated both theoretically and experimentally in the
Maxwell Garnett composite geometry with a nonlinear host and layered
composite geometry. An enhancement predicted (and observed) in
Bruggeman composite materials is not as significant because the electric
field localization in such randomly intermixed structures is not as
strong. The enhancement is especially dramatic in metal–dielectric
nanocomposite materials, such as suspensions of metal nanoparticles
in a nonlinear host material and metal–dielectric films, because of
a combined effect of surface plasmon resonances and local-field
enhancement. Continuing effort in this research direction will bring
many more practical opportunities.

Owing to their obscure complex nature, local-field effects can give
rise to new, sometimes unexpected physical phenomena. One example
that we have discussed in detail in this review is local-field-induced
microscopic cascaded contribution of the lower-order nonlinearities to
higher-order nonlinear susceptibilities. We have shown, carefully apply-
ing Bloembergen’s prescription, how this effect appears in calculation
of the fifth-order nonlinear optical susceptibility. The equation obtained
for the local-field-corrected χ (5) contains not only an obvious term
coming from the fifth-order hyperpolarizability contribution (the direct
term), but also two extra terms, proportional to the second power of
the third-order hyperpolarizability. The two extra terms are induced
purely by local-field effects. This kind of cascaded contribution from the
lower-order hyperpolarizability to the higher-order nonlinear terms will
appear in high-order susceptibilities describing other nonlinear effects as
well.

Together with the fundamental interest in the microscopic cascading
effect, there is a practical significance for its detailed investigation.
Many studies in quantum information science require materials that can
respond to the simultaneous presence of N photons, as in N-photon
absorption. One more particular example of a potential application of
the high-order nonlinear response is in the context of quantum lithogra-
phy [142]. In particular, Boto et al. have suggested exposing an N-photon
absorbing lithographic material to the interference pattern created by
N entangled photons. They show that under certain conditions this
procedure would allow one to record a fringe pattern with a fringe
spacing N times smaller than the Rayleigh λ/2 limit. The field of
quantum information is thus in need of efficient multiphoton-absorbing
materials. Microscopic cascading allows one to synthesize higher-order
nonlinearities out of lower-order nonlinearities by means of local-field
effects, and therefore has potential application for the development of
high-order nonlinear optical materials.

We have presented a detailed description of an experimental demon-
stration of the presence of a local-field-induced microscopic cascaded
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contribution in the measured χ (5). This experiment was reported earlier
in [138], but some details of the data analysis were omitted for the sake
of brevity. As this experiment is, to the best of our knowledge, the first
study of this kind, we have included a more detailed description in
this review. We determined the conditions under which the microscopic
cascaded contribution is most significant. Even though it is sometimes
easier to implement the macroscopic cascaded process, there can be
situations in which this procedure is unaccessible. Further experimental
studies should help one to implement the microscopic cascaded effect for
achieving multiphoton absorption, which occurs locally, meaning that
the macroscopic cascaded effect is of no use for this phenomenon. The
experimental results reported here may thus constitute an important
first step in developing new nonlinear materials. A follow-up study
on third-order nonlinearity enhancement through the second-order
nonlinear cascaded contribution shows promising results [143].

When the interaction between the atoms of a material system is very
strong, mean-field theories break down, as the local field may no longer
be uniform at the scale of the optical wavelength. The contribution to
the local field at a particular atom from the neighboring atoms becomes
a dominant effect rather than a correction to the average field in the
medium. Then local field variation on a scale much less than λ is possible,
and it can lead to giant resonances and dramatic changes in the nature
of light–matter interaction in both linear and nonlinear optical regimes.
Such a subwavelength spatial modulation of polarization and local field
in 1D and 2D arrays of strongly interacting resonant atoms was recently
theoretically discovered by Kaplan and Volkov [144–146]. The resulting
phenomena include size-related resonances, local field enhancement and
suppression, “magic numbers,” and optical bistability. The potential
applications of these phenomena range from molecular computers to
biosensors and nanoelements for switching and logic [144]. These results
further prove that there exist many hidden treasures that local-field
effects have yet to offer, and research in this field will result in exciting
discoveries having large practical implications.
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