





# How Do Basic Nonlinear Optical Processes Lead to Atmospheric Lasing?

(Insights from the 1980s)

**Robert W. Boyd** 

University of Ottawa, Unversity of Rochester, University of Glasgow

With great thanks to Paul Corkum, John Sipe, and Pavel Polynkin.

Presented at CLEO, San Jose, USA, May 11, 2015.

# Charles H. Townes July 28, 1915 to January 27, 2015



- Inventor of the maser and laser
- Nobel Prize, 1964
- Advisor to three US presidents
- Teacher, mentor, and friend

# What is the origin of air "lasing"

Is it really "lasing," that is, operating by population inversion gain?

Some proposed mechanisms: mirrorless lasing (ASE) superfluorescence hyper-Raman scattering

Perhaps (probably?) each of these mechanisms can dominate under different experimental conditions. There is no one "correct" model.

Caution:

Showing that someone else's model is wrong does not make yours right!

# **Brief Review of Superradiance, Superfluorence, and Amplified Spontaneous Emission (ASE)**

Superradiance and superfluorescence are two forms of cooperative emission.

Superfluorescence is cooperative emission from an initially totally inverted system.

Superradiance is cooperative emission from a system initially possessing a macroscopic dipole moment.

Both are characterized by a cooperative lifetime  $\tau_r = \frac{8\pi A}{3\lambda^2} \frac{T_1}{N}$ 

Superfluorescence is charaterized by a delay time  $\tau_D = \tau_r [\frac{1}{4} \ln(2\pi N)]^2$ 

If the characteristic dephasing time T<sub>2</sub> is smaller than  $\tau_D$ , a, a macroscopic dipole moment cannot develop and instead ASE occurs.

Refs: Dicke, Rehler and Eberly, Bonifacio and Lugiato, Burnham and Chiao, Gross and Haroche

#### Transition from Superfluorescence to Amplified Spontaneous Emission

Michelle S. Malcuit, Jeffery J. Maki, David J. Simkin,<sup>(a)</sup> and Robert W. Boyd Institute of Optics, University of Rochester, Rochester, New York 14627 (Received 31 December 1986)



The T<sub>2</sub> dephasing time of KCl: $O_2^-$  is a very strong function of temperature.

By varying the temperature between 10 K and 27 K we were able to explore the transition from superfluorescence and ASE.

Note that ASE is very noisy. Not to be confused with ringing.

### **Regimes of Superfluorence**



Maki, Malcuit, Raymer, Boyd and Drummond, Phys. Rev. A 40, 5135 (1989).

# What is the origin of air "lasing"

A very special case: air lasing in atomic oxygen:



They find that the backward emission can be as much as 40 times stronger than the forward emission. Why is this?

Work of Alisauskas, Baltuska, and Polynkin

### How to Explain Backwards Emission

The only process I know of that favors backwards emission is stimulated Brillouin scattering (SBS).

- But the observation of backwards emission excited by fs pulses rules out this mechanism. (SBS has a characteristic turn-on time of approximately 1 ns.)
- Processes such as ASE, stimulated Raman scattering (SRS), and stimulated hyper-Raman scattering (SHRS) have gain in both forward and backwards directions.
- Is it possible that the backwards emission is due to one of these processes and that the forward emission is suppressed by some quantum interference effect?

#### 2 September 1985

#### Suppression of Amplified Spontaneous Emission by the Four-Wave Mixing Process





## What is the Origin of the Suppression of ASE?

Both four-wave mixing (FWM) and ASE can occur



The creation of the  $\omega_2$  and  $\omega_3$  field creates a second excitation pathway to the upper level.

Under quite general conditions, these two excitation pathways interfere destructively!



Boyd, Malcuit, Gauthier, and Rzazewski, PRA 1987

### What is the Origin of the Suppression of ASE?

Here are some of the details:

$$\begin{split} \rho_{cc}^{(4)} &= -\frac{2 \left| \mu_{ba} \right|^{2} \left| \mu_{cb} \right|^{2}}{\hbar^{4} \gamma_{c}} \\ & \times \mathrm{Im} \Biggl\{ \frac{1}{\Delta_{2} - i\Gamma_{ca}} \Biggl[ \frac{|\tilde{E}_{1}|^{4}}{(\Delta_{1} - i\Gamma_{ba})(\Delta_{2} - \Delta_{1} - i\Gamma_{cb})} \\ & + \tilde{E}_{1}^{2} \tilde{E}_{2}^{*} \tilde{E}_{3}^{*} \Biggl[ \frac{1}{(\Delta_{1} - i\Gamma_{ba})(\Delta_{2} + \Delta_{3} - 2\Delta_{1} - i\Gamma_{cb})} + \frac{1}{(\Delta_{1} - i\Gamma_{ba})(\Delta_{2} - \Delta_{3} - i\Gamma_{cb})} \Biggr] \\ & + \tilde{E}_{1}^{*2} \tilde{E}_{2} \tilde{E}_{3} \Biggl[ \frac{1}{(2\Delta_{1} - \Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{1} - i\Gamma_{cb})} + \frac{1}{(\Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{1} - i\Gamma_{cb})} \Biggr] \\ & + |\tilde{E}_{2}|^{2} |\tilde{E}_{3}|^{2} \Biggl[ \frac{1}{(2\Delta_{1} - \Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{3} - i\Gamma_{cb})} + \frac{1}{(2\Delta_{1} - \Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{3} - i\Gamma_{cb})} \\ & + \frac{1}{(2\Delta_{1} - \Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{3} - i\Gamma_{cb})} + \frac{1}{(\Delta_{3} - i\Gamma_{ba})(\Delta_{2} - \Delta_{3} - i\Gamma_{cb})} \Biggr] \Biggr] \Biggr\}, \end{split}$$

Boyd, Malcuit, Gauthier, and Rzazewski, PRA 1987

#### SUPPRESSION OF ELECTRONIC HYPER-RAMAN EMISSION BY FOUR-WAVE MIXING INTERFERENCE

Mary Anne MOORE, W.R. GARRETT and M.G. PAYNE Chemical Physics Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6378, USA

Once again, a four-wave mixing process generates two new fields that create an additional excitation pathway for the upper (3D) level.



## Discussion

I propose (along with Pavel Polynkin) that the observed backwards 845 nm emission in atomic oxygen is a created by stimulated hyper Raman scattering (SHRS).

The absence of emission in the forward direction is a consequence of a destructive interference between the SHRS process and FWM.

### Local Field Effects and the Lorentz Red Shift

We recall the Lorentz-Lorenz Law of linear optics:

$$\chi = \frac{N\alpha}{1 - \frac{1}{3}N\alpha}$$
 or  $\frac{\epsilon - 1}{\epsilon + 2} = \frac{1}{3}N\alpha$ .



This result follows from the assumption that the field that acts on a representative atom is not the macroscopic Maxwell field but rather the Lorentz local field given by

$$E_{\rm loc} = E + \frac{1}{3\epsilon_0}P$$
 where  $P = \epsilon_0 \chi E$ 

We introduce the standard form for the resonant contribution to the atomic polarizability

$$\alpha(\omega) = \frac{(fe^2/2m\epsilon_0\omega_0)}{\omega_0 - \omega - i\gamma}$$

(f is the oscillator strength) into the Lorentz-Lorenz law in the form

$$\frac{\epsilon - 1}{\epsilon + 2} = \frac{1}{3}N\alpha.$$

and solve the resulting equation for  $\epsilon$ . We find that

$$\epsilon(\omega) = 1 + \frac{N(fe^2/2m\epsilon_0\omega_0)}{\omega_0 + \Delta\omega - \omega - i\gamma}$$

where

$$\Delta\omega = -N(fe^2/2m\epsilon_0\omega_0)$$

is known as the Lorentz red shift.

The Lorentz red shift

$$\Delta \omega = -N(fe^2/2m\epsilon_0\omega_0)$$

shows that the resonance frequency of the susceptibility, a macroscopic quantity, is different from that of the polarizability, a microscopic quantity.

This red-shift is purely a consequence of local-field effects, and can alternatively be understood as a sort of Lamb shift.

This result was known to Lorentz as early as 1915, but had not been verified experimentally until 1991 (Maki, Malcuit, Sipe and Boyd, PRL).

## **Observation of the Lorentz Red Shift**



Maki, Malcuit, Sipe, and Boyd, Phys. Rev. Lett. 68, 972 (1991).

### Thank you for your attention!



### Thank you for your attention!







