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1. Secure optical communication with multiple bits per photon



Use of Quantum States for Secure Optical Communication

. The celebrated BB84 protocol for quantum key distribution (QKD)
transmits one bit of information per received photon

- We have built a QKD system that can carry more than one bit
per photon.

— Note that in traditional telecom, one uses many photons per bit!

- Our procedure is to encode using beams that carry orbital angular
momentum (OAM), such as the Laguerre-Gauss states, which reside
in an infinite dimensional Hilbert space.




QKD System Carrying Bits Per Photon

We are constructing a QKD system in which each photon carries many bits of information

We encode 1n states that carry OAM such as the Laguerre-Gauss states

As a diagnostic, we need to be able to measure the statevector of OAM states
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Mode Sorting

A mode sorter
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Sorting OAM using Phase Unwrapping

Optically implement the transformation ¢ — T
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Position of spot
determines OAM

-Can also sort angular position

states.

yo+zlogr -  _exp(—z)cos(y)—y o

Experimental Results (CCD 1mages in output plane)
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Our Laboratory Setup
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Laboratory Results -

OAM-Based QKD
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We use a 7-letter alphabet, and achieve a
channel capacity of 2.1 bits per sifted photon.

We do not reach the full 2.8 bits per photon for
a variety of reasons, including dark counts in
our detectors and cross-talk among channels
resulting from imperfections in our sorter.

Nonetheless, our error rate is adequately low to
provide full security,



Next Step: gigabit-per-second OAM-based QKD system

- Use direct modulation of laser diode to encode at gigabits per sec.
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2. New Nonlinear Optical Material for Quantum Information Processing

 We want all-optical switches that work at the single-photon level
* We need photonic materials with a much larger NLO response
e I report a new NLO material with an nz value 100 times larger

than any previously reported results (but with background
absorption).

(First release: M. Z. Alam et al., Science 10.1126/science.aac0330 2016.)



What Makes a Good (Kerr-Effect) Nonlinear Optical Material?

Want n, large (An = n, I). We also want An(max) Jarge.

These are distinct concepts! Damage and saturation can limit An(max)
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We report a material for which both 7, and An(max) are extremely large!
(M. Z. Alam et al., Science 10.1126/science.aac0330 2016.)

For ITO at ENZ wavelength, n, = 1.1 x 10710 cm2/W and An(max) = 0.8

(For silica glass ny = 3.2 x 10-16 cm2/W, Igamage = 1 TW/cm2, and thus
Anmao = 3 x 104)



Nonlinear Optical Properties of Indium Tin Oxide (ITO)

ITO 1s a degenerate semiconductor (so highly doped as to be metal-like).

It has a very large density of free electrons, and a bulk plasma frequency
corresponding to a wavelength of approximately 1.24 um.

Recall the Drude formula
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Note that Ree = 0 for w = w, /€, = wo.
The region near wq is known as the epsilon-near-zero (ENZ) region.

There has been great recent interest in studies of ENZ phenomena:

H. Suchowski, K. O'Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, Science 342, 1223 (2013).
C. Argyropoulos, P.-Y. Chen, G. D'Aguanno, N. Engheta, and A. Alu, Phys. Rev. B 85, 045129 (2012).

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, Phys. Rev. B 87,035120 (2013).
A. Ciattoni, C. Rizza, and E. Palange, Phys. Rev. A 81,043839 (2010).



The Epsilon-Near-Zero (ENZ) region of Indium Tin Oxide (ITO)

Measured real and imaginary parts of the dielectric permittivity.

Commercial ITO sample, 310 nm thick on a glass substrate
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Note thatRe(€) vanishes at 1.24 mm, but that the loss-part Im(€) is non-zero.



Implications of ENZ Behavior for Nonlinear Optics

Here 1s the intuition for why the ENZ conditions are of interest in NLO

Recall the standard relation between no and X(S)
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Note that for ENZ conditions the denominator becomes very small,
leading to a very large value of n»



The NLO Response Is Even Larger at Oblique Incidence

Standard boundary
conditions show that:

Ein,H — Eout,|| = Fout cos ¢ \
Din,J_ — Dout,J_ = Ein,J_ — Ewout,J_/6 — Eout COS (9/6

Thus the total field inside of the medium is given by
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Note that, for € < 1, E;, exceeds Eyy for 6 #£ 0.

Note also that, for € < 1, F;, increases as # increases.



Huge Nonlinear Optical Response of ITO

Z-scan measurements for various angles of incidence
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« Note that n2 is positive (self focusing) and {3 is negative (saturable absorption).

o Both np and nonlinear absorption increase with angle of incidence

e 717 shows a maximum value of 0.11 cm2/GW = 1.1 x 10710 cm2/W at
1.25 um and 60 deg.



T,R, and A

Refractive index, n
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The nonlinear change in
refractive index 1s so large as
to change the transmission,
absorption, and reflection!

Note that transmission 1s
increased at high intensity.

Here 1s the refractive index
extracted from the above data.

Note that the total nonlinear

change in refractive index is
An =0.8.

The absorption decreases at
high intensity, allowing a
predicted NL phase shift of
0.5 radians.



Measurement of Response Time of ITO

* We have performed a pump-probe measurement of the response time.
Both pump and probe are 100 fs pulses at 1.2 um.

e Data shows a rise time of no longer than 200 fs and a recover time of
of 360 fs.

e Results suggest a hot-electron origin of the nonlinear response

e ITO will support switching speeds as large as 1.5 THz
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Implications of the Large NLO Response of ITO

Indium Tin Oxide at its ENZ wavelength displays enormously strong
NLO properties:

n, is 3.4 x 10> times that of fused silica
Nonlinear change in refractive index as large as 0.8

Note that the usual “power-series” description of NLO is not adequate

for describing this material. (We can have fun reformulating the
laws of NLO!)

Some possible new effects
Waveguiding outside the “weakly-guiding” regime
Efficient all-optical switching
No need for phase-matching



3. The promise of ghost imaging



Ghost (Coincidence) Imaging

object to be 1maged "bucket" detector
— | PDC /
/
T - coincidence
entangled photon pair photodete(or array circuitry

e Obvious applicability to remote sensing!
(imaging under adverse situations, bio, two-color, etc.)

e Is this a purely quantum mechanical process? (No)
e Can Brown-Twiss intensity correlations lead to lUIH

ghost imaging? (Yes)
Strekalov et al., Phys. Rev. Lett. 74, 3600 (1995). Benr}ink, Begtley, Boyd, a}nd Howell, PRL 92 033601 (2004)
Pittman et al., Phys. Rev. A 52 R3429 (1995). Gatg, Brambgla, and Lugiato, PRL 90 133603 (2003)
Abouraddy et al., Phys. Rev. Lett. 87, 123602 (2001). Gatti, Brambilla, Bache, and Lugiato, PRL 93 093602 (2003)

: Padgett Group
Bennink, Bentley, and Boyd, Phys. Rev. Lett. 89 113601 (2002).



Is Ghost Imaging a Quantum Phenomenon?

week ending

VOLUME 90, NUMBER 13 PHYSICAL REVIEW LETTERS 4 APRIL 2003

Entangled Imaging and Wave-Particle Duality: From the Microscopic
to the Macroscopic Realm

A. Gatti, E. Brambilla, and L. A. Lugiato
INFM, Dipartimento di Scienze CC.FF.MM., Universita dellilnsubria, Via Valleggio 11, 22100 Como, Italy
(Received 11 October 2002; published 3 April 2003)

We formulate a theory for entangled imaging, which includes also the case of a large number of
photons in the two entangled beams. We show that the results for imaging and for the wave-particle
duality features, which have been demonstrated in the microscopic case, persist in the macroscopic
domain. We show that the quantum character of the imaging phenomena is guaranteed by the
simultaneous spatial entanglement in the near and in the far field.

DOI: 10.1103/PhysRevLett.90.133603 PACS numbers: 42.50.Dv, 03.65.Ud

Experiment: Bennink, Bentley, Boyd, and Howell, Phys. Rev. Lett., 92,
033601, 2004.



How does thermal ghost imaging work?

A A BS
!
l

* Ground glass disk (GGD) and beam splitter (BS) create two identical
speckle patterns

* Many speckles are blocked by the opaque part of object (O), but some
are transmitted, and their intensities are summed by bucket detector (BD)

* CCD camera measures intensity distribution of speckle pattern
* Fach speckle pattern 1s multiplied by the output of the BD

* Results are averaged over a large number of frames.



Origin of Thermal Ghost Imaging

Create identical speckle patterns in each arm.

object arm reference arm
(bucket detector) (pixelated imaging detector)

| /

g,(x,y) = (total transmitted power) x (intensity at each point x,y)

Average over many speckle patterns



Can one Perform Thermal Ghost Imaging With Natural Thermal Light Sources?

e No current detector can time-resolve the rapidly changing speckle pattern
of a natural light source.

e Detector sees intensity time-averged averaged speckles; contrast is reduced
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Image Quality 1s not Degraded through Use of Slow Detectors!

* M = number of speckle e Contrast-to-noise ratio increases with mumber
patterns averaged together of measurements, and does not decrease with M

e 10,000 measurements with four
different values of M

T

e All images qualitatively similar 35
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* Results suggest that ghost imaging can be
performed with natural light sources

Thermal ghost imaging with averaged speckle patterns, P. Zerom,
7. Shi, M.N. O’Sullivan, K.W.C. Chan, M .Krogstad, J.H. Shapiro,
and R.W. Boyd, Phys. Rev. A 86,063817 (2012)



Two-Color Ghost Imaging

New possibilities afforded by using different colors in object and reference arms

bucket detector
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Spatial resolution depends on wavelength used to illuminate object.

Two-Color Ghost Imaging, K.W.C. Chan, M.N. O’Sullivan, and R.W. Boyd, Phys. Rev. A 79, 033808 (2009).



Wavelength-Shifted (Two-Color Ghost) Microscopy

e Pump at 355 nm produces signal at 460 nm and idler at 1550 nm
e Object is illuminated at 1550 nm, but image is formed (in coincidence) at 460 nm

e Wavelength ratio of 3.4 is the largest yet reported.
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Photon-sparse microscopy: visible light imaging using infrared illumination, R.S. Aspden, N. R. Gemmell, P.A. Morris, D.S. Tasca, L. Mertens,
M.G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G.S. Buller, R.H. Hadfield, and M.J. Padgett, Optica 2, 1049 (2015).



Summary

1. Secure optical communication with multiple bits per photon
2. New nonlinear optical material for quantum information processing

3. The promise of ghost imaging
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Why We Shouldn’t Always Trust Google

GO 816 robert boyd
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Boyd Group : Institute of Optics : University of Rochester
www.optics.rochester.edu/workgroups/boyd/ ~

Boyd Quantum Photonics Research Group ... JOSAB July 2014; Robert Boyd awarded
honorary doctorate by the University of Glasgow July 2014; Robert Boyd ...

Robert Boyd (anthropologist) - Wikipedia, the free ...
https://fen.wikipedia.org/wiki/Robert_Boyd_(anthropologist) ~ Wikipedia ~

Robert Boyd {born February 11, 1948) is an American anthropologist. He is Professor of
the Department of Anthropology at the University of California, Los ...

Robert W. Boyd - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Robert_W._Boyd ~ Wikipedia ~

Robert William Boyd (born 8 March 1948) is an American physicist noted for his work in
optical physics and especially in nonlinear optics. He is currently ...
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optics. Wikipedia
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