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Ghost (Coincidence) Imaging

 • Obvious applicability to remote sensing!

entangled photon pair

• Is this a purely quantum mechanical process? (No)

Strekalov et al., Phys. Rev. Lett. 74, 3600 (1995).
Pittman et al., Phys. Rev. A 52 R3429 (1995).
Abouraddy et al., Phys. Rev. Lett. 87, 123602 (2001).
Bennink, Bentley, and Boyd, Phys. Rev. Lett. 89 113601 (2002).

Bennink, Bentley, Boyd, and Howell, PRL 92 033601 (2004)
Gatti, Brambilla, and Lugiato, PRL 90 133603 (2003)
Gatti, Brambilla, Bache, and Lugiato, PRL 93 093602 (2003)

• Can Brown-Twiss intensity correlations lead to 
ghost imaging? (Yes)

(imaging under adverse situations, bio, two-color, etc.)

Padgett Group



Wavelength-Shifted (Two-Color Ghost) Microscopy

Photon-sparse microscopy: visible light imaging using infrared illumination, R.S. Aspden, N. R. Gemmell, P.A. Morris, D.S. Tasca, L. Mertens, 
M.G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G.S. Buller, R.H. Hadfield, and M.J. Padgett, Optica 2, 1049 (2015). 

•  Pump at 355 nm produces signal at 460 nm and idler at 1550 nm
•  Object is illuminated at 1550 nm, but image is formed (in coincidence) at 460 nm 
•  Wavelength ratio of 3.4 is the largest yet reported.

Setup

Typical images



Is Ghost Imaging a Quantum Phenomenon?

Entangled Imaging and Wave-Particle Duality: From the Microscopic
to the Macroscopic Realm

A. Gatti, E. Brambilla, and L. A. Lugiato
INFM, Dipartimento di Scienze CC.FF.MM., Università dellíInsubria, Via Valleggio 11, 22100 Como, Italy

(Received 11 October 2002; published 3 April 2003)
We formulate a theory for entangled imaging, which includes also the case of a large number of

photons in the two entangled beams. We show that the results for imaging and for the wave-particle
duality features, which have been demonstrated in the microscopic case, persist in the macroscopic
domain. We show that the quantum character of the imaging phenomena is guaranteed by the
simultaneous spatial entanglement in the near and in the far field.

DOI: 10.1103/PhysRevLett.90.133603 PACS numbers: 42.50.Dv, 03.65.Ud
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near �eld

Good imaging observed in both the near and far �eld.  

far �eld

Near- and Far-Field Ghost Imaging Using Quantum Entanglement
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Bennink, Bentley, Boyd, and Howell, Phys. Rev. Lett., 92, 033601, 2004. 



Good imaging can be obtained only in near �eld or  far �eld.
Detailed analysis shows that in the quantum case the space-
  bandwidth exceeded the classical limit by a factor of three.  

near �eld

far �eld

•
•

Near- and Far-Field Ghost Imaging With a Classical Source
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1.  Traditional ghost imaging is not an intrinsically quantum
      phenonenon.

Comments

2.  Nontheless, ghost imaging can display quantum features
     (as we just saw). 

3.  However, “interaction-free ghost imaging,” to be described 
    next, is a fully quantum phenomenon.
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What Constitutes a Quantum Measurement?

single photon

beam splitter

detector clicks

• Situation 1

single photon

beam splitter

detector does not click

• Situation 2

photon must be here

M. Renninger, Z. Phys. 15S, 417 (1960).
R. H. Dicke, Am. J. Phys. 49, 925 (1981).



Quantum Imaging by Interaction-Free Measurement

imaging setup

single
photon

single
photon

results

 M. Renninger, Z. Phys. 15S, 417 (1960).
 R. H. Dicke, Am. J. Phys. 49, 925 (1981).
 A. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993).
 L. Vaidman, Quant. Opt. 6, 119 (1994).
 P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, Phys. Rev.   Lett. 74, 4763 (1995)
 A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat,  Phys. Rev. A 58, 605 (1998).
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 Interaction-Free Measurements and Entangled Photons

.
D1

D2
small opaque object

two
spatially 
entangled
photons

photodetector array
If detector D2 clicks, will the spot size
on the detector array measured in
coincidence  become smaller?

•  Does it lead to the collapse of the wavefunction of its entangled partner?

•  Does an interaction-free measurement constitute a “real” measurement?

•  More precisely, does the entire two-photon wavefunction collapse?
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Object

IF = interference filter
BS = beam splitter
ICCD = intensified CCD camera

Interaction-Free Ghost Imaging

Experimental Setup



Experimental Results
Interaction-free ghost image of a straight wire

•  Note that the interaction-free ghost image is about five times 
    narrower than full spot size on the ICCD camera

•  This result shows that interaction-free measurements
   lead to wavefunction collapse, just like standard measurements.

coincidence counts singles counts



Was this experiment even worth doing?

We could instead have simply answered the question 
theoretically (of whether interaction-free measurements 
lead to wavefunction collapse).
My response:  Physics is an experimental science.  
Theoretical models are developed to explain the results 
of experiment, and not vice versa.  

In their mathematical treatment of interaction-free measure-
ments, Elitzur and Vaidman state: “Assuming that detectors 
cause the collapse of the quantum state . . .” (Emphasis mine.)

     Foundations of Physics 23, 987 (1993).



Is interaction-free imaging useful?

Interaction-free imaging allows us to see what something
looks like in the dark!

Could be extremely useful for biophysics.  What does the 
retina look like when light does not hit it?  
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New Nonlinear Optical Material for Quantum Information Processing

 
• We want all-optical switches that work at the single-photon level

• We need photonic materials with a much larger NLO response

• We recently reported a new NLO material with an n2 value 100 
   times larger than any previously reported results (but with some
   background absorption). 

• A potential game changer for the field of photonics

Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, 
M. Zahirul Alam, I. De Leon, R. W. Boyd, Science 352, 795 (2016). 
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What Makes a Good (Kerr-Effect) Nonlinear Optical Material?

Want n2 large (Δn = n2 I).  We also want  Δn(max) large.  

These are distinct concepts!  Damage and saturation can limit Δn(max) 

(For silica glass n2 = 3.2 x 10-16 cm2/W, Idamage = 1 TW/cm2, and thus  
Δn(max) = 3 x 10-4 )

We report a material for which both  n2  and Δn(max) are extremely large!
    (M. Z. Alam et al., Science 10.1126/science.aae0330 2016.) 
 For ITO at ENZ wavelength,  n2 = 1.1 x 10-10 cm2/W  and Δn(max) = 0.8
 



  Nonlinear Optical Properties of Indium Tin Oxide (ITO)

ITO is a degenerate semiconductor (so highly doped as to be metal-like).

It has a very large density of free electrons, and a bulk plasma frequency 
       corresponding to a wavelength of approximately 1.24 μm.

Recall the Drude formula

There has been great recent interest in studies of ENZ phenomena:

H. Suchowski, K. O'Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, Science 342, 1223 (2013).
C. Argyropoulos, P.-Y. Chen, G. D'Aguanno, N. Engheta, and A. Alu, Phys. Rev. B 85, 045129 (2012).
S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, Phys. Rev. B 87, 035120 (2013).
A. Ciattoni, C. Rizza, and E. Palange, Phys. Rev. A 81,043839 (2010).
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 The Epsilon-Near-Zero (ENZ) region of Indium Tin Oxide (ITO)

Measured real and imaginary parts of the dielectric permittivity.

Commercial ITO sample, 310 nm thick on a glass substrate

Note that         vanishes at 1.24 mm, but that the loss-part          is non-zero.Re  ( ) Im ( )

Drude fit



Implications of ENZ Behavior for Nonlinear Optics

Here is the intuition for why the ENZ conditions are of interest in NLO

Note that for ENZ conditions the denominator becomes very small, 
leading to a very large value of n2



The NLO Response Is Even Larger at Oblique Incidence

Standard boundary 
conditions show that:

Thus the total field inside of the medium is given by



Huge Nonlinear Optical Response of ITO

Z-scan measurements for various angles of incidence
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• Both n2 and nonlinear absorption increase with angle of incidence

• n2 shows a maximum value of 0.11 cm2/GW = 1.1 x 10-10 cm2/W  at 
       1.25 μm and 60 deg.

• Note that n2 is positive (self focusing) and β is negative (saturable absorption).
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0.7 The nonlinear change in 
refractive index is so large as
to change the transmission, 
absorption, and reflection!

Note that transmission is 
increased at high intensity.

Here is the refractive index 
extracted from the above data.

Note that the total nonlinear 
change in refractive index is
Δn = 0.8.

The absorption decreases at
high intensity, allowing a 
predicted NL phase shift of
0.5 radians.



Measurement of Response Time of ITO

• Data shows a rise time of no longer than 200 fs and a recover time of
       of 360 fs.
  

• ITO will support switching speeds as large as 1.5 THz

• We have performed a pump-probe measurement of the response time.
      Both pump and probe are 100 fs pulses at 1.2 μm.
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• Results suggest a hot-electron origin of the nonlinear response



Implications of the Large NLO Response of ITO

Indium Tin Oxide at its ENZ wavelength displays enormously strong 
      NLO properties:

       n2  is 3.4 x 105 times that of fused silica
       Nonlinear change in refractive index as large as 0.8

Note that the usual “power-series” description of NLO is not adequate 
     for describing this material. (We can have fun reformulating the 
     laws of NLO!)

Some possible new effects
   Waveguiding outside the “weakly-guiding” regime
   Efficient all-optical switching
   No need for phase-matching





Thermal Ghost Imaging

Recall that the intensity distribution of 
thermal light looks like a speckle pattern.

We use pseudothermal light in our studies:  we create a speckle 
pattern with the same statistical properties as thermal light by 
scattering a laser beam off a rotating ground glass plate.  

Instead of using quantum-entangled photons, one can perform 
ghost imaging using the correlations of a thermal light source, as 
predicted by Gatti et al. 2004. 

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).



How does thermal ghost imaging work? 

•  Each speckle pattern is multiplied by the output of the BD

•  Results are averaged over a large number of frames.

•  Many speckles are blocked by the opaque part of object (O), but some 
 are transmitted, and their intensities are summed by bucket detector (BD)

•  Ground glass disk (GGD) and beam splitter (BS) create two identical
   speckle patterns

•  CCD camera measures intensity distribution of speckle pattern



Origin of Thermal Ghost Imaging

Create identical speckle patterns in each arm.

   object arm
(bucket detector)

 reference arm
(pixelated imaging detector)

g1(x,y) = (total transmitted power) x (intensity at each point x,y)

Average over many speckle patterns




