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a b s t r a c t

We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to
applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as
well as the actual electron-optical configuration used experimentally. We show that by optimizing our
nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching
3773%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be
produced with many visible rings, making them ideal for interferometric applications, or in more highly
localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune
beam localization in this way, and explore beam and hologram configurations that allow the con-
vergences and topological charges of electron Bessel beams to be controlled. We also characterize the
phase structure of the Bessel beams generated with our technique, using a simulation procedure that
accounts for imperfections in the hologram manufacturing process.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Electron vortex beams have recently drawn significant atten-
tion within the electron microscopy community, and have shown
great potential for a host of applications [1–3]. The OAM-carrying
capacity of free electron beams was highlighted in a seminal
theoretical paper by Bliokh [4], which precipitated considerable
experimental efforts directed toward the generation of structured
electron beams [5]. For example, electron vortex beams have re-
cently been produced with orbital angular momenta as large
as 200ℏ per electron; such beams show promise for potential
applications in magnetic measurement [6]. For this reason, a great
deal of effort has been expended in attempts to optimize the ef-
ficiency of vortex beam generation. In particular, holographic
elements have emerged as promising candidates for high effi-
ciency structured electron beam generation [7–12].

Holographic optical elements can allow electron beams to be
shaped by modulating the transverse phase and amplitude profiles
of incident electron waves with high precision. Amplitude
ze, Centro S3, Via G Campi
modulation of incident electron beams can be achieved by alter-
nating thick fringes made from opaque material with regions of
high transparency. By contrast, phase modulation is carried out by
varying the transverse thickness profile of a nearly transparent
material, so as to produce disparities in the electron-optical path
lengths experienced by different transverse components of the
incident beam [8,9].

Phase-modulating elements have already found a range of ap-
plications in electron microscopy [13–15]. Specifically, phase plates
can be used in transmission electron microscopy (TEM) to improve
the contrast of weak phase objects, or to compensate for spherical
aberration effects [16]. Attempts have also been made to produce
phase plates for scanning transmission electron microscopy
(STEM), in one case resulting in a Fresnel lens analogous to zone
plate lenses for X-rays [17]. However, these types of lenses pose a
significant nanofabrication challenge.

Beyond the examples mainly focused on vortex beams, rela-
tively little work has been done with a view to shaping electron
beams using holographic elements [8,11,12], and still less with
reference to specific practical applications. This is not to suggest
that this area is entirely unexplored; studies have previously in-
vestigated silicon nitride (Si3N4) as a candidate holographic ma-
terial for electron beam shaping, for its low electron-optical den-
sity, and its ability to modify the beam phase directly on axis [18].
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However, no medium, no matter how transparent, can ever act as
a perfect phase plate, since atoms in the material always produce
inelastic or high-angle scattering that can, in essence, be treated as
absorption and/or as loss of coherence, especially in the forward
direction. This scattering, along with the limited control that can
be exerted over the phase induced in an oncoming beam, can re-
present a significant hindrance to the use of on-axis phase holo-
grams, producing a “frosted glass” effect, and blurring of the
transmitted beam, and a reduction in its quality [19]. The use of
Si3N4 holograms for on-axis electron beam shaping faces another
drawback, in that it requires that thickness modulations be applied
with precisions on the nanometer scale, a significant challenge
even for state-of-the-art nanofabrication techniques.

In this sense, the introduction of off-axis amplitude holograms
can be considered a significant development. These holograms,
which consist of a modulated diffraction grating, benefit from the
absence of unwanted scattering from their transparent regions by
alternating fully absorbing and fully transparent fringes. A second
advantage to this approach is that the phase imprinted on the
incident wavefront is encoded in the transverse grating profile,
and is therefore readily controlled, even when imperfect manu-
facturing techniques are employed. This technique does suffer
from an important drawback, however, in that it typically results
in low-efficiency generation of the desired output beam. Recently,
we introduced off-axis phase holograms that allow this limitation
to be overcome, theoretically reaching efficiencies as large as 100%
[8,9]. Here, we report a detailed study of electron Bessel beam
generation using this technique.

Bessel beams are widely used in photonics, and have recently
been discussed theoretically in the context of a number of electron
microscopy applications. In the ideal case, Bessel beams possess a
propagation-invariant profile, and are therefore referred to as
diffraction-free modes (see the discussion in Section 3). These
beams hold great promise for their ability to reduce channeling
[20], to control aberrations and their potential applicability to new
imaging modes, as well as for the generation of optical tractor
beams, and other exotic applications. Apart from their wide range
of potential applications, Bessel beams have also drawn con-
siderable interest on theoretical grounds, for their unusual prop-
erties [21].

Notably, electron beams of approximately Bessel form have
been generated using on-axis techniques such as hollow cone il-
lumination [22,23]. However, electron beams generated in this
way suffer from large intensity losses due to the partial blocking of
the beam required by the technique. Still more critically, this
strategy does not allow for the modification or control of key beam
parameters, such as topological charge and convergence.

Here, we report a detailed study of the first off-axis Fresnel
phase hologram to generate electron Bessel beams [8], and ex-
amine: 1) the conditions under which Bessel beams can be gen-
erated and applied to microscopy and imaging; 2) techniques by
which key beam and hologram parameters, including topological
charge, transverse wavenumber, and hologram aperture radius can
be adjusted; and 3) the main practical limitations of electron
Bessel beam generation.
2. Holographic generation of structured electron beams

Holographic plates can be used to confer spatial structure upon
arbitrary electron beams with high efficiency. These devices are
fabricated by inducing spatially varying changes in the optical
thickness and transmittance of a material, and therefore amount
to optical phase and amplitude masks. When an incident plane
wave is transmitted through such a mask, it gains a position-de-
pendent phase φ ρ ϕ∆ ( ), relative to a reference wave having
traveled an identical distance in vacuum, and experiences a spatial
amplitude modulation ρ ϕ( )A , , such that the mask may be de-
scribed by a transmittance

ρ ϕ ρ ϕ( )= ( ) ( )φ ρ ϕ∆ ( )T A e, , 1i ,

where ρ ϕ z, , are the standard cylindrical coordinates. The trans-
verse wavefunctions ψ ρ ϕ( ),in and ψ ρ ϕ( ),tr , respectively corre-
sponding to the incident and transmitted beams, are then related
by ψ ρ ϕ ρ ϕ ψ ρ ϕ( )= ( ) ( )T, , ,tr in . Three nontrivial classes of holograms
may be distinguished, with reference to Eq. (1). First, phase holo-
grams are those for which φ ρ ϕ∆ ( ), exhibits a spatial dependence,
while the hologram’s amplitude modulation function is spatially
constant, i.e. ρ ϕ( )=A A, 0. By contrast, amplitude holograms induce a
spatially varying amplitude modulation, but produce a spatially
constant phase in the incident beam, so that φ ρ ϕ φ∆ ( )=∆, 0. Finally,
mixed holograms are characterized by spatially varying phase and
amplitude modulations, so that neither ρ ϕ( )A , nor φ ρ ϕ∆ ( ), is
spatially constant for these masks.

In what follows, we shall restrict our attention to phase holo-
grams, which may in general be associated with a transmittance

ρ ϕ( )= φ ρ ϕ∆ ( )T A e, i
0

, . Physically, the phase modulation φ ρ ϕ∆ ( ), is
induced in the incident beam due to the mean inner potential

ρ ϕ( )V z, , of the material from which the holographic mask is
constructed. This potential results in the addition of an energy
term ρ ϕ( )e V z, , to the total Hamiltonian governing the time
evolution of the electron beam in the material, resulting in a phase
shift of the transmitted beam, relative to a reference wave having
traveled the same distance in vacuum. From the general solution
to the relativistically corrected Schrödinger equation, this phase
shift is found to be

∫φ ρ ϕ ρ ϕ∆ ( ) = ( ) ( )
ρ ϕ( )

C V z dz, , , , 2E

t

0

,

where ρ ϕ( )t , is the variation in the thickness of the hologram as a
function of position in the transverse plane, and = π

λ
+

( + )
CE

e E E
E E E

2
2

0

0
is a

constant for a particular electron kinetic energy E , rest energy E0,
and λ de Broglie wavelength. In our case, the inner potential of the
phase mask may be approximated by its mean value, V0, such that
[24,25]

∫φ ρ ϕ ρ ϕ∆ ( ) ≈ = ( ) ( )
ρ ϕ( )

C V dz C V t, , . 3E

t

E0
0

,

0

Hence, an arbitrary transverse phase profile can be imprinted
on the incident beam, provided that variations in the local phase
mask thickness ρ ϕ( )t , can be controlled with sufficient precision.
3. Generation and propagation of Bessel beams

We shall now focus our attention specifically on the generation
of electron Bessel beams, which are described by scalar wave-
functions of the form

( ) ( )ρ ϕ ρΨ( ) = ( )ρ
ϕ − ℏ −z t J k e e, , ; , 4n

in i E t k z/ z

where Jn represents an nth order Bessel function of the first kind, n
is an integer, ρk and kz are respectively the wavefunction's trans-
verse and longitudinal wave vector components ℏ; is the reduced
Plank constant. These beams carry an amount of orbital angular
momentum (OAM) along their propagation direction given by

= ℏL nz per electron, as indicated by the presence of a phase term
ϕein in the expression (4).
The generation of a Bessel beam necessarily entails imprinting

a phase of the form φ β ρ ϕ∆ = = +ρk n onto the incident wave-
function (see Appendix I). This is equivalent to imposing a conical
wavefront on the electron beam [26], and can be achieved by
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choosing a phase hologram with transmittance ρ ϕ( )= βT A e, i
0 . An

additional grating term ρ ϕ=k x k cosx x , where = π
Λkx
2 and Λ is a

grating constant, can also be introduced to β for later convenience,
so that

β ρ ϕ= + + ( )ρk n k x. 5x

A functionally identical hologram, for which the imprinted
phase becomes φ β π∆ = ( )Mod , 2 , where ( )a bMod , represents the
remainder obtained when dividing a by b, would be equally well-
suited to generating Bessel beams. We refer to this latter phase
mask, in which ρ ϕ( )= β π( )T A e, i

0
Mod ,2 , as a blazed hologram. Al-

though blazed holograms are optimal from the standpoint of
maximizing the efficiency of Bessel beam generation, they are
difficult to produce in practice due to the finite resolution of ex-
isting fabrication techniques, which make use of a limited number
of imprinted pixels to produce phase masks. As a result, the ideal
blazed holograms must often be approximated by alternative
configurations. In particular, by choosing the experimentally
achievable phase imprint function φ φ β∆ = ( )cos0 , Bessel beams
may be generated without prohibitively low efficiency. Phase
masks of this form are referred to as sinusoidal (or cosinusoidal)
holograms. From Eq. (3), we note that in this case
φ β β( )= ( )C V tcos E0 0 , so that in practice, these holograms can be

produced by inducing (co-) sinusoidal variations β β( )=t t cos1
2 0 in

the mask thickness, where t0 is the peak-to-valley thickness of the
holographic material. Sinusoidal holograms are characterized by
transmittance functions of the form

ρ ϕ( ) = ( )φ β( )T A e, . 6i
0

cos0

Hence, the wavefunctions associated with the incident and
transmitted electron beams are related by
ψ ρ ϕ ψ ρ ϕ( )= ( )φ β( )e, ,tr

i
in

cos0 . The Jacobi–Anger expansion may be
applied to the exponential term to obtain

φ= ∑ ( )φ β β( )
=−∞

∞e i J ei
m

m
m

imcos
00 , where m is an integer, so that upon

substitution of Eq. (5),

∑ ( )ψ ρ ϕ ψ ρ ϕ φ( ) = ( ) ( )
( )

ρ ϕ

=−∞

∞
+ +ρi J e, , .

7
tr in

m

m
m

im k n k x
0

x

For the case of a planar incident electron wavefunction of the
form ρ ϕΨ ( )= − ( ℏ − )z;t e, ,in

i E t k z/ z , we have ψ ρ ϕ( )=, 1in , and therefore
one obtains for the total transmitted wavefunction

∑ ( )( )ρ ϕ φΨ ( ) = ( )
( )

ρ ϕ− ℏ −

=−∞

∞
+ +ρz t e i J e, , ; .

8
tr

i E t k z

m

m
m

im k n k x/
0

z x

Each term in the above expansion contains a component
= π

Λe eim k x i xx
m2

, so that the transmitted wavefunction consists of an
infinite number of diffracted beams, spaced apart at angles θ =mm

k
k
x

where k is electron wavenumber. We refer to m as the order of
diffraction, and note that the mth-order diffracted beam will carry
an OAM of ℏmn , and will be characterized by a conical phase front
∝ ρρeim k . Further, the transmitted electron beamwill be split among
the various diffraction orders, with the mth order receiving a
fraction φ( )Jm 0

2 of the total transmitted intensity.
The most relevant example is that of the first diffracted order,

for which the intensity is given by

φ= ( ) ( )I J . 91 1 0
2

This intensity is maximized for φ ≈1.840 , at the first maximum
of J1. The corresponding peak to valley phase difference is 3.68,
close to the value of π for which rectangular gratings are optimal.

In general, maximally efficient generation of the beam asso-
ciated with the mth diffraction order would therefore require that

a value of φ0 be chosen such that φ( )Jm 0
2 be maximized.
Immediately after the hologram (in the assumption of plane wave
illumination and an unbounded hologram), the wavefunction as-
sociated with the mth diffracted beam takes the form

( )( )ρ ϕΨ ( )∝ ρ ϕ+ + − ℏρz;t e, ,tr
m i m k n k z E t/z , where the z axis is now taken to

lie along the propagation direction of the particular diffraction
order in question.

While the electron wavefunction ρ ϕΨ ( )z;t, ,tr
m does not take the

form of a Bessel function immediately after the holographic mask,
it can be shown (see Appendix I and Ref. [26]) to take on Bessel
character within a range of propagation distances given by ≤

ρ
z kR

mk
,

where R is the radius of the aperture limiting the hologram. In this
region, we have for the transverse wavefunction

( )ψ ρ ϕ ρ( ) ≈ ( )
ρ ϕ

ρ

− + + ρ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ne J mk, 10tr
m

i k z k
z

mn
m k z

k
mn

2 2z
2 2 2

where N is a normalization constant.
We may additionally consider the far-field electron wavefunc-

tion, which describes the beam after the hologram in the region
→ ∞z . It can be shown (see Appendix II) that under these con-

ditions, the probe intensity ( )I K assumes the form

( )ψ δ( )∝ ( ) ∝ − ( )ρI K K K mk 11tr
m 2

where K is the spatial frequency.
Theoretical Fresnel (near-field) and Fraunhofer (far-field) in-

tensities associated with a Bessel beam generated from a phase
hologram are displayed in Fig. 1.
4. Properties of Bessel beams

Bessel beams of the form (4) are solutions to the scalar wave
equation, which in vacuum is given by

ψ ρ ϕ ψ ρ ϕ− ℏ ∇ ( )= − ℏ ( ) ( )M
z t

k
M

z t
2

, , ;
2

, , ; 12
2

2
2 2

where M is the electron mass and ℏ is the reduced Plank constant.
This can readily be observed by substituting a trial solution in

cylindrical coordinates of the form ρ ϕ ρΨ( )= ( ) ϕ( + − ℏ)z;t R e, , n
i n k z Et/z

into Eq. (12), whence we find that

ρ ρ
ρ

ρ ρ
ρ

ρ
ρ

ρ( ) + ( ) + − − ( )=
( )

⎛
⎝⎜

⎞
⎠⎟

d R
d

dR
d

k k n R
1

0,
13

n n
z n

2
2

2
2 2 2

2
2

which has solution ( )ρ ρ( )= ρR J kn n , where = −ρk k kz
2 2 2 [27]. It then

follows that ( )ρ ϕ ρΨ( )= ρ
ϕ( + − ℏ )z;t J k e, , n

i n k z E t/z , in agreement with (4).
We note also that the transverse amplitudes of Bessel beams,

ρ( )Rn , are independent of the beam propagation distance z. For this
reason, Bessel beams are referred to as non-diffracting beams
[28,29]. Despite their attractive physical properties, Bessel beams
of the form (4) are not normalizable, carry infinite energy, and are
therefore unphysical. Nonetheless, they can be closely approxi-
mated in practice, as we shall see. In Fig. 2, we illustrate the non-
diffractive propagation of an ideal Bessel beam, along with its
propagation range, zmax. It can be seen from the figure that the
hologram convergence angle α ≡ ρk k/ and size R jointly determine
the length of the region over which the electron beam will take on
Bessel character, due to the overlap between its component plane-
waves.
5. Simulation of electron beam propagation

Beam propagation simulations were carried out numerically
using STEM_CELL software [30], which allows electron beam



Fig. 1. Theoretical Fresnel (near-field) and Fraunhofer (far-field) intensity distributions associated with a Bessel beam generated from an off-axis phase hologram. The Bessel
beam itself is formed at the first diffracted order ( =m 1), and is found to take a ring-like shape in the far-field, in accordance with Eq. (11). The red lines indicate a schematic
(i.e non-rigorous) wavefront evolution. In a free space propagation scheme the Fraunhofer plane should be located at þ1. If the images are produced by a lens, the
Fraunhofer plane is located at a finite distance, namely the focal length. The Fresnel diffraction regime, in which the beam takes on its smallest size, is the region in which the
formation of the Bessel beam can be observed. The illustration also demonstrates that for the upper/lower beam the Bessel condition is reached before/after the focal plane.

Fig. 2. Theoretical depiction of diffraction-free propagation of an idealized electron
Bessel probe. Both the off-axis and on-axis hologram are displayed: they differ only
by an in-plane carrier frequency (i.e. a tilt). For the on-axis hologram, one can
readily discern a similarity to a parabolic Fresnel lens. Due to the conical phase
imparted by the hologram (see Eq. 5), wavefronts at different azimuthal angles
converge with an angle α≡ ≈ρ ρk /k k /kz . Since the hologram is laterally bounded by
the hologram radius R, by neglecting diffraction effects at the aperture, we can
imagine each wavefront as being “laterally bound plane waves”whose limits are the
beam center and the radius of the aperture. These waves overlap only in a limited
region, z≤

ρ
kR
k
. The beam retains its Bessel form and diffraction-free characteristics

only in this region of overlap. Finally, note that different diffraction orders are
characterized by different radial phase (see Eq. (8)) gradients, so that in general we
can write ( ) =

ρ
z mmax

kR
mk

.
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wavefunctions to be deduced based on our experimentally con-
structed hologram thickness maps. The electron wavefunction
could then be calculated at different propagation distances by
making use of the relation [31]

ψ ψ( + Δ ) = ( Δ ) ⊗ ( ) ( )x y z z P x y z x y z, ; , ; , ; , 14

where ( Δ )P x y z, ; is the Fresnel propagator, which describes the
beam’s evolution over a distance Δz , and ψ ( )z is the electron
wavefunction at position z, which serves as a pupil function in the
context of the Fresnel propagation integral, and ⊗ represents the
x y, convolution operation (see Appendix I). In the paraxial ap-

proximation, the propagator takes the form ρ( Δ ) = −
λΔ

πρ
λΔP z e; i

z

i
z

2

.
In practice, the electron wavefunction incident on the hologram

is not perfectly collimated. For this reason, the aperture function
ψ ( )z describing the incident beam is characterized by a slightly
convergent wavefront. This requires that numerical simulations be
carried out with a pixel size significantly smaller than the electron
beam diameter.

We note that much of the blurring observed in the Bessel
beams generated experimentally was due to the limited transverse
coherence length of the source, brought upon by the finite size of
the FEG Schottky emitter. This coherence length depends on the
demagnification of the source at the the focal plane of the objec-
tive lens prefield. We accounted for limitations in transverse beam
coherence by considering the Fresnel diffraction zone to be de-
scribed by many mutually incoherent beams, each of which is
characterized by a slightly different incidence angle [31]. Losses
due to inelastic scattering, especially those due to the excitation of
plasmons, have not been considered. Inelastically scattered waves
have a spatial distribution resembling that of the grating in the
near field, but lack coherence over the length scale of our grating.
At a sufficient propagation distance from the holograms, these
effects merely contribute a diffuse, incoherent background ex-
tended over several milliradiants, an angular size much wider than
that of the diffraction grating.

Our experiments did not reveal any feature in the energy fil-
tered grating diffraction except those coming from zero loss re-
gion. In general, however, one cannot ignore the role of inelastic
scattering in modulating the amplitude of the transmitted wave:
strictly speaking, our holograms are amplitude and phase
holograms.

From this work, it is therefore clear that the generation of truly
propagation-invariant Bessel beams is limited in efficiency by
three considerations. First, Bessel beams generated in the labora-
tory are characterized by intensity oscillations at beam center
throughout propagation, due to diffraction from the hologram
aperture. Second, the limited range of applicability of the ap-
proximation scheme used to derive the near-field electron
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wavefunction Eq. (10) predicts the breakdown of Bessel-like be-
havior at some maximal propagation distance, zmax. Indeed, well
beyond this point, the wavefunction takes its far-field form Eq.
(11), and loses all Bessel character. Finally, imperfections in holo-
gram patterning can result in non-ideal, pseudo-Bessel beams.
Great care must therefore be taken to ensure that an optimal
hologram design is chosen, so as to produce high-quality beams.
6. Hologram patterning

TEM experiments were primarily performed using a JEOL
2200FS microscope, equipped with a Schottky field emission gun
(FEG), operated at 200 keV. The hologram was inserted in the
microscope’s sample position, and beam images were obtained
under low magnification, using the objective minilens as a Lorentz
lens. This allowed for a large camera length and focal range, per-
mitting imaging from the Fresnel to the Fraunhofer planes. This
working mode, and the Fresnel mode in particular, are not cali-
brated in our microscope. As a result, we implemented a manual
calibration scheme. The microscope was equipped with an Omega
filter for energy loss imaging, and used to map hologram thickness
profiles.

For STEM experiments, the hologram was mounted in the
second condenser aperture of a FEI Tecnai TEM equipped with a
Schottky FEG, and operated at 200 keV. A Dual-Beam instrument
(FEI Strata DB235M), combining a focused gallium-ion beam (FIB)
and a scanning electron microscope (SEM), was used to pattern the
holograms by FIB milling 200 nm-thick silicon-nitride membranes
coated with a 120 nm-thick gold film. The membranes were
coated with the gold film in order to prevent electron transmission
in all but the patterned areas.

We note that, at an accelerating voltage of 200 keV, a 120 nm
gold layer is not sufficient to completely stop the electron beam
used. However, the presence of the gold film does suffice to induce
elastic scattering of electrons. The mean free path for scattering
absorption associated with diffuse scattering is on the order of
60 nm while the extinction distance of the main diffractions oc-
curs on the order of some tens of nanometers. Fortunately, the
diffraction angles we explore are on the order of μrad (the Bragg
angle for a grating with 100 nm step spacing), so that almost any
scattering event produces a deviation from the angular range of
interest. We found that, in practice, some detectable intensity was
transmitted in the forward direction only when the beam was
completely concentrated in one point. We experimentally de-
termined the undesired forward transmittance to be well below
1%.

The procedure for hologram nanofabrication is implemented by
starting with a bitmap picture of a computer-generated hologram,
which is converted into a FIB pattern file containing three key
pieces of information. These are respectively the pixel coordinates
at which the FIB is switched on, the beam dwell time on each
pixel, and the repetition number of the whole coordinate set, ad-
justed in such a way as to obtain the desired milling depth [9].

The second step is to adjust the FIB magnification according to
the desired dimensions of the hologram. We selected a 50 nm
width, and 100 nm periodicity for the stripes composing the ho-
logram, resulting in a typical full hologram size on the order of
10 μm�10 μm.

Once the computer-generated hologram has been designed, the
holograms are patterned in two stages: first, the gold layer is uni-
formly removed from a circular region, 10 μm in diameter. To this
end, the transmitted intensity from the secondary electron beam is
monitored during milling until the signal is lost, indicating that the
gold is no longer present. Next, the hologram pattern is super-
imposed on the uncovered region, and milled into the silicon nitride.
For reasons related to the finite pixel resolution accommodated
by our software, we imprinted the ideal, blazed profile only onto
holograms with large grating periods, and nearly sinusoidal pro-
files onto those with grating periods under �300 nm. In order to
control the experimental hologram thickness profile, we per-
formed TEM energy loss analyses. Through imaging, and by com-
paring beam transmission spectra, we generated quantitative
maps of sample thickness.

The result of this procedure is shown in Fig. 3, where we aimed
to generate a sawtooth hologram profile. The inset shows that the
thickness profile indeed corresponds closely to that of a blazed
hologram. We can define the relative (or exit) efficiency η of the
hologram as follows:

η =
∑ ( )

=I
I

,
15

m

m m

1

where Im represents the intensity associated with the mth dif-
fraction order. We note that this definition of efficiency differs
from more canonical definitions, in that it explicitly considers
beam intensities Im after transmission through the hologram, ra-
ther than providing the ratio of desired beam intensity to the in-
tensity of the beam incident on the hologram aperture [11]. While
these two definitions coincide in the limit of a strictly non-ab-
sorbing hologram, they will not agree in general, and from the
known absorption of Si3N4 were estimated to differ roughly by a
factor of two to three in our experiment. This disagreement may
be understood to arise from loss of the coherent fraction of the
beam intensity due to the inelastic scattering of electrons by the
hologram.

Using this groove thickness profile, we can plot the hologram’s
efficiency as a function of the peak-to-valley thickness of the ho-
lographic material, t0, from which we can see (Fig. 3-c) that this
profile allows a maximum efficiency of 38%. We obtained an effi-
ciency of 37%, which is presently the best performance achieved
by such a device, given that an uncertainty of about 3% must be
allowed in order to account for the unknown intensity of the
beams outside the field of view.

This also indicates that it is not possible to further increase the
efficiency of this nanofabrication recipe; greater control of the
groove profile is therefore necessary, but lies outside the scope of
this work. Decreasing absorption effects will certainly be im-
portant to further progress, but we note also that the relative ef-
ficiency is an important factor for STEM applications, as a relative
efficiency approaching 100% would mean a perfect suppression of
all unwanted diffraction orders.
7. Results and discussion

In presenting the data, we distinguish between two classes of
hologram, based upon their respective aperture radii R. This
parameter determines the extent to which the electron probe will
resemble an ideal Bessel beam. Large aperture radii allow for the
generation of highly Bessel-like beams in the Fresnel region,
whereas reductions in R lead to a decrease in the number of visible
rings associated with the electron beam, all else being equal. It can
also be shown, based on the uncertainity principle, or on the
maximum propagation range, that the aperture radius is inversely
proportional to the width of the transverse momentum distribu-
tion ∆K , such that Δ ( ) ≈K R2 1. It is useful to compare with hollow
cone illumination.

Thus, holograms with large apertures tend to produce ideal, delo-
calized Bessel beams suitable for interferometry, while smaller aper-
ture (more precisely, apertures with small values of ρk R) holograms
generate highly localized beams that are best suited to STEM imaging.



Fig. 3. Experimental hologram patterning. (a) Three-dimensional rendering of an energy filtered TEM-based thickness map of the center of a hologram with parameters
=n 1, =ρk 3.2�10�5 Å�1, and =R 1.22 mm. (b) SEM image of the same hologram. (c) Experimental diffraction pattern obtained from the hologram displayed in (b). Below it

an Histogram shows the intensities of each of the diffraction orders, (d) Simulation of hologram relative efficiency as a function of thickness scaling factor t0. Simulations
were performed with and without considering the effect of amplitude modulation: the amplitude (absorption) modulation is shown to have a negligible effect. The figure
shows the expected trend, the efficiency exhibiting a dependence roughly of the form φ( )J1 0

2 (see Eqs. (8) and (9)) on the thickness, where φ ∝t0 0 (see the discussion
preceeding Eq. (6)). For the thickness profile considered, a peak-to-valley thickness of 50nm is found to result in a maximal efficiency of 38%. This limit is better than the
maximum of φ( )J1 0

2 due to the triangular thickness profile. We determined the efficiency of the hologram experimentally to be ±37 3%. The uncertainty on this efficiency
accounts for the estimated contribution of beams at higher diffracted orders.
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Of course, in STEM, the need for optimal probes must be ba-
lanced with the need for sufficient intensity. Therefore, one must
optimize the optical configuration, including the hologram con-
vergence, and efficiencies must be strongly enhanced to be com-
petitive with normal probes. This will be the object of forthcoming
work.

We note that, for a fixed ρk and large aperture R, the first-order
diffracted beam will closely approximate a Bessel beam, whereas
for smaller R the hologram will predominantly act as a pinhole,
resulting in significant overlap between the zeroth and first-order
diffracted beams. We note also that, in the Fresnel regime, in-
creases in aperture size do not increase the convergence of the
generated beam.

7.1. Bessel beams with large aperture radii

Fig. 4-a and b shows two holograms, characterized by re-
spective hologram convergence ρk k/ of 6 μrad and 15 μrad, and
large, identical aperture sizes. Fig. 4-c and d shows the corre-
sponding Bessel-like beams generated from these holograms in
the Fresnel region, when they are illuminated by approximately
collimated incident electron beams. The holograms were prepared
with n¼0, and therefore impart no OAM to the transmitted elec-
tron beams. Both holograms were 10 μm in diameter and con-
tained 100 grating lines.

The Bessel beams shown in Fig. 4-c and d reveal the critical
role played by the radial wavenumber ρk in defining the spread
and number of visible fringes in the transmitted beams. For ho-
lograms with smaller values of ρk , the first-order diffracted beams
are subject to relatively insignificant spreading during propaga-
tion, and the Bessel beams generated from these masks are
therefore readily isolated from the zeroth diffracted order. By
contrast, holograms manufactured with larger ρk produce
strongly divergent transmitted beams, resulting in significant
overlap between the zeroth and first orders of diffraction, though
this overlap can be reduced by increasing the main separation kx.
Indeed, the extent of this overlap can be so significant that the
isolation of the first diffracted order from the zeroth order be-
comes challenging (Fig. 4-d). This overlap also results in the ap-
parent deformation of the first-order diffracted beam at its cen-
ter. Holograms manufactured with small ρk are also found to
produce Bessel beams with fewer rings than would be the case
for those manufactured with larger transverse wavenumbers, as
expected theoretically. Hence, for a given aperture size, an



Fig. 4. Bessel beam generation by large aperture phase holograms. (a) Scanning electron microscope (SEM) image of a phase hologram with aperture radius R¼5 μm and
convergence angle α¼6 μrad. (b) SEM image of a phase hologram with aperture radius R¼5 μm, and large convergence angle α¼15 μrad. In both images a and b, a small
contamination area is visible about the center. (c) Near-field intensity pattern obtained experimentally from the hologram depicted in part (a). (d) Near-field intensity pattern
obtained from the hologram depicted in part (b). Notice that up to 20 rings of intensity are visible.
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increase in ρk will result in a more Bessel-like electron beam in
the Fresnel near-field, with a greater number of visible fringes.

7.2. Bessel beams with small aperture radii

For comparison, we show in Fig. 5a series of holograms man-
ufactured with smaller aperture radii, along with corresponding
intensity profiles for the first diffracted orders of the transmitted
electron beam. In the figure, we compare the cases =n 0,1,2. In
each case, the holograms were manufactured with a hologram
convergence α = ρk k/ of 1 μrad. Notably, in the case of =n 2, we
reach a relative efficiency of almost ±37 3%, which is by far the
largest value ever achieved for off axis holograms. Large relative
efficiencies are particularly important in order to remove the effect
of overlap with other beams.

Under these conditions, the beam consists only of a very faint
ring about the beam center, and its shape depends strongly on
propagation distance. This can be understood to occur as a con-
sequence of the small hologram aperture, which does not allow
higher order fringes to manifest themselves upon propagation,
resulting in a beam with almost no Bessel character. Such beams
produce novel probes well suited to STEM imaging, owing to the
small size of their central intensity maximum (the 0th-order
Bessel beam is characterized by the smallest central spot size
among all beams with a given numerical aperture [28,29]), which
results in a beam localization that is only slightly inferior to that of
an aperture-limited probe.
8. Propagation

In order to characterize the effective propagation range of the
Bessel beams generated using our technique, we examined the
intensity at beam center for the first diffracted order, in the case

=n 0, i.e. for an electron beam carrying zero OAM. The holograms
used in this experiment featured large aperture radii, and re-
sembled the holographic mask shown in Fig. 3-a. The intensity
values thus obtained are shown as a function of propagation dis-
tance in Fig. 6, along with theoretical plots obtained from
simulations.

Our results indicate that, apart from some oscillations, the
beam intensity rises to a maximum value at zmax¼0.7 m. This is



Fig. 5. Beam generation by small-aperture phase holograms. a, b, and c show in-focus bright-field images of phase holograms with small aperture radii R¼1.22 μrad,
convergence angles α¼1 μrad and respective topological charges =n 0, 1 and 2. d, e and f show the experimental intensity patterns obtained from these respective
holograms. Notably, the hologram with =n 0 gives rise to a single, well-defined point of maximum beam intensity, whereas higher topological charges lead to doughnut-
shaped intensity patterns.

Fig. 6. Intensity at beam center as a function of propagation distance. Simulated
(orange curve) and experimental (blue points) intensities at beam center as a
function of position for an electron Bessel probe with parameters =n 0, μ=ρ rad6

k

k
,

and μ=R 5 m. Some of the experimental points correspond to images in [8] and
Fig. 4c.
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consistent with the leading linear factor in stationary phase ap-
proximation (SPA), (described in Appendix I) In fact, the intensity's
z-dependence is shown to be dominated by an initial, linear in-
crease in average intensity with z , and a smooth decrease after
zmax (see Appendix I), corresponding closely to the theory and
experimental plots displayed in Fig. 6.
Notice that the cutoff at zmax should be abrupt according to the
simple geometrical scheme in Fig. 2, but diffractive effects blur the
wavefronts, producing the smooth decrease observed.

We note also that it can be difficult to identify the plane at
which the Fraunhofer condition is satisfied when carrying out
experiments involving small aperture radii R. By definition, the
Fraunhofer plane is the position at which the 0th diffraction order
of the transmitted beam is most tightly focused. However, when R
is small, it is in practice difficult to clearly identify the zeroth-
diffracted order in beam cross-section images obtained experi-
mentally. Further complicating matters, each diffraction order is
focused at a different position, so that an unambiguous identifi-
cation of the Fraunhofer plane is challenging to achieve. Not-
withstanding these limitations, techniques have been developed
that allow the zeroth diffracted order to be identified, by deliber-
ately introducing a condenser astigmatism to the beam, as re-
ported in reference [32].
9. Phase description

Since vortex beams are most completely described by referring
to their transverse phase structure, a great deal of emphasis has
been placed on the development of techniques that might allow
for the retrieval of phase information from such beams [33]. For
our purposes, a realistic reconstruction of the phase of the electron



Fig. 7. Correspondence between experimental and theoretically calculated beam phase structures. (a) Simulated and experimental beam propagation, showing agreement at
z¼0.1 m. From this propagation distance and the known hologram profile, it is possible to reconstruct the phase structure of the beam. (b) Orders of diffraction obtained
from a phase hologram with parameters =n 1, = μρ 1 rad

k

k
, and R¼1.22 μrad, with superimposed phase structures. In the figure, the beam phase is indicated by color hue,

and intensity by brightness. (c) Enlarged view of the first and second diffracted orders shown in part (b). (d) Reconstruction of the positions of phase vortices in the original
beam (see Appendix III). The area about the indicated singularities is typically 30–100 times less intense than the rest of the map. Indeed, the reconstruction is based on a
hologram thickness map with low noise, and is therefore quite robust even where the diffracted beam intensity is low near the singularity.
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beam can be achieved from calculations based on experimentally
measured hologram profiles. Since the wavefunction of a trans-
mitted electron beam can be determined from the hologram
thickness profile, the beam structure can be calculated at any
propagation plane, using the techniques discussed earlier.

In a previous study [9], we demonstrated that when beam
coherence effects are accounted for, a very good agreement exists
between the modeled electron wavefunction, and the beam’s ex-
perimentally observed intensity distribution. Thus, this technique
provides an initial, indirect means by which to characterize the
transmitted electron beams. Transverse intensity and phase pro-
files calculated for an electron beam carrying an OAM of =n 1,
generated by a small aperture, are shown in Fig. 7. Given that the
intensity pattern calculated for the beam corresponds closely to
those obtained experimentally, we assume that the calculated
phase distribution represents an accurate picture of the beam
phase structure as well.

We also carried out a simple phase analysis, analogous to that
reported in [34], to locate beam phase vortices. Our results show
that, in the case =n 2, in Fig. 5c the second-order vortex decom-
poses into two separate vortices of first order, as predicted in [35].
This observation cannot be ascribed to lensing effects, owing to the
fact that this phenomenon is not accounted for by our simulation
technique. Rather, we believe this decomposition to arise from
imperfections in the grating [36,37].

If only the OAM content of the first-order beam is of interest, a
more direct characterization of the first diffracted order can be
achieved by interfering the first-order diffracted beam with the



Fig. 8. (a) Propagation and focal characteristics of various diffracted orders. Experimentally obtained intensity profiles associated with various orders of diffraction, which
are visibly focused at different propagation distances. The anticipated linear dependence of beam size on diffraction order is verified by pasting together transverse the
intensity profiles for each order at identical propagation distances. Notice that the lateral cutoff on the beam size does not enter into play when the beam is very small.
(b) Illustration of the scattering geometry for different diffraction orders.
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zeroth-order as a reference. The resulting pitchfork-shaped inter-
ference pattern produces a vortex dislocation that indicates the
OAM content of the first-order beam.

In Fig. 8, we show beam cross-sectional images obtained for
several diffracted orders at various effective propagation distances
about the =m 0 order focal point. As can be gathered from the
figure, every diffracted order is found to focus at a different loca-
tion. Further, the sizes of the diffracted beams are found to depend
linearly on the indices m of the respective diffracted orders (a
consequence of the conical shape of the beam), in agreement with
the anticipated range of validity of Eq. (10) (See Appendix I),
ρ < ± − ρR mk z k/ .

It can be readily be seen for the Fraunhofer condition that the
angle β is related to the beam convergence α = ρk k/ through the
angular separation of the order, θB (proportional to δ in Fig. 8), so
that βθ α=B .
Fig. A1. Schematic representation of a Bessel phase hologram and beam image
plane for the purpose of determining near-field and far-field beam profiles. Cy-
lindrical coordinates are used to indicate points in both planes. Primed coordinates
refer to the hologram plane, while unprimed coordinates refer to the image plane.
10. Conclusion

We have explored the theory of Bessel beam holographic
generation in detail, examining the impact and importance of
hologram parameters such as the groove shape and depth, aper-
ture size, fringe spacing and modulation. By optimizing these
parameters, we have experimentally achieved Bessel beam gen-
eration with efficiencies as high as 3773%. Moreover, we have
demonstrated experimentally the successful generation of Bessel
beams characterized by variable transverse wavenumbers, topo-
logical charges and ranges of non-diffractive propagation through
direct measurement and observation of beam structure. We be-
lieve that this systematic study will greatly facilitate the applica-
tion of Bessel beams to imaging and electron microscopy.
Appendix I. Fresnel propagation of diffracted electron beams

See Fig. A1.
The wavefunctions associated with each diffraction order will

evolve through free space propagation, beyond the holographic
plate. The effect of this propagation can be calculated by evaluat-
ing the Fresnel diffraction integral
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where ( ′ ′)A x y,m is the aperture function, which describes the
phase and amplitude modulation induced in an incident beam by
the holographic phase mask. With respect to the mth diffraction
order, the aperture function will take the form

( )ρ ϕ( ′ ′) → ( ′ ′) = ′ ′ρ ϕ+ρA x y A e, ,m m
im k n . Hence, the diffraction integral
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where the limits of the outer integral reflect the finite aperture of
the holographic mask. Applying the Jacobi–Anger expansion to the
integral over ϕ yields
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We can try to find an approximate solution in a range where

( )ρρ′k
z

is small, for example close to the axis. The Bessel function

Jmn can also be assumed to vary slowly.
With these assumptions in hand, the integral (A2) becomes

tractable. In order to evaluate it, we turn to address a related
problem, namely that of calculating the integral
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We note that the integral (A4) is mathematically equivalent to
the expression (A2) that we wish to evaluate, if we choose
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radius of the holographic mask. The approximate equality (A5) can
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The expression for the transmitted wavefunction provided
above includes a contribution from the aperture limiting function
( )I R z, , which accounts for the finite size of the phase hologram.
This expression is approximate, and no attempts will be made

to quantitatively compare it with the numerical solution of the
Fresnel integral A1. Nevertheless, this calculation shows a char-
acteristic oscillation, superimposed on a mainly linear growth in
the intensity, consistent with our observations Fig. 6.

The term ( )I R z, does not affect the transverse profile of the
beam, so that
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where N is a normalization constant. We note also that (A5) is
contingent upon the approximation (A4), and therefore holds true
only to the extent that there is a point ρ( ′) ≈
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actually makes a stationary contribution to the transmitted beam
associated with the mth diffraction order. The condition (A7) can
be satisfied for values of z such that ≤
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the approximation (A4) fails, so that the Bessel character of the
transmitted beam is no longer maintained.

Far from the axis, we are in the opposite regime, in which the
Bessel function’s oscillatory behavior changes the stationary phase
analysis. Indeed, for large x,
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Using Euler's formula, the integral of interest can be written as
a sum of 2 oscillatory components:
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In this case, we can still use stationary phase arguments to find
the lateral extent of the region where the intensity of the probe is
non-negligible (see appendix of Ref. [30]).

The condition for a stationary contribution is therefore
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so that the generated beam will take Bessel form only in this
range. In the asymptotic limit discussed, (namely for large ρ) the
probe is therefore characterized by a double conical cutoff (as in
Fig. A2b) that can be observed by varying the propagation distance
z or the diffraction order m. This is therefore relevant to the ana-
lysis of Fig. 8 in the main text.

Appendix II. Far-field propagation

We determine the wavefunction of the mth diffraction order in
the far-field by evaluating the Fraunhofer diffraction integral



Fig. A2. (a) Evaluation of the function I for typical parameter values used in this paper. A mainly linear increase in intensity can be observed, with superimposed oscillations.
(b) Geometrical illustration of the region of stationary phase as a function of z. This schematic demonstrates that the overall size of the probe reaches a minimum in what
could be called the central central focus, before rising again.
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We address the inner integral first, once again resorting to the
Jacobi–Anger identity to write
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∫ ϕ π ρ′ ′ ′ = ( ′)
π

ϕ ρ ϕ ϕ ϕ′ ( − )d e e i e J K2 .imn i K mn imn
mn

0

2
cos

As a result, the transverse wavefunction is then given by

∫ψ ρ ρ ρ( )= ̃ ′ ′ ( ′)ϕ ρ′ρK Ne d e J K .tr
m imn

R
im k

mn
0

We now note that the above expression may be written
equivalently in the form

∫( ) ( )ψ ρ ρ= − ~ ∂
∂

′ ′ ( ′)
( )

ρ
ϕ

ρ

ρρk iNe
mk

d e J K .
A9

tr
m imn

R
im k

mn
0

The integral on the right hand side of this new equation can be
further decomposed by making use of the Euler identity:

∫

∫ ∫( ) ( )

ρ ρ

ρ ρ ρ ρ ρ ρ

′ ′ ( ′)

= ′ ′ ( ′) + ′ ′ ( ′)

ρ

ρ ρ

ρd e J K

d mk J K i d mk J Kcos sin .

R
im k

mn

R

mn

R

mn

0

0 0

The above expression takes on qualitatively different solutions,
depending on the relative values of ρk and K . In particular, for

→∞R , we have [38]:
( )( )∫ ( )
( )

ρ ρ ρ′ ′ ( ′) =
−

ρ
ρ

∞
ρ

d mk J K
mn

K mk
cos

cos arc sin
mn

mk

K

0 2 2

and

( )( )∫ ( )
( )

ρ ρ ρ′ ′ ( ′) =
−

ρ
ρ

∞
ρ

d mk J K
mn

K mk
sin

sin arcsin
mn

mk

K

0 2 2

when <ρmk K , and

( )
( )
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ρ

π

ρ ρ ρ

∞
d mk J K
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mn mn
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2

2 2 2 2
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− + −

ρ

π

ρ ρ ρ

∞
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K

mk K mk mk K
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sin

mn

mn mn
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0

2

2 2 2 2

when >ρmk K . Each of the four expressions above feature a singular
point when = ρK mk , as do their derivatives with respect to ρmk .
Hence, when they are substituted into Eq. (A9), we have that
ψ ρ ϕ( )→∞,t

m for →ρmk K , so that, upon normalization, the absolute
square of the far-field wavefunction becomes a delta function,
centered at =ρmk K , i.e. ( )ψ δ( ) ∝ − ρK K mkt

m 2 . For this reason, the
electron beam intensity pattern forms a thin ring in the far-field,
as shown in Fig. 1.
Appendix III. Locating phase singularities

Phase singularities occur for non-vanishing integer winding
numbers n, as defined by closed contour integrals of the form

∮π φ= ∇⃑ ∙ ⃗ ( )n ds2 , A10

where φ is the phase of the wavefunction, and ⃗ds is an in-
finitesimal segment of the closed path around some region of in-
terest. Here, φ∇⃗ is obtained from a special type of derivative, de-
fined for example in [39], as

( )δφ
δ

= − ∂
∂

φ φ− −
x

ie
x

e .i i
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This definition removes the artificial π2 discontinuity that has
no meaning for the phase.

In practice, the integral (A10) was evaluated over small rec-
tangular paths, typically of dimension 5x5 pixels. The results were
then entered into a map of the beam, and the integral was found
to yield zero within floating point precision, and πn2 about the
vortices [40].
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