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Abstract

We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on
two and three mutually unbiased bases (MUBs) both in an asymptotic and finite-key-length scenario.
The finite secret key rates (in bits per detected photon) are calculated as a function of the length of the
sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB
QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block
length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and
asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable
threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss
the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular
momentum degrees of freedom of photons.

1. Introduction

It has been more than 30 years since the proposal of the first quantum key distribution (QKD) protocol—BB84
[1]. The ultimate goal of a QKD protocol is to establish a secure key between two parties for a further
cryptographic use; in this context, quantum mechanics is a powerful ally of the legitimate parties. Therefore, it is
advantageous to generate the key by distributing and measuring quantum states. Contrary to communication
with classical signals, for quantum states there exists a fundamental trade-off between how much information a
classical or quantum adversary can get and how much the quantum system is disturbed. For example, the most
straightforward strategy of simply copying a quantum state does not work [2, 3]. A significant amount of effort
has been invested in proving the security of BB84 and subsequent QKD protocols (starting with its proper
definition [4, 5]) and experimental realization [6].

Most of the modern QKD schemes rely on two-level quantum systems (qubits) as quantum information
carriers. This is especially easy to achieve using the photon polarization degree of freedom. The theoretical
background as well as the experimental techniques are mature. However, quantum d-level states (qudits) have
attracted much attention recently because they naturally offer higher quantum information transmission rates
and together with continuous variables are promising candidates for next generation quantum information
processing. In this approach, the information is encoded onto d distinct orthogonal states, for which in principle
there is no upper limit on d. In the context of QKD, the d-level protocols not only offer a great potential to
increase the transmitted key rate but they are also known to be more resilient to errors [7]. Experimentally, high-
dimensional quantum states have been realized as discrete time-bins [8], positions [9] or angular momenta [10]
in lab-scale proof-of-principle tests. They have also been successfully studied under real world environmental
conditions where air turbulence or inter-modal coupling in fibers have to be taken into account [11, 12].

The experimental efforts for realization of multidimensional QKD has primarily relied on employing two
mutually unbiased bases (MUBs). However, it is known that using only two MUBs for d = 2 does not realize the
full potential of a qubit-based QKD. Instead, by using three MUBs we are rewarded by an increase in the
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maximum tolerable error rate in a QKD protocol known as the six-state protocol [13]. Considering this
observation, it is expected that using more than two MUBs would provide enhancement in the security of the d-
dimensional QKD protocols. It is well known that for d a prime number or the power of a prime, the maximum
number of MUBs in a d-dimensional Hilbert spaceis d + 1[14, 15]. For the non-prime dimensions, the
number of MUBs is a major open problem. However, it is perhaps less well known that there always exists three
MUBs for any d [16]. Motivated by this fact, we present a comprehensive security analysis for d-level QKD with
two and three MUBs. Our main contribution in this paper is the calculation of the secret key rate upper bounds
for discrete d-dimensional QKD protocols using two and three MUBs. We exemplify the key rate calculations on
d = 2to 7 but our approach can be immediately applied for any d. The secret key rates are calculated in both the
asymptotic and finite key length scenario. In the asymptotic case, the 2-MUB rates reproduce the previously
known results [6, 7, 17—25] but to our best knowledge the analytical results we obtain for 3-MUB rates and for
any d are novel and the corresponding adversarial channels have not been studied before (only the d = 2 case
reduces to the well studied six-state protocol [13]). The main reason to reproduce the already known results for
the 2-MUB QKD protocol is the calculation method that may not be familiar to the practitioners of QKD. It can
be summarized as ‘ab initio’ since our starting point is the private classical capacity and the quantum capacity of a
quantum channel [4] and we systematically derive the well-known expressions for the secret key rate. The main
result of the asymptotic part of our analysis is the secret key rate calculation for the 3-MUB protocol and the
derivation of the tolerable threshold for the error rate. We found that the threshold quite substantially increases
accompanied by the increase of the secret key rate” as envisaged by the comparison of BB84 and the six-state
protocol. Our results justify the overlapping numerical results presented in [26].

The second part of our analysis is the study of QKD in the non-asymptotic regime of a finite number of
exchanged signals. We follow two different routes leading to excellent (achievable [27]) upper bounds on the
secret key rates even for a relatively low number of signals. The first approach is the generalization of the
uncertainty relation-based approach pioneered in [28] for two MUBs and d = 2. We generalize the key step
spelled out in [29] for any d and using the large deviation estimate for the number of errors in the non-sacrificed
part of the sifted key we derived the corresponding secret key rates. The intermediate step includes a numerical
optimization over the ratio of dits in the secret key rates that are sacrificed for the parameter estimation
purposes. As the number of sifted bits asymptotically increases the portion of sacrificed bits tends to zero [30]
and the secret key rates approach the asymptotic ones derived previously. For another approach to the non-
asymptotic regime see [31, 32].

The uncertainty-relation-based method is, however, not known to be applicable to the 3-MUB QKD
protocol [28]. More precisely, it can be enforced even for three MUBs but our attempts lead to awfully
suboptimal rates. Hence we adopt a different strategy. Using the recent advances in the second-order
asymptotics for the quantum coding rates [33] we use the expansion of the relevant entropic quantity (the
smooth min-entropy) in terms of the conditional entropy variance [33, 34] and expand the decoupling exponent
of what is essentially a one-shot decoupling lemma [28]. The resulting rates are calculated both in the 2- and
3-MUB QKD scenario. In the latter, the resulting secret key rates are better for any d compared to the basic
estimate first brought by Renner in [23] that is used as a template in almost all finite key studies. Since the 3-MUB
QKD protocol for any d seems to be systematically studied for the first time here, it therefore establishes the best
known secret key rates. The second-order asymptotic expansion also beats Renner’s rates for the 2-MUB QKD
protocol (for any d) but it is not as good as the uncertainty-relation-based estimates. This is the expected kind of
behavior.

The remainder of the paper is structured as follows. In section 2 we introduce the minimal background
material and notation for our approach to calculate the asymptotic secret key rates and collect several
rudimentary facts about the Pauli group for qudits and mutually unbiased basis. We also recall the Choi-
Jamiotkowski state-map correspondence. The asymptotic rates for 2- and 3-MUB QKD protocol are calculated
in section 3. In section 4 we introduce the necessary entropic quantities that come out in the expressions for
finite key length secret key rates and derive the previously discussed non-asymptotic secret key rates. In section 5
we describe one possible laboratory implementation of our results by considering photonic OAM based QKD
schemes, which have become a promising candidate for real-life high-dimensional QKD applications. We show
the spatial modes that would be required for three MUBs and describe possible next steps and open challenges.
We, however, do not analyze the security of the studied QKD protocols by considering all realistic parameters
such a platform offers. This would include taking into account the efficiency of photon sources and detectors
together with the suboptimality of certain classical information algorithms used in the postprocessing step. The

> The secret key rate units are bits per channel where the channel is understood as a completely positive map whose exact form will be
derived. Therefore our notion of a channel differs from its typical use in quantum optics experiments. A quantum channel is said to be
realized in the QKD context whenever the photon is detected and used in the process of secret key extraction (not discarded). Knowing the
number of realizations of the channel per second gives us the total number of secret bits per a unit of time, sometimes perhaps confusingly
also called a rate.
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experimental inefficiencies do not affect the secret key rate (measured by bits per channel) but rather the speed of
how many secret bits one is able to collect per given time period.

2. Security of asymptotic QKD and preliminaries

The modern definition of security for a quantum key distribution protocol requires the final state g, g to satisfy

LS okl ® 1Rk © 7

< e. (D
IKl keK

QABE —

The indices A, B stand for the legitimate sender and receiver and E is an adversary (Eve). The condition says that
after the protocols ends, the legitimate parties share classical correlations (in this case a classical key { |k)}(k|} ),
where the knowledge of Eve can be made arbitrarily small—the quantum system in her possession is decoupled
from the legitimate participants. The expression || M||; & Tr MM denotes the trace norm. This approach was
first rigorously introduced in a great generality in [4] and in the context of QKD also in [5]. The marginal state gp
can be seen as an output of a noisy quantum channel A/ between a sender and a receiver. They do not know
whether the noisy evolution is caused by decoherence of any kind or by an eavesdropper and mainly they must
not care. As long as they know the channel and are able to use it asymptotically (sending a large number of
quantum signals) one can often easily determine whether a secret key can be established. Here comes the idea of
asymptotic QKD: with an ever increasing number of channel uses the parameter on the rhs of equation (1) is
required to become arbitrarily small. For some channels this condition cannot ever be satisfied and in that case
the asymptotic QKD is impossible. The normalized rate at which establishing classical correlation over a noisy
quantum channel is in principle possible is called the private classical capacity of . Note that a secret key is a
form of classical correlations [4]. If the private capacity is zero, equation (1) cannot be satisfied in the sense that
Eve cannot be arbitrarily well decoupled from the state shared by the sender (A) to a receiver (B). The private
classical capacity is given by

P(N) £ lim lsupP(J\f®”, 0), 2

n—oo 1 0xu
where

PW, o) L 1(X; B), — I(X; B), 3)

is the private information. The state oxgr = Y., p, |x)(x| ® o0y pE is given by the action of a channel isometry
W)y : A — BE onaclassical-quantum input state oxa = >_, p, |x)(x| ® 04,4 and X denotes a classical random
variable with a probability distribution P (p, = Pr(X = x)). The quantity I (A; B) is called the quantum mutual
information defined as

I(A; B), = H(A), + H(B); — H(AB),, (C))

where H (A), &€ Tr [04 log 04] is the von Neumann entropy® of a (possibly multipartite) state 045 . The

private classical capacity in (2) is an unconstrained optimization problem whose tractable solution for a general
channel A/ is notknown at present and even the calculation of the one-shot private capacity (n = 1)

df
PON) = supP (N, o) )
Oxa
is not straightforward since g4 admits a mixed state decomposition 04 = >_ p, 0« a-
Another fundamental quantity, seemingly unrelated to QKD, is called the quantum channel capacity [4]

QW) L tim Lsupouven, ), ©)

n—oo 1 QA"
where

QW 0 LH®B)y — HE), %)

is the coherent information. The isometry now acts on g, that (crucially) can be limited to a convex sum of rank-
onestates wy 4 as Wy : Y. p. |wy)fwyla — V. The quantum capacity follows from a stronger condition than
equation (1)—that the main goal is to successfully transmit a quantum state from a sender to a receiver who
happens to be decoupled from the environment E (completely controlled by an adversary). Quantum channel
capacity (6) is also intractable for a general channel N but the one-shot quantity (also called the optimized
coherent information)

6 Log s the logarithm base two and In denotes the natural logarithm throughout the paper.

3
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Q) = supQWY; o) ®)
Op
is fairly easy to evaluate (often not analytically but the numerics will do the job).

The decoupling mechanism is naturally useful for secret key generation. This is because the quantum
capacity can crucially be interpreted as the one-way entanglement distillation rate which itself is a lower bound
on the one-way secret key rate [4]. Once the parties share maximally entangled states, they can be used to teleport
any type of information, in particular a secret key, at the same rate the pairs were distilled. Hence the quantum
capacity is a channel secret key rate lower bound. Formally, it can be shown in the following way [4] (see also
[35]). From equation (5) and the definition of the mutual information we write

POWN) = sup [[(X; B)y — I(X; E),], (9a)
= sup [H(B), — H(BX), — H(E), + H (EX),], (9b)
= sup [H (B)y — H(E); — > p,(H(B),, — H (E)g,)], (%)
= sup [H (B), — H(E),] — inf ) p (H(B)s, — H(E)s), (9d)

04 % x
=QOW) — Pinf > 2. QW 0y (%)

Equation (9¢) follows from
H(BX), = H[pr lx) (x| ® Ux,B) =HX)p + Y _pH(B),,

and similarly for the H (EX),. The first two summands in equation (9) can be optimized over g4 instead of gy4
since we trace over the classical variable X. The von Neumann entropy H (X)p over a classical probability

distribution Pis simply the Shannon entropy S({p,}) £ —>_.b, logp.. Inthe end we arrived at [4]
QWW) < PYN) (10)

and thus the lhs turns out to be a useful lower bound in the QKD scenario as claimed. The equality is achieved for
0x,a = |wy){wy |4 in which case H (B),y = H (E),,y forallxand so Q(N, o,) = 0.
The usual starting point for an asymptotic analysis of a QKD’s secret key rate r is the following formula [5]

r 2 L min [(H(X7IE?, — HXOY™),), ()
Nnoapel’
where o4 Is a pure tripartite state shared by all parties, oxyg is a classical-quantum state obtained by
measuring o ppr (50 X, Y are classical variables also called a raw key) and # is the block size. The marginal state
o 4pr over which is being optimized is essentially a Choi state introduced on p 6. The set I' are all Choi states
compatible with the channel estimation step in the protocol and we will see it in action in equations (23¢).
Finally, the expression in equation (11)

H@B), £ H@AB), — H(B), (12)

is the quantum conditional entropy. We can quickly see the equivalence between equation (11) and

POW) = sup, [H (X|E), — H (X|B),]from equation (9). We get rid of the supremum by realizing that in all
mainstream QKD protocols, the input states (or private codes) o, are pure states (or mixtures thereof) leaving us
with the classical-quantum input state of the form px4 = >, p. [x)}x| ® |wy)(wy|a. The maximum is achieved
for o4 maximally mixed and so from equation (9¢) we get PD(N) = QM (N), see below (10)°. In the second
step, we realize that in all QKD protocols, Bob applies a POVM on the received quantum state generating a
classical variable Yand so equation (11) for n = 1 has been recovered

QW) = n,

where o4p from the rhs represents A on the lhs via the Choi—Jamiotkowski isomorphism (see p 6). There is also
amissing sup for r; (or r,, in general) as opposed to Q' (V') and this a subtle point. From the quantum capacity
standpoint, the channel N is given and the maximization is over all possible input states g4 (quantum codes). In
the QKD scenario (specifically in its entanglement version) the parties try to share maximally entangled states

” The actual expression for the key rate can be applied under very general circumstances, see [5], corollary 6.5.2.

Note that we are not a priori assuming anything. If a new QKD protocol is invented, the fact that the one-shot private capacity is maximized
for a maximally mixed state must be proved.
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and the most reasonable strategy is obviously to start the distribution with maximally entangled states (quantum
codes)’. The fact that they may become disrupted due to decoherence or an eavesdropper implies that the
channel will be different. As we will see later, such a disrupted code isa channel representation (the Choi matrix).

Pauli group for qudits and MUBs

Itis instructive to investigate the case of two complementary bases (MUBs) for higher-dimensional Hilbert
spaces. To this end, we first informally introduce the qudit Pauli group I1,. It has two generators X, Z; € 11,
defined as

d—1

Xa= Y lk & 1)(k|, (13a)
k=0
d—1

Zy= Y Wk |k)kl, (13b)
k=0

where w = exp 27i/d and @ is addition modulo d. An arbitrary element of Tl is then X Z/
for0 <o, <d— 1

From other useful properties of the qudit Pauli group let us recall that the special case of Weyl commutation
relations [16]) reads

XdZd = ZdXdeiCd. (14)

Hence, the eigenvector v,in the equation X;Z;v; = ey is also an eigenvector of X Z{ (up to a phase). This is
because

X§Z§ = XaZa)"e"™, (15)

where £ = (a? — a)/2 counts the total number of passes of Z, through X,. But v,is also an eigenvector of the
rhs (up to a phase).

Choi-Jamiolkowski representation of quantum channels

A remarkable way of representing a quantum channel is known as the Choi-Jamiotkowski isomorphism
[37,38]. Let A/ be the quantum channel. Then there exists a positive semi-definite map Ry, sometimes called
Choi matrix, that represents the action of the channel via

No os = Tral (04 ® idg)Ry]. (16)

The channel  is trace-preserving if its Choi matrix satisfies TrzRyy = id4. Conversely, any quantum channel
N gives rise to a Choi matrix

RapN) = (ida ® N) o Py, (17)

where &, = Zf’f‘: [)ali)ar is an un-normalized maximally entangled state. The physical interpretation of the
Choi matrix is as if the communicating parties shared a maximally entangled qudit pair. Instead of sending the
actual qudit through the channel one sends a half of a maximally entangled state. The Choi matrix is usually
derived from another channel representation (Kraus maps, for example) but almost all QKD schemes allow its
direct construction. Thisleads to the so-called diagonal Bell state. To see this, recall that the states in many QKD
schemes are always sent in one of the MUB bases. That means that the number of possible errors can be
enumerated—one just needs to find the error generators causing a bit flip in at least one of the bases. These are
precisely the elements of the Pauli group I1; and so the Choi matrix reads

-1
RagN) = > Aap(id @ X3Z7) Daar. (18)
a,5=0
Starting from (18), the operation o in (17) becomes an ordinary matrix multiplication and the tilde indicates a
normalized state. The probability error coefficients satisfy 1 > A, > 0 together with ZZ:;:O Aag = L

3. Derivation of the 2- and 3-MUB QKD adversarial channels for qudits and their
asymptotic secret key rates

We adopt and reformulate the method of adversarial channel derivation from [5]. A concise version also appears
in appendix A of [6].

? Amore general idea, that we will not discuss further, is the possibility already envisaged in [4] to go beyond entanglement distillation
protocols in order to establish classical secret correlations. It indeed turns out that one can distribute so-called ‘private states’ [36] for this
purpose. This is precisely the situation where QV(N') = 0 but PO(N) > 0.
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2MUBs
The error analysis is straightforward. In the bit basis (the eigenvectors of Z,;), the errors are caused by X' (there
isd — 1ofthem)and X Z f forall o, B > 0 (thereis (d — 1)? of them in total). Hence the measured error rate
in the bit basis reads

Qy=(d = DAz + (d — 1)*\, 19)
where Az = Aogand ) is the rest. Similarly for the phase basis, by setting Ay = A, we obtain

Q= — DA+ d - DX (20)

Itis common and experimentally reasonable [6] to set the error rates equal Q, = Q, = Q. The normalization
condition yields

Xo=1—-2Q+ (d— 12\ (21)

and itis perhaps clear that ); is a free parameter that needs to be determined by taking the best Eve’s strategy.
Following [5], the most general quantum attack is a collective attack. A collective attack is Eve’s interaction with a
passing qubit one by one with an eventual collective measurement deferred until the quantum transmission is
over. In this light, the maximum amount of information provided to Eve is given by the minimized coherent
information equation (7) which we readily rewrite as

QW, ®ua) = H(B)i — H(AB)z. (22)

Indeed, the normalized Choi matrix R serves a double purpose: it is a channel representation but also an output
of the channel whose input is maximally entangled with the reference system A (see equation (17)). The
minimized rhs can be immediately evaluated

H;in QW, dux) = mAin [H(B)x — H(AB)R],

(23a)
d-1
=logd 4+ min ) AgslogAas, (23b)
Ay a,3=0
=logd + min[(1 — 2Q + (d — 1)*X)log[1 — 2Q + (d — 1)*)]
Ay
Q— -1\, Q—(d— 1>\
2(d -1 1
Y
+ (d — 1))\ log As]. (23¢)

Equality (23b) follows from Ty [Rap] = id/d (the channel represented by R, (R4p) is unital). We also used the
fact that R,p is Bell-diagonal in order to calculate H (AB)y using equations (19)—(21). From (23c¢), by setting

d [QWN, ®14)] = 0, we find the stationary point

dX, ,
Ao = Q_ (24)
(d— 1y
d2 = d-1)* ..
and oY [QWN, P4allaey = oo 0 reveals a minimum for all dand Q. Then
' Q1 - Q)
Az =X =——> 25
7z = A 11 (25)
and as a result we get
MUB QU -Q W QU - Q 5 50
N @) = (1 = Qe+ =——= 3 XJ*Xg" + =———= "7/ o7,
d—1 a=1 d—1 B=1
QK 3 3
+—— > X§Z]oXgZ}) (26)
(d -1 a,B=1
also called the BB84 channel for d = 2. The secret key rates obtained by plugging equation (24) into
equation (23¢) read
QUWM™) =logd +2[QlogQ + (1 — Qlog(1 — Q) — Qlog(d — 1)] 27)

and are plotted in figure 1 for d = 2to 7. For d = 2 the rate goes to zero for Q = 0.11 which is the famous
threshold derived in [39].
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Figure 1. Asymptotic secret key rates for 2-MUB QKD protocol (in bits per channel) are depicted for d = 2 to 7 (from the bottom up).

2 MUBs via equation (11)
We can recover one of our earlier results also from equation (11). First, since H (X) = H (B) = logd and by
using equation (4) together with the identity H (B) — H (B|X) = H (X) — H (X|B) we get

H(X|B) = HBIX) = —(1 — Q)log(1 — Q) — QlogQ + Qlog(d — 1). (28)
The channel N 2MYPS is unital: A/JMUBs LN i%d. Therefore, Bob’s information is classical (knowing the basis
he perfectly measures the raw bit value), Y = Band H (X|B) = H (X|Y). Wealso find

@ = H(E|X) = H(B|X)
andbyusing H (E) — H (E|X) = H(X) — H (X|E) we get
H(X|E) = logd — H (E|X). (29)
Putting it all together, we obtain
rl(d,ZMUBs) =logd + 2[(1 — Q)log(1 — Q) + QlogQ — Qlog(d — 1)] = Q(l)(NéMUBs) (30)

in accordance with equation (27).

The reason for the repetition of the previous analysis is two-fold. Besides showing that our earlier approach
via quantum//private capacity is valid and arguably more perspicuous, the secret key rates of the form of
equation (11) enable a nice interpretation of the entropic quantities and a direct comparison with the results
coming from the finite key size analysis performed in [28], which is based on the one-shot entropic uncertainty
relations. The second point will be discussed in detail in section 4. To illustrate the first point, note that for d = 2
we may rewrite equation (11) in an even more familiar form [6]

r@MUBS) — 1 — h(Q) — leakgg, 31)

where h(Q) o€ (1 — Q)log(1 — Q) — QlogQ isthebinary Shannon entropy and leakgc = h(Q) is the
information leaked to Eve during the error correction (information reconciliation) procedure.

Goingback to a general d, typically, leakgc > H (X|Y) (recall Y = B from below equation (28)). This is
because the algorithms performing this purely classical part do not typically achieve the Shannon limit [19]. For
our purposes we consider this step to be perfect: leakgc = H (X|Y).

3MUBs
The existence of three MUBs generated by the Pauli elements Z;, X; and X;Z,; for any d [16] is good news and it
makes senses to study the secret key rates for the 3-MUB QKD protocols. The error analysis is a bit more
intricate. In the bit (Z;) and phase (X,;) basis the errors are generated by the X and Xj'Z f andby Z f and XJ'Z {f ,
respectively, assuming «v, 3 > 0. In the bit-phase basis (the basis spanned by the eigenvectors of X;Z;) the
errorsare caused by X', Z{f (o, B > 0)and those notof the form X' Z7 for a > 0. Thisis shown in
equation (15).

Let us first do some counting: for a given d there is in total d2 — 1error operators XJ' Z7 by excluding an
identity. It contains d — 1 of X operatorsand d — 1 of Z f operators. Thereisalso d — 1of X§' Z{ operators

7
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for o > 0. Hence, the number of operators of the form X;Zf (o, B> 0, a = () causingerrorsinthe X;Z,;
basis must be

A2 —1-3d—1)=(d-2)d- 1.

As aresult we get from equation (18) the following error rates:

Q=d—-DA\z+d—- DX+ (d—2)d— 1))z, (32a)
Q= d—DXAz4+d—DX+(d—2)d— 1))z, (32b)
Qp=@d—-DXx+@d—-DX+(d—-2)d~— 1))z (32¢)

The coefficients Az, \x are defined asbeforeand Axz; = A o for 0 < a < d — 1. Weagain set the error rates
equal: Q = Q, = Qp—, = Q. The normalization condition becomes

Ao+ @—DAz+d—DXx+d—DXo+(d—2)d— DIz =1 (33)
and we find
Aoo=1-Q—(d - DA, (34a)
A=Az =Xy, (34b)
Q—-2d-1DN\
Ay = ———— 77° 34
X7 2@ D (34¢)

for d > 2. The channelis of the following form

d—1 d-1 ) d-1
NMUBs (o) — (1 — Q — (d — DN\)o + ,\?[ZX(,? oXgt + ZZ{?QZ;H + ZX;’Z;Q(X;’Z‘])T]

a=1 /=1 =1

- _ , -1
S8 8 o

a=03=1

The minimization procedure similar to equation (23) leads to an analytical solution (too long to paste here) of
the following cubic equation

~2d - DX +Qf
N=0-d-Dx— : 36
= - @d- DX Q)[(d_z)(d_l)] (36)
The resulting secret key rates are given by
(1) 3MUBs = logd —2(d — DM Q_Z(d_l))\?
QW) =logd + (Q — 2( )')Og—(d—z)(d—l)
+3(d — DXlogh + (1 = Q —(d— DA)log(1 —Q—(d— D) (37)

and are plotted in figure 2. By comparing with figure 1 we can see that the tolerable threshold values are much
better than for the corresponding 2-MUB protocol. Our results perfectly agree (in the overlapping cases) with a
numerical study from [26] as well as the secret key rates and thresholds from [24]. The d = 2 case must be
analyzed separately and it is the well-known six-state protocol [13]. The channel is the qubit depolarizing
channel (see again [6], appendix A)

NMUBs(9) = (1 — 3Q/2)0 + Q/2(X20X; + Ya0Ys + Z207,). (38)
Then
QUMY =1 — S({g;}), (39

where g; = {1 — 3/2Q, Q/2, Q/2, Q/2}. The one-shot capacity becomes zero for the threshold value
Q =~ 0.126 [6,40].

4. Non-asymptotic secret key rates for the 2- and 3-MUB QKD d-level protocols

The condition for a secret key generated when the resources are not unlimited is formally identical to
equation (1). However, equation (1) cannot this time be satisfied arbitrarily well. More precisely, for finite-
length private codes, € is chosen sufficiently small and it becomes an input parameter of the secret key
generation protocol. The task can be further reformulated—it is often advantageous to investigate separately
two conditions : (i) correctness

Pr[KA = KB] g €cor> (40)
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Figure 2. Qudit secret key rates for the 3-MUB QKD protocol for d = 2 (the bottom curve) to 7 (the upmost curve) in bits per channel
are plotted. For the special case d = 2 equation (32) simplify and no optimization is needed. The resulting channel is equation (38).

where the key string is allowed to be different with a non-zero probability €., and (ii) secrecy

1
— > _Ik)kla ® 75
|K | kek
This means that an adversary is decoupled from the resulting secret key sequence by a small (but fixed) amount
€sec - Due to composability [41], the errors add up and the overall security parameter is bounded:
€ < €cor + €ec + €pp'’. Similarly to the asymptotic analysis, the ‘measure’ of decoupling, ey , is related,
through the decoupling lemma [5]

OAE — < Esec- (41)

1

e < 26 + 271(=¢ + Hoyy (X"|E™), — nleakgc), (42)

to the smooth min-entropy

. df
Hpin (AlB), = [Inax Huin (A|B)y, (43)
llo—o'li <e
where
df .

Hiin (AlB), = Jmax sup[oap — 2 %ids ® o < 0]. (44)

0<Trop<1%€

We will also need the max-entropy definition

Hinax (AIB), £ suplog[ Tr[( /25 (ids ® 0p) Jam)/ 21, (45)

B
where for two commuting distributions ¢ — P and o — Q the optimization can be performed [42].

. df
Given the secrecy parameter ¢ , the secret key of the length # = nr©™ can be extracted whenever

(X"|E™), — leakgc. (46)

min

1
rlem < — HE.
n

The secret key rate is achievable [27]. Given the security parameters € in (42), the constructed code satisfies the
decoupling condition. In coding theory, the statement of achievability is usually proved by arandom
construction via a direct coding theorem. This is precisely the construction found in section 5.4 of [5]. The
original derivation from [5] has been further elaborated on and sharpened providing increasingly better
estimates for the secret key rate. For the most important contributions, we should not forget to mention [19—

21, 23] and mainly [28] culminating in [29] whose extension to the QKD qudit protocols will be presented in the
next section. Also note the similarity between equation (11) and equation (46). Indeed, this is not a coincidence,
the latter can be seen as a finite-key version of the former [5, 19]. The conditional entropy belongs to a parametric

1% We took the liberty of ignoring the possibility of failure ep, during the privacy amplification (PA) step and the probability of failure e, of
correctly estimating Alice’s key, equation (40). Both parameters are undoubtedly important for the overall secret key rate in the non-
asymptotic scenario. They manifest themselves as additional exponents in equation (42) in the form proportional to —log[1/¢]. The errors
are chosen independently as part of the protocol [19, 28] but our main interest lies in ¢, and so we will study the key rate as its function. For
apractical piece of advice as what to do in the deployed scenario, where all parameters must be set, we point the reader to [22] and also [29].
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family of the so-called Rényi entropies and both the min- and max-entropy, equations (44) and (45), are family
members with an operational meaning relevant for QKD [23]. Furthermore, we have the equipartition property
o1
lim lim — H,,,
e—=0n—oo N

T S
(X"E™), = lim lim — H;, (X"|E"), = H (X|E),. 47)
e—=0n—oon
An important advance in the security of the finite-key size QKD using two MUBs was possible due to the use
of the uncertainty relation for smooth entropies:

Hpin X"E™), + Hpo X"Y™), > nlogd (48)

min
[42] explains the physical interpretation in detail so we will only say that uncertainty relations in general limit the
knowledge in one basis if a measurement is performed in the complementary basis. In this case, the
complementary basis (the eigenvectors of the Pauli Z; basis) is used exclusively for the sacrificed portion of the
sifted key and this consequently serves for an estimation of the preserved part of the sifted key (which itself is
transmitted in the basis spanned by the eigenvectors of the Pauli X; matrix).

Bounds on the finite secret key rate

The direct evaluation of the smooth min-entropy for 0 < n < oo in equation (46) is not straightforward. There
exists a couple of methods to estimate it and the most advanced analysis so far, based on the smooth entropy
uncertainty relations, appeared in [29] following [28]. We present its generalization to the qudit scenario for the
2-MUB QKD protocol. This approach provides the best secret key rate known to the authors but it cannot be
extended to the case of 3 MUBs in a straightforward manner. In this case we use another strategy via the study of
the asymptotic behavior of the smooth min-entropy. This bound already appeared in [23] and we improve it by
recent insights based on the conditional entropy variance (the so-called second-order approximation of the
quantum coding rate [43]). For the sake of comparison, we evaluate these bounds also for the 2-MUB qudit
protocol. Here, the finite-key corrections come from two sources. First, it is the approximations of the smooth
min-entropy and the smooth quantities in general. The second source of corrections is the error rate estimation
phase, where a part of the sifted key is sacrificed in order to estimate the error rate of the data used to extract the
actual secret key.

To proceed, we will recapitulate the relevant parts (see footnote 6) of the qudit 2- and 3-MUB QKD protocol
in order to apply the methods of [28]. For the case of 2 MUBs, we may adopt the same protocol definition as in
Box 1 of [28]. In particular, an asymmetric choice of the complementary bases is used [30], one for the raw key
whose length will be labeled 7 and the other one of the length k used solely in the parameter estimation step.
Hence, the total length of the sifted keyis N = n + k. The difference compared to [28] is the calculation of the
average error A subsequently used for the parameter estimation. As a pure formality—instead of the modulo two
addition of the publicly announced bit sequences of the length k (used to count the number of differing bits), the
communicating parties may use

k k
AE S g = pIx) = Z[xl—eyi], (49)
i=1 ol d
where © stands for the modulo d subtraction and 1 {w|A} denotes the set indicator function defined for two sets
Q C Aas1{w|A} = 1whenever w € 2 and zero otherwise. In the parameter estimation phase, the sacrificed
portion of the sifted sequence of the length k over d letters (transmitted in the Pauli Z,; basis) is used to estimate
the error rate in the portion of the length n transmitted in the Pauli X,; basis. Analogously to [28], we are

2
penalized by effectively increasing the error rate by v = % due to the finiteness of the statistics. More
precisely, the estimate of large deviations for an independent and identically distributed random process
sampled without replacement due to Serfling is used [44].

For three MUBs, the QKD protocol must be modified only such that the Pauli X,; basis will be used for the
key extraction and the Z;and X;Z; basis for the parameter estimation step. So the communicating parties will
be instructed to switch the bases accordingly with equal probabilities for the Z;and X,;Z,; bases. In this case, the
uncertainty relations based approach does not provide the best secret key rates and the smooth min-entropy
from equation (42) must be estimated differently (see equation (56) onwards).

A useful upper bound on the classical max-entropy is given by the probability distribution support (the set

over which the probability distribution is positive [5]) leading to
Honax (XIY)p < loglsupp[P(X]Y = )| = log{x € {0, 1,....d — 1};; PriX = x|Y = y] > 0}|.  (50)
Here we generalize the result from [29] (claim 9) and show that the rhs satisfies
log|{x € {0, 1,...,d — 1}; Pr[X = x|Y = y] > 0}| < n(h(Q + v) + (Q + v)log(d — 1)) (51)

10
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Figure 3. Secret key rates based on the finite-key length analysis for d = 2... 7 2-MUB QKD protocol. For each d, a triple of curves
(blue/red/green) corresponds to increasingly better key rates. The worst rate (blue) is provided by optimizing the lower expression in
equation (63). The middle (red) curve comes from the second-order analysis in the upper expression equation (63). The highest
(green) rate is given by optimizing equation (55) based on uncertainty relation for smooth entropies we obtained for any d. We set
Q=0.05,¢ = 107%and N = n + k is thelength of the sifted string of d letters.

’r\(e,n)

0 Lol Lol Lol
10° 10* 10° 106 107
N

Figure 4. Rescaled secret key rates from figure 3 for d = 3and d = 7 (using the same color coding) to assess the behavior for a low
number of signals and show the superior rates provided by the uncertainty-relations-based approach (the green curves).

for the 2-MUB protocol. We start as in [28]

[{x€{0,1,....,d — 1}; Pr[X = x|Y = y] > 0}| < > 1{A<n@Q+ )}, (52a)
x€{0,...,d—1}"
:2(”)(61 —DM{A<n@Q+ 1)}, (52b)
A=0 A
n(Q+v) n
= > ( )(d— DA, (52¢)
A=0 A
L 21 Q) (g — 1yn@Q+r), (52d)

The new term (d — 1)* in the first equality comes from an additional number of errors caused by a larger
(d-letter) alphabet. The last line comes from ZK(:QO*”)( :l\ ) < 2"Q+) valid for 0 < Q + v < 1/2,and by

takinginto account 0 < A < n(Q + v). Upon taking the logarithm we obtain (51). This, on the other hand,
allows us to bound the min-entropy from equation (42) via equation (48):

Hyjn (X"|E"), 2 n(logd — h(Q + v) — (Q + v)log(d — 1)). (53)

11
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Figure 5. Secret key rates based on the finite-key length analysis for 3-MUB QKD protocol for d = 2... 7. The upper curve of each pair
(red/blue) is given by optimizing the lower expression in equation (63). Hence the second-order analysis provides better achievable
rates compared to Renner’s original estimate [5] (lower curves from the upper expression in equation (63)). We set Q= 0.05,

¢ = 1071%and N = n + kisthelength of the sifted string of d letters.

Hence, we get for (46)
rem L logd — h(Q + v) — (Q + v)log(d — 1) — leakgc (54)
and so finally the optimized secret key rate is given by

N—k
N

plEem L mkax [logd — h(Q + v) — (Q + v)log(d — 1) — leakgc]. (55)

The numerical optimization was done by choosing a target number of sifted signals N, the error rate Q and the

security parameter €. The result of optimization is the highest rate and also the number k of sacrificed bits

needed to achieve it. Another option, we did not pursue, was to set the target number # of raw bits and optimize

the rate over k sa well. The choice depends more on practical requirements. As expected, in the limitof N — oo
N—k n

or n — 00, we recover equations (27) and (30). This is because ¥ — 0 and N T aar 1.

The smooth min-entropy estimates reveal the rate of convergence in equation (47). The first such estimate
widely used in the literature was provided by Renner [5] (corollary 3.3.7)

lHrilin (X"|E™), > H(X|E), — (2logrankox + 3) llogg. (56)
n n €

A better estimate comes from the recent advances in finite block length quantum coding [43] through

g, OB, > HEXE), + 27 LA (57)
where
V(ello) £ Trlo(logo — logo — D(el|o))*] (58)
is the relative entropy variance and
D(ollo) £ Tr[o(logo — logo)] (59)

is the quantum relative entropy [45]. Then, as a special case, we obtain the quantum conditional entropy and the
conditional entropy variance [34]

H (A|B), = —D(oas|lids ® 08), (60)
V (A|B), = V (0apllida ® o). (61)
The expression & '(x) = —+/2 inv [(1 — Erf(2x))]stands for the inverse of the complementary cumulative

Gaussian distribution function. The previously mentioned large deviation estimate of the smooth min-entropy
manifests itself by replacing f (Q) = H (X|E), with

f(Q+v)=HXIE), <f(Q (62)
in equations (56) and (57).

12
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Figure 6. Normalized intensity (left columns) and the corresponding phase plots (right columns) of the three mutually unbiased bases
for transverse spatial light modes of dimension 7. Color codings for intensity and phase are shown below in arbitrary units from 0 to 1
and 0 to 27, respectively. (a) Eigenstates of the generator Z, , which are also known vortex modes or OAM eigenstates (intensity null at
the center of the beam due to the phase singularity is too small to be seen). (b) Eigenstates of the X; operator can be described by so-
called angle modes due to their intensity profil. (c) Theoretical plot of intensity and phase of the eigenstates of the third mutually
unbiased basis, which is constructed by X;Z;.

Combining equation (46) and the estimates in equations (56) and (57) together with equation (62) we getan

achievable upper bound for the secret key rate
N — k| e (210grankgx—i—3)Jﬁlog3
#E&m < max — H (X|E) — leakgc — | (63)
k

—1¢.2y [VXIE)
—PEN T
The optimized secret key rate 7™ is plotted as the two lower curves in figure 3 for the 2-MUB protocol and in
figure 5 for the 3-MUB protocol. Then, the overall number of secret key bits is given by (N — k)logd for k found
in equation (63). Figure 4 shows the d = 3 and d = 7 cases from figure 3 on a semilogarithmic scale.

13
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5. Discussion and conclusions

With the promising results of an increased secret key rate at hand, we now turn to laboratory implementations of
discrete high-dimensional state spaces. Although the presented theoretical analysis is valid for any experimental
realization, we focus on one prominent example, namely transverse spatial light modes. Encoding high-
dimensional quantum states on the orbital angular momentum (OAM) of photons is a vibrant field in which
technologies to generate and manipulate the states have matured over the last 15 years. Here, the eigenstates of
two MUBs can be intuitively understood as the complementary variables, OAM and angular position (ANG).
They correspond to the generators Z; and X, respectively, which we introduced earlier (equation (13)). High-
dimensional states of both MUBs have been used in previous experiments to demonstrate complementarity as
well as high-dimensionality of the generated quantum states [46—48]. More importantly, their advantage in
high-dimensional QKD has been demonstrated recently [10] and experimental techniques for efficiently sorting
the encoded qudits are well established [49, 50].

In figure 6, we give an example of the eigenmodes of all three MUBs for dimension d = 7: the OAM-basis Z,,
the ANG-basis X; and the eigenstates of X;Z;. The typical vortex of OAM carrying light modes and their
according helical phase dependence (from which the OAM stems) can be seen (figure 6(a)) as well as the angular-
shaped intensity of the states in the second MUBs (figure 6(b)). The modes of the third MUB are more complex
in their intensity and phase profile (figure 6(c)), which leads to open questions of how practical such modes are
in alaboratory setting. Although modern techniques to generate complex light fields with high fidelity and
efficiency are well known [51], the efficient sorting of a general set of spatial modes remains difficult. Possible
techniques will need to be efficient and to work on the single photon level. Both requirements are fulfilled for
established sorting devices that are used for OAM and ANG modes but no direct techniques is known yet, which
sorts the modes of the third basis. One way to circumvent this lack of an efficient direct sorting would be to
transfer the transverse spatial degree of freedom into different optical paths, e.g. as described [52]. Once
transferred, it is known how to realize any unitary transformation on the state, and thus an efficient detection
could be done in any basis [53]. Here, the fast progress in integrated quantum optics might a promising way to
realize such a so-called multiport even for dimensions as high asd = 7 [54, 55].

In summary, we calculated secret key rates and tightly estimated achievable upper bounds on acceptable
errors for an asymptotic and finite key length scenario in high-dimensional QKD schemes. We were able not
only to reproduce and streamline already known bounds but mainly we (i) adapted the uncertainty-relations-
based method to high-dimensional QKD with two MUBs leaving us with non-zero secret key rates even for a
relatively small number of signals and (ii) extended the findings to a QKD scheme involving 3 MUBs basis. Given
the assured existence of 3 MUBs in any dimension, our results are not limited to dimensions where the exact
number of MUBs is known and they can be readily applied to laboratory implementations. Additionally, we give
an example for a possible physical implementation, transverse spatial modes, for which mature techniques in
generating all possible qudit-states exist and devices to efficiently sort the states of two MUBs are established.
Hence, an important future challenge is to develop a practical device that efficiently sorts the modes of the third
MUB. Given the derived increase in the secret key rate, the development of such a novel sorter will further boost
high-dimensional QKD schemes and their real-world implementations.
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