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Intense Field and Attosecond Physics
 

Attosecond pulses to sample 
 a visible E-field 

atomic core

High-harmonic generation Measuring the molecular 
nitrogen wavefunction

I > 1015 W/cm2



Self Action Effects in Nonlinear Optics

Self-action effects:  light beam modifies its own propagation
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self focusing

self trapping

small-scale filamentation



Prediction of Self Trapping 
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Optical Solitons

Field distributions that propagate without change of form 

Temporal solitons (nonlinearity balances gvd)

Spatial solitons (nonlinearity balances diffraction)

1973: Hasegawa & Tappert
1980: Mollenauer, Stolen, Gordon

1964: Garmire, Chiao, Townes
1974: Ashkin and Bjorkholm (Na)
1985:  Barthelemy, Froehly (CS2)
1991:  Aitchison et al. (planar glass waveguide
1992:  Segev, (photorefractive)



Solitons and self-focussing in Ti:Sapphire  

Diffraction-management 
controls the spatial self-
focussing 

Dispersion-management 
controls the temporal 
self-focussing  



Beam Breakup by Small-Scale Filamentation

Predicted by Bespalov and Talanov (1966)

Exponential growth of wavefront imperfections by four-wave mixing processes

transverse wavevector
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Rabi Sideband Generation in Sodium from Four-Wave Mixing in Filaments

Harter et al., PRL 46, 1192 (1981); PRA 29, 739 (1984); Boyd et al., PRA 24, 411 (1981). 

Beam at exit of cell:

Incident 
   beam

  Single 
filament

 Multiple
filaments

Patterns for structured input beams

Four-wave mixing
in filament (wave-
guide) explains 
spectrum and cone
emission angle

Rabi-sideband model

Spectrum of beam
shows Rabi side-
bands

Beam in far field
(conical emission)
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Honeycomb Pattern Formation

Output from cell with a single gaussian input beam

Input power 100 to150 mW
Input beam diameter 0.22 mm

Sodium vapor cell  T = 220o C
Wavelength =  588  nm
Bennink et al., PRL 88, 113901 2002.

At medium input power At high input power

at cell exit        in far field at cell exit        in far field



Generation of Quantum States of Light by 
Two-Beam Excited Conical Emission

Rev. A, 47, 4297, 1993. Kauranen et al, Opt. Lett. 16, 943, 1991;  Kauranen and Boyd, Phys. 
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Optical Radiance Limiter Based on Spatial Coherence Control

Controlled small-scale filamentation used to modify spatial degree of coherence

Alternative to standard appropches to optical power limiting

Schweinsberg et al., Phys. Rev. A 84, 053837 (2011). 20 30

increasing power



Breakup of Ring Beams Carrying Orbital Angular Momentum (OAM)  in Sodium Vapor

m=1

m=2

m=3

M.S. Bigelow, P. Zerom, and R.W. Boyd, Phys. Rev. Lett 92, 083902 (2004)
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Orbital Angular Momentum (OAM)

• Helical wavefronts
• Laguerre-Gauss modes
(LGp,`)
� ` appears in ei`' term
� LGp,`: `~ OAM per

photon
� LGp,`: wavefront

consists of `
intertwined helices

� Set of orthonormal
solutions to the
paraxial wave equation
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Experimental Setup – Nonlinear Medium

• Paraxial wave equation (*)
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?E = 0

• Nonlinear Schrödinger equation (**):
� �: nonlinear parameter
� �: saturation parameter
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OAM Carrying Beams in Nonlinear Media

• Modulational instabilities in OAM carrying
beams ! Alterations to their intensity
profile
� Beam breakup
� Filamentation
� Soliton formation (specific ICs)

• Alternatives: Structured/space-varying
polarized light beams in a nonlinear
medium.
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Space-varying Polarized light beams – Vector Vortex Beams

6 of 15

Boyd
LHC

Boyd
RHC

Boyd


Boyd


Boyd


Boyd


Boyd


Boyd


Boyd


LHC

RHC

















Space-varying Polarized light beams – Poincaré Beams
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Space-varying Polarized light beams – Nonlinear Propagation
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• Coupled nonlinear Schrödinger
equations

• ⌫: coupling parameter

• L: left-handed circular
polarization

• R: right-handed circular
polarization
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Experimental Setup
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Results – Vector Beams

Intensity and polarization distributions of vector and LG beams before and after propagating through
the Rb atomic vapour.
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Results – Poincaré Beams

Intensity and polarization distributions of fundamental topology Poincaré beams before and after
propagating through the Rb atomic vapour.
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Biased Superpositions
• Generated beams :

• e.g. : exp (iβ) = −i
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Biased Superpositions – Results
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Unstable UnstableStable Stable Stable

Vector beams Scalar beamScalar beam



Conclusions:  propagation
  through a nonlinear medium

Vector vortex beams:
   stable propagation

Poincareé beams:
  stable propagation
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Poincaré beam Vector vortex 
      beam

Pure OAM beam

In

Out

Pure OAM beam:
   beam breakup

Stable Stable Unstable
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Rogue	wave	- Introduction

§ Rogue wave: Amplitude significantly larger than the other waves.

§ First scientific observation: In an oil platform (Draupner) north of Norway in 1995.

§ Rogue	waves	appear	from	nowhere	and	disappear	without	a	trace.	

§ Rogue	waves	≠	accidental	constructive	interference	

§ They	occur	much	more	frequently	than	expected	in	ordinary	wave	statistics.

§ Not limited to ocean: Many other wave systems including optics.

APS	Viewpoint:	Exciting	rogue	waves	(2009)



Optical	rogue	wave
First	optical	rogue	wave:	supercontinuum	fiber1.

1- D.	R.	Solli,	 C.	Ropers,	P.	Koonath	&	B.	Jalali,	Nature	450,	1054	(2007)	

§ Therefore, nonlinearity could be a key ingredient of rogue waves.

§ Rogue waves are observed in linear systems as well!

Water waves in oceans
Optical waves in nonlinear fiber

nonlinear Schrödinger equation

How	important	is	nonlinearity?



A.	Mathis,	L.	Froehly,	S.	Toenger,	F.	Dias,	G.	Genty &	J.	Dudley.	Scientific	Reports	5,	1	(2015).
R.	Höhmann,	U.	Kuhl,	H.	Stöckmann,	L.	Kaplan,	&	E.	Heller.	Phys.	Rev.	Lett.	104, 093901	(2010).

Significant	wave	height

Rogue	wave	(quantitative	definition):
Waves	with	amplitude	higher	than	two	times	the	significant	wave	height.
Significant	wave	height	=	average	of	upper	third	of	events

Spatial	rogue	wave	– Caustic	pattern

Caustics:	singularities	in	ray	optics.
They	have	long-tailed	statistics.



       NL
propagation
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We study linear and nonlinear propagation in two transverse dimensions.
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We study linear and nonlinear propagation in two transverse dimensions.







χ(3) in	rubidium

Transmission	spectrum	of	natural	rubidium	of	length	L=75mm

Re(χ(3))	≈	8�10-12	m2/V2

(From	theoretical	model)

Im(χ(3))	≈	-5�10-14	m2/V2



SLM image image

Experimental	results
(Strong	phase	modulation)

High	nonlinearityLinear

All	histograms	are	taken	from	1000	measurements	and	picking	the	intensity	at	the	center	of	each	
image
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Phase	variation	=	2π

High	nonlinearity

No	rogue	wave Rogue	wave	(Long	tail	statistics)

Linear	propagation
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Experimental	results
(Weak	phase	modulation)
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SWH = significant wave height
RW = rogue wave threshold

































Conclusion
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§ Rogue	wave	in	linear	propagation	requires	strong	modulation.

Linear Nonlinear

§ With	nonlinear	propagation,	even	a	small	modulation	generates	rogue	wave.

Nonlinearity	enhances	the	rogue	behavior	significantly.

§ Results	confirmed	by	numerical	simulation	(FFT	beam	propagation	with	split-steps)



Thank you for your attention! 
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